Explicit computation of Gross-Stark units over real quadratic base fields

Paul Thomas Young

College of Charleston

December 19, 2012

This talk represents joint work with Brett Tangedal, UNCG.

"On *p*-adic multiple zeta and log gamma functions", *J. Number Theory* **131.7** (2011), 1240-1257.

"Explicit computation of Gross-Stark units over real quadratic fields", *J. Number Theory* **133.3** (2013), 1045-1061.

This work is dedicated to the memory of our mentor David R. Hayes.

Thanks to:

This talk represents joint work with Brett Tangedal, UNCG.

"On *p*-adic multiple zeta and log gamma functions", *J. Number Theory* **131.7** (2011), 1240-1257.

"Explicit computation of Gross-Stark units over real quadratic fields", *J. Number Theory* **133.3** (2013), 1045-1061.

This work is dedicated to the memory of our mentor David R. Hayes.

Thanks to:

• College of Charleston Mathematics Department

This talk represents joint work with Brett Tangedal, UNCG.

"On *p*-adic multiple zeta and log gamma functions", *J. Number Theory* **131.7** (2011), 1240-1257.

"Explicit computation of Gross-Stark units over real quadratic fields", *J. Number Theory* **133.3** (2013), 1045-1061.

This work is dedicated to the memory of our mentor David R. Hayes.

Thanks to:

- College of Charleston Mathematics Department
- Department of Mathematics and Statistics, University of North Carolina, Greensboro and especially

This talk represents joint work with Brett Tangedal, UNCG.

"On *p*-adic multiple zeta and log gamma functions", *J. Number Theory* **131.7** (2011), 1240-1257.

"Explicit computation of Gross-Stark units over real quadratic fields", *J. Number Theory* **133.3** (2013), 1045-1061.

This work is dedicated to the memory of our mentor David R. Hayes.

Thanks to:

- College of Charleston Mathematics Department
- Department of Mathematics and Statistics, University of North Carolina, Greensboro and especially
- Brett, Ann, and Elise Tangedal

<u>D. Hilbert, Paris 1900:</u> Given a finite extension field F of \mathbb{Q} , give an *analytic* construction of all abelian extensions K of F, using only information from F.

- **<u>D. Hilbert, Paris 1900:</u>** Given a finite extension field F of \mathbb{Q} , give an *analytic* construction of all abelian extensions K of F, using only information from F.
 - Kronecker, Weber (1877, 1886, 1896, 1908): Every abelian extension K of $F = \mathbb{Q}$ is contained in a cyclotomic field $\mathbb{Q}(e^{2\pi i/n})$ for some positive integer n.

- **<u>D. Hilbert, Paris 1900:</u>** Given a finite extension field F of \mathbb{Q} , give an *analytic* construction of all abelian extensions K of F, using only information from F.
 - Kronecker, Weber (1877, 1886, 1896, 1908): Every abelian extension K of $F = \mathbb{Q}$ is contained in a cyclotomic field $\mathbb{Q}(e^{2\pi i/n})$ for some positive integer n.
 - That is, every abelian extension K of \mathbb{Q} may be obtained from \mathbb{Q} by adjoining values of the analytic function $f(z) = e^{2\pi i z}$ for $z \in \mathbb{Q}$.

- **<u>D. Hilbert, Paris 1900:</u>** Given a finite extension field F of \mathbb{Q} , give an *analytic* construction of all abelian extensions K of F, using only information from F.
 - Kronecker, Weber (1877, 1886, 1896, 1908): Every abelian extension K of $F = \mathbb{Q}$ is contained in a cyclotomic field $\mathbb{Q}(e^{2\pi i/n})$ for some positive integer n.
 - That is, every abelian extension K of $\mathbb Q$ may be obtained from $\mathbb Q$ by adjoining values of the analytic function $f(z)=e^{2\pi iz}$ for $z\in\mathbb Q$.
 - Takagi (1920): If $F = \mathbb{Q}(\sqrt{-d})$ is an *imaginary quadratic* field, then every abelian extension K of F may be obtained by adjoining to F values of $f(z) = e^{2\pi i z}$; the elliptic modular function $j(\tau)$; and/or the Weierstrass \wp function $\wp(z,\tau)$ for $z \in \mathbb{Q}$, $\tau \in F$.

- **<u>D. Hilbert, Paris 1900:</u>** Given a finite extension field F of \mathbb{Q} , give an *analytic* construction of all abelian extensions K of F, using only information from F.
 - Kronecker, Weber (1877, 1886, 1896, 1908): Every abelian extension K of $F = \mathbb{Q}$ is contained in a cyclotomic field $\mathbb{Q}(e^{2\pi i/n})$ for some positive integer n.
 - That is, every abelian extension K of $\mathbb Q$ may be obtained from $\mathbb Q$ by adjoining values of the analytic function $f(z)=e^{2\pi iz}$ for $z\in\mathbb Q$.
 - Takagi (1920): If $F = \mathbb{Q}(\sqrt{-d})$ is an *imaginary quadratic* field, then every abelian extension K of F may be obtained by adjoining to F values of $f(z) = e^{2\pi i z}$; the elliptic modular function $j(\tau)$; and/or the Weierstrass \wp function $\wp(z,\tau)$ for $z \in \mathbb{Q}$, $\tau \in F$.
 - T,Y (2012) If K is a totally complex abelian extension of a *real quadratic* field $F = \mathbb{Q}(\sqrt{d})$, then K is generated by p-adic exponentials of values of our p-adic double log gamma function $G_{p,2}(z;(\omega_1,\omega_2))$ for $z,\omega_i \in F$.

- **D.** Hilbert, Paris 1900: Given a finite extension field F of \mathbb{Q} , give an analytic construction of all abelian extensions K of F, using only information from F.
 - Kronecker, Weber (1877, 1886, 1896, 1908): Every abelian extension K of $F = \mathbb{Q}$ is contained in a cyclotomic field $\mathbb{Q}(e^{2\pi i/n})$ for some positive integer n.
 - That is, every abelian extension K of \mathbb{Q} may be obtained from \mathbb{Q} by adjoining values of the analytic function $f(z) = e^{2\pi i z}$ for $z \in \mathbb{Q}$.
 - Takagi (1920): If $F = \mathbb{Q}(\sqrt{-d})$ is an imaginary quadratic field, then every abelian extension K of F may be obtained by adjoining to F values of $f(z) = e^{2\pi i z}$; the elliptic modular function $i(\tau)$; and/or the Weierstrass \wp function $\wp(z,\tau)$ for $z\in\mathbb{Q},\,\tau\in F$.
 - T,Y (2012) If K is a totally complex abelian extension of a real quadratic field $F = \mathbb{Q}(\sqrt{d})$, then K is generated by *p-adic* exponentials of values of our *p-adic* double log gamma function $G_{p,2}(z;(\omega_1,\omega_2))$ for $z,\omega_i\in F$.
 - Using these p-adic functions, we give an effective, efficient algorithm that explicitly constructs K from F analytically (p-adic analytically).

A number field K is a finite (algebraic) extension field of \mathbb{Q} , of dimension $n = [K : \mathbb{Q}]$. Associated to it we have:

• Galois group $G = \operatorname{Gal}(K/\mathbb{Q})$ of field automorphisms of K. If $|G| = [K : \mathbb{Q}]$ then K is a *Galois extension* of \mathbb{Q} , and if G is also abelian then K is an abelian extension of \mathbb{Q} .

- Galois group $G = \operatorname{Gal}(K/\mathbb{Q})$ of field automorphisms of K. If $|G| = [K : \mathbb{Q}]$ then K is a *Galois extension* of \mathbb{Q} , and if G is also abelian then K is an abelian extension of \mathbb{Q} .
- Ring $\mathcal{O}_K = \{ \alpha \in K : \exists \text{ monic } f \in \mathbb{Z}[x], \ f(\alpha) = 0 \}$ of algebraic integers of K.

- Galois group $G = \operatorname{Gal}(K/\mathbb{Q})$ of field automorphisms of K. If $|G| = [K : \mathbb{Q}]$ then K is a *Galois extension* of \mathbb{Q} , and if G is also abelian then K is an abelian extension of \mathbb{Q} .
- Ring $\mathcal{O}_K = \{ \alpha \in K : \exists \text{ monic } f \in \mathbb{Z}[x], \ f(\alpha) = 0 \}$ of algebraic integers of K.
- Multiplicative group \mathcal{O}_K^{\times} of units of \mathcal{O}_K .

- Galois group $G = \operatorname{Gal}(K/\mathbb{Q})$ of field automorphisms of K. If $|G| = [K : \mathbb{Q}]$ then K is a *Galois extension* of \mathbb{Q} , and if G is also abelian then K is an abelian extension of \mathbb{Q} .
- Ring $\mathcal{O}_K = \{ \alpha \in K : \exists \text{ monic } f \in \mathbb{Z}[x], \ f(\alpha) = 0 \}$ of algebraic integers of K.
- Multiplicative group \mathcal{O}_K^{\times} of units of \mathcal{O}_K .
- ullet Every ideal ${\cal A}$ of ${\cal O}_{\cal K}$ has a unique factorization as a product of prime ideals.

- Galois group $G = \operatorname{Gal}(K/\mathbb{Q})$ of field automorphisms of K. If $|G| = [K : \mathbb{Q}]$ then K is a *Galois extension* of \mathbb{Q} , and if G is also abelian then K is an abelian extension of \mathbb{Q} .
- Ring $\mathcal{O}_K = \{ \alpha \in K : \exists \text{ monic } f \in \mathbb{Z}[x], \ f(\alpha) = 0 \}$ of algebraic integers of K.
- Multiplicative group \mathcal{O}_K^{\times} of units of \mathcal{O}_K .
- \bullet Every ideal ${\cal A}$ of ${\cal O}_{\cal K}$ has a unique factorization as a product of prime ideals.
- Every nonzero ideal \mathcal{A} of \mathcal{O}_K has finite index in \mathcal{O}_K , called the *norm* of \mathcal{A} , $\mathcal{N}\mathcal{A} = |\mathcal{O}_K/\mathcal{A}|$.

- Galois group $G = \operatorname{Gal}(K/\mathbb{Q})$ of field automorphisms of K. If $|G| = [K : \mathbb{Q}]$ then K is a *Galois extension* of \mathbb{Q} , and if G is also abelian then K is an abelian extension of \mathbb{Q} .
- Ring $\mathcal{O}_K = \{ \alpha \in K : \exists \text{ monic } f \in \mathbb{Z}[x], \ f(\alpha) = 0 \}$ of algebraic integers of K.
- Multiplicative group \mathcal{O}_K^{\times} of units of \mathcal{O}_K .
- \bullet Every ideal ${\cal A}$ of ${\cal O}_{\cal K}$ has a unique factorization as a product of prime ideals.
- Every nonzero ideal \mathcal{A} of \mathcal{O}_K has finite index in \mathcal{O}_K , called the *norm* of \mathcal{A} , $\mathcal{N}\mathcal{A} = |\mathcal{O}_K/\mathcal{A}|$.
- Dedekind zeta function of K, for $\Re(s) > 1$:

$$\zeta_{\mathcal{K}}(s) = \sum_{\text{ideals } \mathcal{A}} N \mathcal{A}^{-s} = \prod_{\text{prime ideals } \mathcal{P}} (1 - N \mathcal{P}^{-s})^{-1}.$$

The Dedekind zeta function ζ_K of K has an analytic continuation to $\mathbb C$ except for a simple pole at s=1, with residue

$$\lim_{s \to 1} (s-1)\zeta_K(s) = \frac{2^{r_1} (2\pi)^{r_2} h_K R_K}{w_K \sqrt{|d_K|}},$$

The Dedekind zeta function ζ_K of K has an analytic continuation to $\mathbb C$ except for a simple pole at s=1, with residue

$$\lim_{s \to 1} (s-1)\zeta_K(s) = \frac{2^{r_1} (2\pi)^{r_2} h_K R_K}{w_K \sqrt{|d_K|}},$$

where

 r₁ is the number of real embeddings of K, and r₂ is the number of pairs of complex embeddings of K;

The Dedekind zeta function ζ_K of K has an analytic continuation to $\mathbb C$ except for a simple pole at s=1, with residue

$$\lim_{s \to 1} (s-1)\zeta_K(s) = \frac{2^{r_1} (2\pi)^{r_2} h_K R_K}{w_K \sqrt{|d_K|}},$$

- r₁ is the number of real embeddings of K, and r₂ is the number of pairs of complex embeddings of K;
- h_K is the *class number*, which measures how far \mathcal{O}_K is from having unique factorization; \mathcal{O}_K is a UFD $\iff h_K = 1$;

The Dedekind zeta function ζ_K of K has an analytic continuation to $\mathbb C$ except for a simple pole at s=1, with residue

$$\lim_{s \to 1} (s-1)\zeta_K(s) = \frac{2^{r_1} (2\pi)^{r_2} h_K R_K}{w_K \sqrt{|d_K|}},$$

- r₁ is the number of real embeddings of K, and r₂ is the number of pairs of complex embeddings of K;
- h_K is the *class number*, which measures how far \mathcal{O}_K is from having unique factorization; \mathcal{O}_K is a UFD $\iff h_K = 1$;
- The regulator R_K of K is a certain determinant formed from the $r_1 + r_2 1$ generators of the torsion-free part of unit group \mathcal{O}_K^{\times} , which measures how "dense" the units are in \mathcal{O}_K ;

The Dedekind zeta function ζ_K of K has an analytic continuation to $\mathbb C$ except for a simple pole at s=1, with residue

$$\lim_{s \to 1} (s-1)\zeta_K(s) = \frac{2^{r_1} (2\pi)^{r_2} h_K R_K}{w_K \sqrt{|d_K|}},$$

- r_1 is the number of real embeddings of K, and r_2 is the number of pairs of complex embeddings of K;
- h_K is the *class number*, which measures how far \mathcal{O}_K is from having unique factorization; \mathcal{O}_K is a UFD $\iff h_K = 1$;
- The regulator R_K of K is a certain determinant formed from the $r_1 + r_2 1$ generators of the torsion-free part of unit group \mathcal{O}_K^{\times} , which measures how "dense" the units are in \mathcal{O}_K ;
- w_K is the number of roots of unity in K;

The Dedekind zeta function ζ_K of K has an analytic continuation to $\mathbb C$ except for a simple pole at s = 1, with residue

$$\lim_{s \to 1} (s-1)\zeta_K(s) = \frac{2^{r_1} (2\pi)^{r_2} h_K R_K}{w_K \sqrt{|d_K|}},$$

- r_1 is the number of real embeddings of K, and r_2 is the number of pairs of complex embeddings of K;
- h_K is the class number, which measures how far \mathcal{O}_K is from having unique factorization; $\mathcal{O}_{\mathcal{K}}$ is a UFD $\iff h_{\mathcal{K}} = 1$;
- The regulator R_K of K is a certain determinant formed from the $r_1 + r_2 1$ generators of the torsion-free part of unit group $\mathcal{O}_{\kappa}^{\times}$, which measures how "dense" the units are in \mathcal{O}_{κ} :
- w_K is the number of roots of unity in K:
- d_K is the discriminant of K.

Partial zeta functions

Suppose K is a totally complex abelian extension of a real quadratic field F, with $G=\operatorname{Gal}(K/F)$. Choose a prime (p) of $\mathbb Z$ which splits as $(p)=\mathfrak p\overline{\mathfrak p}$ in F, and such that $\mathfrak p$ splits completely in K. Let the set T consist of $\overline{\mathfrak p}$ together with all infinite primes of $\mathcal O_F$ and all finite primes of $\mathcal O_F$ which ramify in K, and $S=T\cup\{\mathfrak p\}$. Associated to every $\sigma\in G$ there is a partial zeta function $\zeta_S(s;\sigma)$ defined by

$$\zeta_{\mathcal{S}}(s;\sigma) = \sum_{\sigma_{\mathcal{A}}=\sigma} N \mathcal{A}^{-s}, \qquad (\Re(s) > 1),$$

where the sum is over all ideals $\mathcal A$ of $\mathcal O_K$ relatively prime to all ideals in the set S and having the specified automorphism $\sigma_{\mathcal A}=\sigma$ as its image in G under the Artin map. It has an analytic continuation to all of $\mathbb C$ except a simple pole at s=1.

Partial zeta functions

Suppose K is a totally complex abelian extension of a real quadratic field F, with $G=\operatorname{Gal}(K/F)$. Choose a prime (p) of $\mathbb Z$ which splits as $(p)=\mathfrak p\overline{\mathfrak p}$ in F, and such that $\mathfrak p$ splits completely in K. Let the set T consist of $\overline{\mathfrak p}$ together with all infinite primes of $\mathcal O_F$ and all finite primes of $\mathcal O_F$ which ramify in K, and $S=T\cup\{\mathfrak p\}$. Associated to every $\sigma\in G$ there is a partial zeta function $\zeta_S(s;\sigma)$ defined by

$$\zeta_{\mathcal{S}}(s;\sigma) = \sum_{\sigma_{\mathcal{A}} = \sigma} N \mathcal{A}^{-s}, \qquad (\Re(s) > 1),$$

where the sum is over all ideals \mathcal{A} of \mathcal{O}_K relatively prime to all ideals in the set S and having the specified automorphism $\sigma_{\mathcal{A}} = \sigma$ as its image in G under the Artin map. It has an analytic continuation to all of \mathbb{C} except a simple pole at s=1.

• <u>Cassou-Nogues (1979)</u>: There also exists a *p*-adic partial zeta function $\zeta_{S,p}(s,\sigma)$ for each $\sigma \in G$ such that

$$\zeta_{S,p}(-k;\sigma) = \zeta_S(-k;\sigma) \quad \text{for} \quad k \equiv 0 \pmod{p-1}$$

and $\zeta_{S,p}(s,\sigma)$ is *p*-adically analytic on a disc in \mathbb{C}_p containing s=0.

Let F, K, $(p) = p\overline{p}$, S, and T be as above, and define the subgroup

$$U_{\mathfrak{p}} = \{ \beta \in \mathcal{K}^{\times} : |\beta|_{\mathfrak{Q}} = 1 \text{ if } \mathfrak{Q} \not | \mathfrak{p} \} \text{ of } \mathcal{K}^{\times}.$$

Fix a prime ideal $\mathfrak P$ of $\mathcal O_K$ lying over $\mathfrak p$ and denote by $x\mapsto x_{\mathfrak P}$ the embedding of K into $\mathbb Q_p$ corresponding to $\mathfrak P$. Then there exists a unique element $\alpha\in U_{\mathfrak p}$ such that

Let F, K, $(p) = p\overline{p}$, S, and T be as above, and define the subgroup

$$U_{\mathfrak{p}} = \{\beta \in \mathcal{K}^{\times} : |\beta|_{\mathfrak{Q}} = 1 \quad \text{if} \quad \mathfrak{Q} \not | \mathfrak{p} \} \quad \text{of} \quad \mathcal{K}^{\times}.$$

Fix a prime ideal $\mathfrak P$ of $\mathcal O_K$ lying over $\mathfrak p$ and denote by $x\mapsto x_{\mathfrak P}$ the embedding of K into $\mathbb Q_p$ corresponding to $\mathfrak P$. Then there exists a unique element $\alpha\in U_{\mathfrak p}$ such that

• $(\sigma(\alpha))_{\mathfrak{P}} = p^{w_p\zeta_T(0;\sigma)} \exp_p(-w_p\zeta'_{S,p}(0;\sigma))$ for all $\sigma \in G$, and

Let F, K, $(p) = p\overline{p}$, S, and T be as above, and define the subgroup

$$U_{\mathfrak{p}} = \{ \beta \in K^{\times} : |\beta|_{\mathfrak{Q}} = 1 \text{ if } \mathfrak{Q} \not | \mathfrak{p} \} \text{ of } K^{\times}.$$

Fix a prime ideal $\mathfrak P$ of $\mathcal O_K$ lying over $\mathfrak p$ and denote by $x\mapsto x_{\mathfrak P}$ the embedding of K into $\mathbb Q_p$ corresponding to $\mathfrak P$. Then there exists a unique element $\alpha\in U_{\mathfrak p}$ such that

- $(\sigma(\alpha))_{\mathfrak{P}} = p^{w_p\zeta_T(0;\sigma)} \exp_p(-w_p\zeta'_{S,p}(0;\sigma))$ for all $\sigma \in \mathcal{G}$, and
- $K(\alpha^{1/w_K})$ is an abelian extension of F.

Let F, K, $(p) = p\overline{p}$, S, and T be as above, and define the subgroup

$$U_{\mathfrak{p}} = \{\beta \in K^{\times} : |\beta|_{\mathfrak{Q}} = 1 \quad \text{if} \quad \mathfrak{Q} \not \mid \mathfrak{p} \} \quad \text{of} \quad K^{\times}.$$

Fix a prime ideal $\mathfrak P$ of $\mathcal O_K$ lying over $\mathfrak p$ and denote by $x\mapsto x_{\mathfrak P}$ the embedding of Kinto \mathbb{Q}_p corresponding to \mathfrak{P} . Then there exists a unique element $\alpha \in U_p$ such that

- $(\sigma(\alpha))_{\mathfrak{P}} = p^{w_p\zeta_T(0;\sigma)} \exp_p(-w_p\zeta'_{S,p}(0;\sigma))$ for all $\sigma \in G$, and
- $K(\alpha^{1/w_K})$ is an abelian extension of F.
- In this formula w_p denotes the number of roots of unity in \mathbb{Q}_p , and $\exp_p(x) = \sum_k (x^k/k!)$ is the p-adic exponential, convergent for $x \in 2p\mathbb{Z}_p$. It is known that $w_p\zeta_T(0;\sigma)$ is an integer; there are efficient algorithms for computing it (Tangedal, JNT 2007).

Let F, K, $(p) = p\overline{p}$, S, and T be as above, and define the subgroup

$$U_{\mathfrak{p}} = \{ \beta \in K^{\times} : |\beta|_{\mathfrak{Q}} = 1 \text{ if } \mathfrak{Q} \not | \mathfrak{p} \} \text{ of } K^{\times}.$$

Fix a prime ideal $\mathfrak P$ of $\mathcal O_K$ lying over $\mathfrak p$ and denote by $x\mapsto x_{\mathfrak P}$ the embedding of Kinto \mathbb{Q}_p corresponding to \mathfrak{P} . Then there exists a unique element $\alpha \in U_p$ such that

- $(\sigma(\alpha))_{\mathfrak{P}} = p^{w_p\zeta_T(0;\sigma)} \exp_p(-w_p\zeta'_{S,p}(0;\sigma))$ for all $\sigma \in G$, and
- $K(\alpha^{1/w_K})$ is an abelian extension of F.
- In this formula w_p denotes the number of roots of unity in \mathbb{Q}_p , and $\exp_p(x) = \sum_k (x^k/k!)$ is the p-adic exponential, convergent for $x \in 2p\mathbb{Z}_p$. It is known that $w_{\rho}\zeta_{T}(0;\sigma)$ is an integer; there are efficient algorithms for computing it (Tangedal, JNT 2007).
- This theorem was recently proved (Annals 2011), in the case described above, by Darmon, Dasgupta, and Pollack, without directly constructing α .

Let F, K, $(p) = p\overline{p}$, S, and T be as above, and define the subgroup

$$U_{\mathfrak{p}} = \{ \beta \in K^{\times} : |\beta|_{\mathfrak{Q}} = 1 \text{ if } \mathfrak{Q} \not | \mathfrak{p} \} \text{ of } K^{\times}.$$

Fix a prime ideal $\mathfrak P$ of $\mathcal O_K$ lying over $\mathfrak p$ and denote by $x\mapsto x_{\mathfrak P}$ the embedding of Kinto \mathbb{Q}_p corresponding to \mathfrak{P} . Then there exists a unique element $\alpha \in U_p$ such that

- $(\sigma(\alpha))_{\mathfrak{P}} = p^{w_p\zeta_T(0;\sigma)} \exp_{\mathfrak{p}}(-w_p\zeta'_{S,\mathfrak{p}}(0;\sigma))$ for all $\sigma \in G$, and
- $K(\alpha^{1/w_K})$ is an abelian extension of F.
- In this formula w_p denotes the number of roots of unity in \mathbb{Q}_p , and $\exp_p(x) = \sum_k (x^k/k!)$ is the *p*-adic exponential, convergent for $x \in 2p\mathbb{Z}_p$. It is known that $w_p\zeta_T(0;\sigma)$ is an integer; there are efficient algorithms for computing it (Tangedal, JNT 2007).
- This theorem was recently proved (Annals 2011), in the case described above, by Darmon, Dasgupta, and Pollack, without directly constructing α .
- Brett and I give an algorithm using $G_{p,2}$ to compute the right side in \mathbb{Q}_p , and explicitly gives the irreducible polynomial $f_{\alpha} \in F[X]$ whose roots are the $\sigma(\alpha)$.

First, explicitly choose a real quadratic field $F = \mathbb{Q}(\sqrt{d})$ with d > 0 to serve as base field; also choose a prime (p) of \mathbb{Z} that splits as $(p) = \mathfrak{p}\overline{\mathfrak{p}}$ in \mathcal{O}_F .

First, explicitly choose a real quadratic field $F = \mathbb{Q}(\sqrt{d})$ with d > 0 to serve as base field; also choose a prime (p) of \mathbb{Z} that splits as $(p) = \mathfrak{p}\overline{\mathfrak{p}}$ in \mathcal{O}_F .

• Use characters on the ray class group $H_+(\mathfrak{m})$ for a suitable ideal \mathfrak{m} to specify a totally complex abelian extension K of F in which \mathfrak{p} splits completely; the Galois group $G=\mathrm{Gal}(K/F)$ is a specified subgroup of $H_+(\mathfrak{m})$.

First, explicitly choose a real quadratic field $F = \mathbb{Q}(\sqrt{d})$ with d > 0 to serve as base field; also choose a prime (p) of \mathbb{Z} that splits as $(p) = \mathfrak{p}\overline{\mathfrak{p}}$ in \mathcal{O}_F .

- Use characters on the ray class group $H_+(\mathfrak{m})$ for a suitable ideal \mathfrak{m} to specify a totally complex abelian extension K of F in which \mathfrak{p} splits completely; the Galois group $G=\mathrm{Gal}(K/F)$ is a specified subgroup of $H_+(\mathfrak{m})$.
- Compute the values $w_p\zeta_T(0;\sigma)$ and $\exp_p(-w_p\zeta'_{S,p}(0;\sigma))$ for all $\sigma \in G$; these are computed in \mathbb{Q}_p using our $G_{p,2}$ function, to any desired accuracy.

First, explicitly choose a real quadratic field $F = \mathbb{Q}(\sqrt{d})$ with d > 0 to serve as base field; also choose a prime (p) of \mathbb{Z} that splits as $(p) = \mathfrak{p}\overline{\mathfrak{p}}$ in \mathcal{O}_F .

- Use characters on the ray class group $H_+(\mathfrak{m})$ for a suitable ideal \mathfrak{m} to specify a totally complex abelian extension K of F in which \mathfrak{p} splits completely; the Galois group $G=\mathrm{Gal}(K/F)$ is a specified subgroup of $H_+(\mathfrak{m})$.
- Compute the values $w_p\zeta_T(0;\sigma)$ and $\exp_p(-w_p\zeta'_{S,p}(0;\sigma))$ for all $\sigma \in G$; these are computed in \mathbb{Q}_p using our $G_{p,2}$ function, to any desired accuracy.
- By Gross' formula, we now know all $\sigma(\alpha)$ as elements of \mathbb{Q}_p to any desired accuracy; we then must realize the coefficients of the polynomial $f_{\alpha}(x) = \prod_{\sigma \in G} (x \sigma(\alpha))$ as elements of F.

The algorithm

First, explicitly choose a real quadratic field $F = \mathbb{Q}(\sqrt{d})$ with d > 0 to serve as base field; also choose a prime (p) of \mathbb{Z} that splits as $(p) = \mathfrak{p}\overline{\mathfrak{p}}$ in \mathcal{O}_F .

- Use characters on the ray class group $H_+(\mathfrak{m})$ for a suitable ideal \mathfrak{m} to specify a totally complex abelian extension K of F in which \mathfrak{p} splits completely; the Galois group $G=\mathrm{Gal}(K/F)$ is a specified subgroup of $H_+(\mathfrak{m})$.
- Compute the values $w_p\zeta_T(0;\sigma)$ and $\exp_p(-w_p\zeta'_{S,p}(0;\sigma))$ for all $\sigma \in G$; these are computed in \mathbb{Q}_p using our $G_{p,2}$ function, to any desired accuracy.
- By Gross' formula, we now know all $\sigma(\alpha)$ as elements of \mathbb{Q}_p to any desired accuracy; we then must realize the coefficients of the polynomial $f_{\alpha}(x) = \prod_{\sigma \in G} (x \sigma(\alpha))$ as elements of F.
- Once we know the polynomial $f_{\alpha} \in F[x]$, then we know the field $K = F(\alpha)$ explicitly. At this point we verify computationally that $\alpha \in U_{\mathfrak{p}}$ and that $F(\alpha)$ is in fact the field K originally specified; that is, it has the correct Galois group and the correct discriminant.

The algorithm

First, explicitly choose a real quadratic field $F = \mathbb{Q}(\sqrt{d})$ with d > 0 to serve as base field; also choose a prime (p) of \mathbb{Z} that splits as $(p) = p\overline{p}$ in \mathcal{O}_F .

- Use characters on the ray class group $H_+(\mathfrak{m})$ for a suitable ideal \mathfrak{m} to specify a totally complex abelian extension K of F in which \mathfrak{p} splits completely; the Galois group G = Gal(K/F) is a specified subgroup of $H_+(\mathfrak{m})$.
- Compute the values $w_p\zeta_T(0;\sigma)$ and $\exp_p(-w_p\zeta'_{S,p}(0;\sigma))$ for all $\sigma\in G$; these are computed in \mathbb{Q}_p using our $G_{p,2}$ function, to any desired accuracy.
- By Gross' formula, we now know all $\sigma(\alpha)$ as elements of \mathbb{Q}_p to any desired accuracy; we then must realize the coefficients of the polynomial $f_{\alpha}(x) = \prod_{\alpha \in G} (x - \sigma(\alpha))$ as elements of F.
- Once we know the polynomial $f_{\alpha} \in F[x]$, then we know the field $K = F(\alpha)$ explicitly. At this point we verify computationally that $\alpha \in U_n$ and that $F(\alpha)$ is in fact the field K originally specified; that is, it has the correct Galois group and the correct discriminant.
- And just like that, we have explicitly described an abelian extension K of F, which was originally described algebraically, using p-adic analysis. Yeah baby!

Computation of $\zeta'_{S,p}(0,\sigma)$

Using a continued fraction algorithm due to Hayes, each partial zeta function $\zeta_{S,p}(0,\sigma)$ can be decomposed into a finite sum of Shintani zeta functions

$$\zeta_{\mathcal{S}}(0,\sigma) = \sum_{i=1}^{M} z_2(0,(\{z_j\},\langle w_j\rangle),(\beta_j^{(1)},\beta_j^{(2)})).$$

Computation of $\zeta'_{S,p}(0,\sigma)$

Using a continued fraction algorithm due to Hayes, each partial zeta function $\zeta_{S,p}(0,\sigma)$ can be decomposed into a finite sum of Shintani zeta functions

$$\zeta_{S}(0,\sigma) = \sum_{j=1}^{M} z_{2}(0,(\{z_{j}\},\langle w_{j}\rangle),(\beta_{j}^{(1)},\beta_{j}^{(2)})).$$

• Using a formula due to Shintani, its partial derivative at s=0 can be expressed as $\zeta_S'(0,\sigma)$

$$= \sum_{j=1}^{M} \log \Gamma_2(\{z_j\} + \langle w_j \rangle \beta_j^{(1)}, (1, \beta_j^{(1)})) + \log \Gamma_2(\{z_j\} + \langle w_j \rangle \beta_j^{(2)}, (1, \beta_j^{(2)}))$$

where $\Gamma_2(x;(\omega_1,\omega_2))$ is the complex double log gamma function.

Computation of $\zeta'_{S,p}(0,\sigma)$

Using a continued fraction algorithm due to Hayes, each partial zeta function $\zeta_{S,p}(0,\sigma)$ can be decomposed into a finite sum of Shintani zeta functions

$$\zeta_S(0,\sigma) = \sum_{j=1}^M z_2(0,(\{z_j\},\langle w_j\rangle),(\beta_j^{(1)},\beta_j^{(2)})).$$

• Using a formula due to Shintani, its partial derivative at s=0 can be expressed as $\zeta_s'(0,\sigma)$

$$= \sum_{j=1}^{M} \log \Gamma_2(\{z_j\} + \langle w_j \rangle \beta_j^{(1)}, (1, \beta_j^{(1)})) + \log \Gamma_2(\{z_j\} + \langle w_j \rangle \beta_j^{(2)}, (1, \beta_j^{(2)}))$$

where $\Gamma_2(x;(\omega_1,\omega_2))$ is the complex double log gamma function.

• Using results of Kashio and T.-Y., the p-adic analogue $\zeta'_{S,p}(0,\sigma)$

$$=\sum_{i=1}^M G_{p,2}(\{z_j\}+\langle w_j\rangle(\beta_j)_{\mathfrak{p}},(1,(\beta_j)_{\mathfrak{p}}))+G_{p,2}(\{z_j\}+\langle w_j\rangle(\beta_j)_{\overline{\mathfrak{p}}},(1,(\beta_j)_{\overline{\mathfrak{p}}}))$$

also holds, where $G_{p,2}(x;(\omega_1,\omega_2))$ is our *p*-adic double log gamma function.

The *p*-adic double log gamma function $G_{p,2}$

Initially defined on $\mathbb{C}_p \setminus \mathbb{Z}_p$ by a p-adic double integral, we actually compute these $G_{p,2}$ values by our "large x" expansion

$$G_{p,2}(x;\bar{\omega}) = -\frac{1}{2}B_{2,2}(x;\bar{\omega})\log_p x + \frac{3}{4\omega_1\omega_2}x^2 + B_{2,1}(0;\bar{\omega})x + \sum_{j=3}^{\infty} \frac{(-1)^j B_{2,j}(0;\bar{\omega})}{j(j-1)(j-2)}x^{2-j},$$

which converges for $|x|_p>\max\{|\omega_1|_p,|\omega_2|_p\}$. Here the $B_{2,j}(x;\bar{\omega})$ are second-order Bernoulli polynomials.

The *p*-adic double log gamma function $G_{p,2}$

Initially defined on $\mathbb{C}_p \setminus \mathbb{Z}_p$ by a p-adic double integral, we actually compute these $G_{p,2}$ values by our "large x" expansion

$$G_{p,2}(x;\bar{\omega}) = -\frac{1}{2}B_{2,2}(x;\bar{\omega})\log_p x + \frac{3}{4\omega_1\omega_2}x^2 + B_{2,1}(0;\bar{\omega})x + \sum_{j=3}^{\infty} \frac{(-1)^j B_{2,j}(0;\bar{\omega})}{j(j-1)(j-2)}x^{2-j},$$

which converges for $|x|_p > \max\{|\omega_1|_p, |\omega_2|_p\}$. Here the $B_{2,j}(x; \bar{\omega})$ are second-order Bernoulli polynomials.

• If this series is truncated after the j=m term, the approximation obtained for $G_{p,2}(x,(\omega_1,\omega_2))$ is accurate to at least k p-adic digits, where

$$k \geq \begin{cases} m-3 - \left\lceil \frac{\log(m+1)}{\log p} \right\rceil, & p > 2; \\ m-4 - \left\lceil \frac{\log(m+1)}{\log p} \right\rceil, & p = 2. \end{cases}$$

Realizing the coefficients in $F = \mathbb{Q}(\sqrt{d})$

So we can compute the p-adic expansions of the coefficients λ_i of

$$f_{\alpha}(x) = \prod_{\sigma \in G} (x - \sigma(\alpha)) = x^{n} - \lambda_{n-1}x^{n-1} + \lambda_{n-2}x^{n-2} - \dots + \lambda_{0} \in F[x]$$

in \mathbb{Q}_p to as many p-adic digits as we like. How do we realize them in $F=\mathbb{Q}(\sqrt{d})$?

Realizing the coefficients in $F = \mathbb{Q}(\sqrt{d})$

So we can compute the *p*-adic expansions of the coefficients λ_i of

$$f_{\alpha}(x) = \prod_{\sigma \in G} (x - \sigma(\alpha)) = x^{n} - \lambda_{n-1}x^{n-1} + \lambda_{n-2}x^{n-2} - \dots + \lambda_{0} \in F[x]$$

in \mathbb{Q}_p to as many p-adic digits as we like. How do we realize them in $F=\mathbb{Q}(\sqrt{d})$?

• **Lemma.** If $\lambda_j = a_j + b_j \theta$ with $a_j, b_j \in \mathbb{Q}$, then a_j, b_j are both of the form cp^{ν} where $\nu \in \mathbb{Z}$ are given in terms of the integers $\{w_p\zeta_T(0,\sigma)\}_{\sigma \in G}$, and

$$|b_j| \le 2 \binom{n}{j} / \sqrt{d}$$

and

$$|a_j| \leq \begin{cases} \binom{n}{j}, & d \equiv 0 \bmod (4), \\ \binom{n}{j}(1+1/\sqrt{d}), & d \equiv 1 \bmod (4). \end{cases}$$

Realizing the coefficients in $F = \mathbb{Q}(\sqrt{d})$

So we can compute the p-adic expansions of the coefficients λ_i of

$$f_{\alpha}(x) = \prod_{\sigma \in G} (x - \sigma(\alpha)) = x^{n} - \lambda_{n-1}x^{n-1} + \lambda_{n-2}x^{n-2} - \dots + \lambda_{0} \in F[x]$$

in \mathbb{Q}_p to as many p-adic digits as we like. How do we realize them in $F = \mathbb{Q}(\sqrt{d})$?

• **Lemma.** If $\lambda_i = a_i + b_i \theta$ with $a_i, b_i \in \mathbb{Q}$, then a_i, b_i are both of the form cp^{ν} where $\nu \in \mathbb{Z}$ are given in terms of the integers $\{w_{\rho}\zeta_{\mathcal{T}}(0,\sigma)\}_{\sigma \in \mathcal{G}}$, and

$$|b_j| \le 2 \binom{n}{j} / \sqrt{d}$$

and

$$|a_j| \leq \begin{cases} \binom{n}{j}, & d \equiv 0 \bmod (4), \\ \binom{n}{j}(1+1/\sqrt{d}), & d \equiv 1 \bmod (4). \end{cases}$$

• Here $\{1,\theta\}$ is a \mathbb{Z} -basis for \mathcal{O}_F satisfying $\theta_{\mathfrak{p}}-\theta_{\overline{\mathfrak{p}}}=\sqrt{d}$; that is,

$$\theta = \begin{cases} \sqrt{d}/2, & d \equiv 0 \bmod (4), \\ (1+\sqrt{d})/2, & d \equiv 1 \bmod (4). \end{cases}$$

The "trace" coefficient $\lambda_{n-1} = \sum_{\sigma \in G} \sigma(\alpha) \in F$ has \mathfrak{p} -adic absolute value $|\lambda_{n-1}|_{\mathfrak{p}} = p^r$, where $r = \max\{w_p\zeta_T(0,\sigma)\}_{\sigma \in G}$; but since $\alpha \in U_{\mathfrak{p}}$ it has $\overline{\mathfrak{p}}$ -adic absolute value $|\lambda_{n-1}|_{\overline{\mathfrak{p}}} \leq 1$.

The "trace" coefficient $\lambda_{n-1} = \sum_{\sigma \in G} \sigma(\alpha) \in F$ has \mathfrak{p} -adic absolute value $|\lambda_{n-1}|_{\mathfrak{p}} = p^r$, where $r = \max\{w_p\zeta_T(0,\sigma)\}_{\sigma \in G}$; but since $\alpha \in U_{\mathfrak{p}}$ it has $\overline{\mathfrak{p}}$ -adic absolute value $|\lambda_{n-1}|_{\overline{\mathfrak{p}}} \leq 1$.

• If $\lambda_{n-1}=(c_{n-1}+e_{n-1}\theta)/p^r$ with $c_{n-1},e_{n-1}\in\mathbb{Z}$, and we obtain an approximation $\beta\in\mathbb{Z}_p$ to $p^r(\lambda_{n-1})_\mathfrak{p}$ accurate to N digits, where $N\geq r$, then

$$\begin{aligned} |c_{n-1} + e_{n-1}\theta_{\mathfrak{p}} - \beta|_{p} &\leq p^{-N} \quad \text{and} \quad |c_{n-1} + e_{n-1}\theta_{\overline{\mathfrak{p}}}|_{p} &\leq p^{-r} \\ &\Longrightarrow |c_{n-1} + e_{n-1}\theta_{\mathfrak{p}} - \beta - (c_{n-1} + e_{n-1}\theta_{\overline{\mathfrak{p}}})|_{p} &\leq p^{-r} \\ &\Longrightarrow |e_{n-1}(\theta_{\mathfrak{p}} - \theta_{\overline{\mathfrak{p}}}) - \beta|_{p} &= |e_{n-1}\sqrt{d} - \beta|_{p} &\leq p^{-r} \\ &\Longrightarrow |e_{n-1} - \beta/\sqrt{d}|_{p} &\leq p^{-r} \end{aligned}$$

so β/\sqrt{d} gives the *integer* e_{n-1} accurate to at least r base p digits.

The "trace" coefficient $\lambda_{n-1} = \sum_{\sigma \in G} \sigma(\alpha) \in F$ has \mathfrak{p} -adic absolute value $|\lambda_{n-1}|_{\mathfrak{p}} = p^r$, where $r = \max\{w_p\zeta_T(0,\sigma)\}_{\sigma \in G}$; but since $\alpha \in U_{\mathfrak{p}}$ it has $\overline{\mathfrak{p}}$ -adic absolute value $|\lambda_{n-1}|_{\overline{\mathfrak{p}}} \leq 1$.

• If $\lambda_{n-1}=(c_{n-1}+e_{n-1}\theta)/p^r$ with $c_{n-1},e_{n-1}\in\mathbb{Z}$, and we obtain an approximation $\beta\in\mathbb{Z}_p$ to $p^r(\lambda_{n-1})_\mathfrak{p}$ accurate to N digits, where $N\geq r$, then

$$\begin{aligned} |c_{n-1} + e_{n-1}\theta_{\mathfrak{p}} - \beta|_{p} &\leq p^{-N} \quad \text{and} \quad |c_{n-1} + e_{n-1}\theta_{\overline{\mathfrak{p}}}|_{p} &\leq p^{-r} \\ &\Longrightarrow |c_{n-1} + e_{n-1}\theta_{\mathfrak{p}} - \beta - (c_{n-1} + e_{n-1}\theta_{\overline{\mathfrak{p}}})|_{p} &\leq p^{-r} \\ &\Longrightarrow |e_{n-1}(\theta_{\mathfrak{p}} - \theta_{\overline{\mathfrak{p}}}) - \beta|_{p} &= |e_{n-1}\sqrt{d} - \beta|_{p} &\leq p^{-r} \\ &\Longrightarrow |e_{n-1} - \beta/\sqrt{d}|_{p} &\leq p^{-r} \end{aligned}$$

so β/\sqrt{d} gives the integer e_{n-1} accurate to at least r base p digits.

• This specifies the integer e_{n-1} to one of at most $\lceil 4n/\sqrt{d} \rceil$ candidates; exactly one of these has $c_{n-1} = \beta - e_{n-1}\theta_{\mathfrak{p}}$ recognizable as an integer.

The "trace" coefficient $\lambda_{n-1} = \sum_{\alpha \in G} \sigma(\alpha) \in F$ has p-adic absolute value $|\lambda_{n-1}|_{\mathfrak{p}}=p^r$, where $r=\max\{w_p\zeta_{\mathcal{T}}(0,\sigma)\}_{\sigma\in G}$; but since $\alpha\in U_{\mathfrak{p}}$ it has $\overline{\mathfrak{p}}$ -adic absolute value $|\lambda_{n-1}|_{\overline{\mathfrak{p}}} \leq 1$.

• If $\lambda_{n-1} = (c_{n-1} + e_{n-1}\theta)/p^r$ with $c_{n-1}, e_{n-1} \in \mathbb{Z}$, and we obtain an approximation $\beta \in \mathbb{Z}_p$ to $p^r(\lambda_{n-1})_p$ accurate to N digits, where $N \geq r$, then

$$\begin{aligned} |c_{n-1} + e_{n-1}\theta_{\mathfrak{p}} - \beta|_{p} &\leq p^{-N} \quad \text{and} \quad |c_{n-1} + e_{n-1}\theta_{\overline{\mathfrak{p}}}|_{p} &\leq p^{-r} \\ &\Longrightarrow |c_{n-1} + e_{n-1}\theta_{\mathfrak{p}} - \beta - (c_{n-1} + e_{n-1}\theta_{\overline{\mathfrak{p}}})|_{p} &\leq p^{-r} \\ &\Longrightarrow |e_{n-1}(\theta_{\mathfrak{p}} - \theta_{\overline{\mathfrak{p}}}) - \beta|_{p} &= |e_{n-1}\sqrt{d} - \beta|_{p} &\leq p^{-r} \\ &\Longrightarrow |e_{n-1} - \beta/\sqrt{d}|_{p} &\leq p^{-r} \end{aligned}$$

so β/\sqrt{d} gives the integer e_{n-1} accurate to at least r base p digits.

- This specifies the integer e_{n-1} to one of at most $\lceil 4n/\sqrt{d} \rceil$ candidates; exactly one of these has $c_{n-1} = \beta - e_{n-1}\theta_{\mathfrak{p}}$ recognizable as an integer.
- An analogous argument realizes the other coefficients $\lambda_i = (c_i + e_i \theta)/p^{r_i}$.

The real quadratic field $F=\mathbb{Q}(\sqrt{29})$ is the splitting field over \mathbb{Q} of the polynomial $f_{29}(x)=x^2-x-7$. The prime ideal (7) of \mathbb{Z} splits as $(7)=\mathfrak{p}\overline{\mathfrak{p}}=(6+\sqrt{29})(6-\sqrt{29})$ in \mathcal{O}_F ; there are two embeddings of F into \mathbb{Q}_7 corresponding to \mathfrak{p} and $\overline{\mathfrak{p}}$; the two roots of f_{29} are $\theta_{\mathfrak{p}},\theta_{\overline{\mathfrak{p}}}=(1\pm\sqrt{29})/2$.

The real quadratic field $F=\mathbb{Q}(\sqrt{29})$ is the splitting field over \mathbb{Q} of the polynomial $f_{29}(x)=x^2-x-7$. The prime ideal (7) of \mathbb{Z} splits as $(7)=\mathfrak{p}\overline{\mathfrak{p}}=(6+\sqrt{29})(6-\sqrt{29})$ in \mathcal{O}_F ; there are two embeddings of F into \mathbb{Q}_7 corresponding to \mathfrak{p} and $\overline{\mathfrak{p}}$; the two roots of f_{29} are $\theta_{\mathfrak{p}},\theta_{\overline{\mathfrak{p}}}=(1\pm\sqrt{29})/2$.

• We set $T = \{\mathfrak{p}_{\infty}^{(1)}, \mathfrak{p}_{\infty}^{(2)}, \mathfrak{q}, \overline{\mathfrak{p}}\}$ and $\mathfrak{m} = \mathfrak{q}\,\overline{\mathfrak{p}}$, where \mathfrak{q} is a prime ideal of \mathcal{O}_F lying over (13). The narrow ray class group $H_+(\mathfrak{m})$ is isomorphic to $C_6 \times C_2$ and there is a sextic character χ on $H_+(\mathfrak{m})$ with conductor $\mathfrak{f}(\chi) = \mathfrak{mp}_{\infty}^{(1)}\mathfrak{p}_{\infty}^{(2)}$; by class field theory there exists an abelian extension K/F corresponding to the subgroup of characters generated by χ with $G = \operatorname{Gal}(K/F)$ cyclic of order 6.

The real quadratic field $F=\mathbb{Q}(\sqrt{29})$ is the splitting field over \mathbb{Q} of the polynomial $f_{29}(x)=x^2-x-7$. The prime ideal (7) of \mathbb{Z} splits as $(7)=\mathfrak{p}\overline{\mathfrak{p}}=(6+\sqrt{29})(6-\sqrt{29})$ in \mathcal{O}_F ; there are two embeddings of F into \mathbb{Q}_7 corresponding to \mathfrak{p} and $\overline{\mathfrak{p}}$; the two roots of f_{29} are $\theta_{\mathfrak{p}},\theta_{\overline{\mathfrak{p}}}=(1\pm\sqrt{29})/2$.

- We set $T = \{\mathfrak{p}_{\infty}^{(1)}, \mathfrak{p}_{\infty}^{(2)}, \mathfrak{q}, \overline{\mathfrak{p}}\}$ and $\mathfrak{m} = \mathfrak{q}\,\overline{\mathfrak{p}}$, where \mathfrak{q} is a prime ideal of \mathcal{O}_F lying over (13). The narrow ray class group $H_+(\mathfrak{m})$ is isomorphic to $C_6 \times C_2$ and there is a sextic character χ on $H_+(\mathfrak{m})$ with conductor $\mathfrak{f}(\chi) = \mathfrak{m}\mathfrak{p}_{\infty}^{(1)}\mathfrak{p}_{\infty}^{(2)}$; by class field theory there exists an abelian extension K/F corresponding to the subgroup of characters generated by χ with $G = \operatorname{Gal}(K/F)$ cyclic of order 6.
- By the form of the conductor $\mathfrak{f}(\chi)$ and the fact that $\chi(\mathfrak{p})=1$ we know that K is totally complex, both \mathfrak{q} and $\overline{\mathfrak{p}}$ ramify in the extension K/F, no other primes of \mathcal{O}_F ramify, and \mathfrak{p} splits completely in K/F.

The real quadratic field $F=\mathbb{Q}(\sqrt{29})$ is the splitting field over \mathbb{Q} of the polynomial $f_{29}(x)=x^2-x-7$. The prime ideal (7) of \mathbb{Z} splits as $(7)=\mathfrak{p}\overline{\mathfrak{p}}=(6+\sqrt{29})(6-\sqrt{29})$ in \mathcal{O}_F ; there are two embeddings of F into \mathbb{Q}_7 corresponding to \mathfrak{p} and $\overline{\mathfrak{p}}$; the two roots of f_{29} are $\theta_{\mathfrak{p}},\theta_{\overline{\mathfrak{p}}}=(1\pm\sqrt{29})/2$.

- We set $T = \{\mathfrak{p}_{\infty}^{(1)}, \mathfrak{p}_{\infty}^{(2)}, \mathfrak{q}, \overline{\mathfrak{p}}\}$ and $\mathfrak{m} = \mathfrak{q}\,\overline{\mathfrak{p}}$, where \mathfrak{q} is a prime ideal of \mathcal{O}_F lying over (13). The narrow ray class group $H_+(\mathfrak{m})$ is isomorphic to $C_6 \times C_2$ and there is a sextic character χ on $H_+(\mathfrak{m})$ with conductor $\mathfrak{f}(\chi) = \mathfrak{m}\mathfrak{p}_{\infty}^{(1)}\mathfrak{p}_{\infty}^{(2)}$; by class field theory there exists an abelian extension K/F corresponding to the subgroup of characters generated by χ with $G = \operatorname{Gal}(K/F)$ cyclic of order 6.
- By the form of the conductor $\mathfrak{f}(\chi)$ and the fact that $\chi(\mathfrak{p})=1$ we know that K is totally complex, both \mathfrak{q} and $\overline{\mathfrak{p}}$ ramify in the extension K/F, no other primes of \mathcal{O}_F ramify, and \mathfrak{p} splits completely in K/F.
- Our goal is to 7-adically compute the six conjugates $\{\sigma(\alpha)\}_{\sigma\in G}$ of the Gross-Stark unit $\alpha\in K$ for the extension K/F and the prime p=7, and recognize the minimal polynomial $f_{\alpha}\in F[x]$, using only information from F.

Choose an embedding of K into \mathbb{Q}_7 corresponding to some prime ideal \mathfrak{P} in \mathcal{O}_K lying above \mathfrak{p} in \mathcal{O}_F .

Choose an embedding of K into \mathbb{Q}_7 corresponding to some prime ideal \mathfrak{P} in \mathcal{O}_K lying above \mathfrak{p} in \mathcal{O}_F .

• Using a partial fraction algorithm we compute the values $\zeta_T(0, \sigma_0) = 0$ for the identity σ_0 , and $\zeta_T(0, \sigma) = -2$, $\zeta_T(0, \sigma^2) = \zeta_T(0, \sigma^3) = 0$, $\zeta_T(0, \sigma^4) = 2$, and $\zeta_T(0, \sigma^5) = 0$, where σ is the generator of G corresponding to χ .

Choose an embedding of K into \mathbb{Q}_7 corresponding to some prime ideal \mathfrak{P} in \mathcal{O}_K lying above \mathfrak{p} in \mathcal{O}_F .

- Using a partial fraction algorithm we compute the values $\zeta_T(0, \sigma_0) = 0$ for the identity σ_0 , and $\zeta_T(0, \sigma) = -2$, $\zeta_T(0, \sigma^2) = \zeta_T(0, \sigma^3) = 0$, $\zeta_T(0, \sigma^4) = 2$, and $\zeta_T(0, \sigma^5) = 0$, where σ is the generator of G corresponding to χ .
- The *p*-adic absolute values of the $\sigma(\alpha)$ are of the form p^{-r} where $r = w_p \zeta_T(0, \sigma)$; since $w_7 = 6$ we have the 7-adic absolute values $\{7^{12}, 1, 1, 1, 1, 7^{-12}\}$ for $\alpha_{\mathfrak{P}}$ and its conjugates.

Choose an embedding of K into \mathbb{Q}_7 corresponding to some prime ideal \mathfrak{P} in \mathcal{O}_K lying above \mathfrak{p} in \mathcal{O}_F .

- Using a partial fraction algorithm we compute the values $\zeta_T(0, \sigma_0) = 0$ for the identity σ_0 , and $\zeta_T(0, \sigma) = -2$, $\zeta_T(0, \sigma^2) = \zeta_T(0, \sigma^3) = 0$, $\zeta_T(0, \sigma^4) = 2$, and $\zeta_T(0, \sigma^5) = 0$, where σ is the generator of G corresponding to χ .
- The *p*-adic absolute values of the $\sigma(\alpha)$ are of the form p^{-r} where $r = w_p \zeta_T(0, \sigma)$; since $w_7 = 6$ we have the 7-adic absolute values $\{7^{12}, 1, 1, 1, 1, 7^{-12}\}$ for $\alpha_{\mathfrak{P}}$ and its conjugates.
- Recall that, since $\alpha \in U_p$, the absolute value of α with respect to every other absolute value on K is 1.

Choose an embedding of K into \mathbb{Q}_7 corresponding to some prime ideal \mathfrak{P} in \mathcal{O}_K lying above \mathfrak{p} in \mathcal{O}_F .

- Using a partial fraction algorithm we compute the values $\zeta_T(0, \sigma_0) = 0$ for the identity σ_0 , and $\zeta_T(0, \sigma) = -2$, $\zeta_T(0, \sigma^2) = \zeta_T(0, \sigma^3) = 0$, $\zeta_T(0, \sigma^4) = 2$, and $\zeta_T(0, \sigma^5) = 0$, where σ is the generator of G corresponding to χ .
- The *p*-adic absolute values of the $\sigma(\alpha)$ are of the form p^{-r} where $r = w_p \zeta_T(0, \sigma)$; since $w_7 = 6$ we have the 7-adic absolute values $\{7^{12}, 1, 1, 1, 1, 7^{-12}\}$ for $\alpha_{\mathfrak{P}}$ and its conjugates.
- Recall that, since $\alpha \in U_{\mathfrak{p}}$, the absolute value of α with respect to every other absolute value on K is 1.
- ullet The minimal polynomial of lpha over F is of the form

$$f_{\alpha}(x) = x^6 - \lambda_5 x^5 + \lambda_4 x^4 - \lambda_3 x^3 + \lambda_2 x^2 - \lambda_1 x + 1 \in F[x]$$

where each $\lambda_i = (c_i + e_i \theta)/7^{12}$ for some $c_i, e_i \in \mathbb{Z}$, and $\theta = (1 + \sqrt{29})/2$.

Choose an embedding of K into \mathbb{Q}_7 corresponding to some prime ideal \mathfrak{P} in \mathcal{O}_K lying above \mathfrak{p} in \mathcal{O}_F .

- Using a partial fraction algorithm we compute the values $\zeta_T(0, \sigma_0) = 0$ for the identity σ_0 , and $\zeta_T(0, \sigma) = -2$, $\zeta_T(0, \sigma^2) = \zeta_T(0, \sigma^3) = 0$, $\zeta_T(0, \sigma^4) = 2$, and $\zeta_T(0, \sigma^5) = 0$, where σ is the generator of G corresponding to χ .
- The *p*-adic absolute values of the $\sigma(\alpha)$ are of the form p^{-r} where $r = w_p \zeta_T(0, \sigma)$; since $w_7 = 6$ we have the 7-adic absolute values $\{7^{12}, 1, 1, 1, 1, 7^{-12}\}$ for $\alpha_{\mathfrak{P}}$ and its conjugates.
- Recall that, since $\alpha \in U_{\mathfrak{p}}$, the absolute value of α with respect to every other absolute value on K is 1.
- ullet The minimal polynomial of lpha over F is of the form

$$f_{\alpha}(x) = x^6 - \lambda_5 x^5 + \lambda_4 x^4 - \lambda_3 x^3 + \lambda_2 x^2 - \lambda_1 x + 1 \in F[x]$$

where each $\lambda_i = (c_i + e_i \theta)/7^{12}$ for some $c_i, e_i \in \mathbb{Z}$, and $\theta = (1 + \sqrt{29})/2$.

• We can recognize all the c_i , e_i by computing all the $\sigma(\alpha)_{\mathfrak{P}}$ accurate to just a few more than twelve 7-adic digits.

Gross' formula states that $(\sigma(\alpha))_{\mathfrak{P}}=p^{w_{\rho}\zeta_{\tau}(0;\sigma)}\exp_{\rho}(-w_{\rho}\zeta'_{S,\rho}(0;\sigma))$ for all $\sigma\in G$.

We will compute the six values $(\sigma(\alpha))_{\mathfrak{P}}=7^{6\zeta_{7}(0;\sigma)}\exp_{7}(-6\zeta'_{S,7}(0;\sigma))$ in \mathbb{Q}_{7} .

Gross' formula states that $(\sigma(\alpha))_{\mathfrak{P}} = \rho^{w_p\zeta_T(0;\sigma)} \exp_{\rho}(-w_p\zeta'_{S,\rho}(0;\sigma))$ for all $\sigma \in G$.

We will compute the six values $(\sigma(\alpha))_{\mathfrak{P}}=7^{6\zeta_{7}(0;\sigma)}\exp_{7}(-6\zeta'_{S,7}(0;\sigma))$ in \mathbb{Q}_{7} .

• It is not obvious that $-6\zeta'_{S,7}(0;\sigma)$ lies in the domain $7\mathbb{Z}_7$ of \exp_7 . Especially since we compute these values as sums of 7-adically large values.

Gross' formula states that $(\sigma(\alpha))_{\mathfrak{P}} = \rho^{w_p\zeta_{\tau}(0;\sigma)} \exp_{\rho}(-w_{\rho}\zeta'_{S,\rho}(0;\sigma))$ for all $\sigma \in G$.

We will compute the six values $(\sigma(\alpha))_{\mathfrak{P}}=7^{6\zeta_{7}(0;\sigma)}\exp_{7}(-6\zeta'_{S,7}(0;\sigma))$ in \mathbb{Q}_{7} .

- It is not obvious that $-6\zeta'_{S,7}(0;\sigma)$ lies in the domain $7\mathbb{Z}_7$ of \exp_7 . Especially since we compute these values as sums of 7-adically large values.
- It is remarkable that the values $\exp_7(-6\zeta'_{5,7}(0;\sigma))$ should be algebraic.

Gross' formula states that $(\sigma(\alpha))_{\mathfrak{P}} = p^{w_p\zeta_T(0;\sigma)} \exp_p(-w_p\zeta'_{S,p}(0;\sigma))$ for all $\sigma \in G$.

We will compute the six values $(\sigma(\alpha))_{\mathfrak{P}}=7^{6\zeta_{7}(0;\sigma)}\exp_{7}(-6\zeta'_{S,7}(0;\sigma))$ in \mathbb{Q}_{7} .

- It is not obvious that $-6\zeta'_{5,7}(0;\sigma)$ lies in the domain $7\mathbb{Z}_7$ of \exp_7 . Especially since we compute these values as sums of 7-adically large values.
- It is remarkable that the values $\exp_7(-6\zeta_{S,7}'(0;\sigma))$ should be algebraic.
- We compute these values in \mathbb{Q}_7 . But Gross' assertion that $\alpha \in U_{\mathfrak{p}}$ tells us the absolute values of the $\sigma(\alpha)$ with respect to every other embedding of K into \mathbb{C} or a p-adic field.

Gross' formula states that $(\sigma(\alpha))_{\mathfrak{P}} = p^{w_p\zeta_T(0;\sigma)} \exp_p(-w_p\zeta'_{S,p}(0;\sigma))$ for all $\sigma \in G$.

We will compute the six values $(\sigma(\alpha))_{\mathfrak{P}} = 7^{6\zeta_T(0;\sigma)} \exp_7(-6\zeta'_{S,7}(0;\sigma))$ in \mathbb{Q}_7 .

- It is not obvious that $-6\zeta'_{S,7}(0;\sigma)$ lies in the domain $7\mathbb{Z}_7$ of \exp_7 . Especially since we compute these values as sums of 7-adically large values.
- It is remarkable that the values $\exp_7(-6\zeta_{S,7}'(0;\sigma))$ should be algebraic.
- We compute these values in \mathbb{Q}_7 . But Gross' assertion that $\alpha \in U_\mathfrak{p}$ tells us the absolute values of the $\sigma(\alpha)$ with respect to every other embedding of K into \mathbb{C} or a p-adic field.
- So not only are these values computable in \mathbb{Q}_7 , and algebraic, but they are *recognizable* as specific algebraic numbers.

Gross' formula states that $(\sigma(\alpha))_{\mathfrak{P}} = p^{w_p\zeta_T(0;\sigma)} \exp_p(-w_p\zeta'_{S,p}(0;\sigma))$ for all $\sigma \in G$.

We will compute the six values $(\sigma(\alpha))_{\mathfrak{P}} = 7^{6\zeta_T(0;\sigma)} \exp_7(-6\zeta'_{S,7}(0;\sigma))$ in \mathbb{Q}_7 .

- It is not obvious that $-6\zeta'_{S,7}(0;\sigma)$ lies in the domain $7\mathbb{Z}_7$ of \exp_7 . Especially since we compute these values as sums of 7-adically large values.
- It is remarkable that the values $\exp_7(-6\zeta_{S,7}'(0;\sigma))$ should be algebraic.
- We compute these values in \mathbb{Q}_7 . But Gross' assertion that $\alpha \in U_\mathfrak{p}$ tells us the absolute values of the $\sigma(\alpha)$ with respect to every other embedding of K into \mathbb{C} or a p-adic field.
- So not only are these values computable in \mathbb{Q}_7 , and algebraic, but they are *recognizable* as specific algebraic numbers.
- Not only that, but they are *special* algebraic numbers they generate a specific *abelian* extension of $F = \mathbb{Q}(\sqrt{29})$.

Each $\zeta'_{5,7}(0;\sigma)$ is a finite sum of $\zeta'_{\mathfrak{mp},7}(0;\mathcal{C}_+)$ values over all ideal classes \mathcal{C}_+ in a coset of a subgroup of the narrow ray class group $H_+(\mathfrak{mp})$.

Each $\zeta'_{S,7}(0;\sigma)$ is a finite sum of $\zeta'_{\mathfrak{mp},7}(0;\mathcal{C}_+)$ values over all ideal classes \mathcal{C}_+ in a coset of a subgroup of the narrow ray class group $H_+(\mathfrak{mp})$.

• The partial fraction algorithm produces an ordered sequence of \mathbb{Z} -bases for an ideal \mathfrak{mc} of \mathcal{O}_F in the class \mathcal{C}_+ .

Each $\zeta'_{S,7}(0;\sigma)$ is a finite sum of $\zeta'_{\mathfrak{mp},7}(0;\mathcal{C}_+)$ values over all ideal classes \mathcal{C}_+ in a coset of a subgroup of the narrow ray class group $H_+(\mathfrak{mp})$.

- The partial fraction algorithm produces an ordered sequence of \mathbb{Z} -bases for an ideal \mathfrak{mc} of \mathcal{O}_F in the class \mathcal{C}_+ .
- This decomposes each term $\zeta'_{\mathfrak{mp},7}(0;\mathcal{C}_+)$ into a finite sum of derivatives of Shintani zeta functions, which we compute as a finite sum of values $G_{7,2}(x_i;\bar{\omega}_i)$, where the x_i and $\bar{\omega}_i$ are given in terms of the parameters of the bases, and all satisfy $|x_i|_7 > ||\bar{\omega}_i||_7$.

Each $\zeta'_{S,7}(0;\sigma)$ is a finite sum of $\zeta'_{\mathfrak{mp},7}(0;\mathcal{C}_+)$ values over all ideal classes \mathcal{C}_+ in a coset of a subgroup of the narrow ray class group $H_+(\mathfrak{mp})$.

- The partial fraction algorithm produces an ordered sequence of \mathbb{Z} -bases for an ideal \mathfrak{mc} of \mathcal{O}_F in the class \mathcal{C}_+ .
- This decomposes each term $\zeta'_{\mathfrak{mp},7}(0;\mathcal{C}_+)$ into a finite sum of derivatives of Shintani zeta functions, which we compute as a finite sum of values $G_{7,2}(x_i;\bar{\omega}_i)$, where the x_i and $\bar{\omega}_i$ are given in terms of the parameters of the bases, and all satisfy $|x_i|_7 > ||\bar{\omega}_i||_7$.
- This means we can compute each of these terms in \mathbb{Q}_7 using our "large x" expansion

$$G_{7,2}(x;\bar{\omega}) = -\frac{1}{2}B_{2,2}(x;\bar{\omega})\log_7 x + \frac{3}{4\omega_1\omega_2}x^2 + B_{2,1}(0;\bar{\omega})x + \sum_{j=3}^{\infty} \frac{(-1)^j B_{2,j}(0;\bar{\omega})}{j(j-1)(j-2)}x^{2-j}.$$

Each $\zeta'_{S,7}(0;\sigma)$ is a finite sum of $\zeta'_{mp,7}(0;\mathcal{C}_+)$ values over all ideal classes \mathcal{C}_+ in a coset of a subgroup of the narrow ray class group $H_{+}(\mathfrak{mp})$.

- The partial fraction algorithm produces an ordered sequence of Z-bases for an ideal \mathfrak{mc} of \mathcal{O}_F in the class \mathcal{C}_+ .
- This decomposes each term $\zeta'_{mp,7}(0;\mathcal{C}_+)$ into a finite sum of derivatives of Shintani zeta functions, which we compute as a finite sum of values $G_{7/2}(x_i; \bar{\omega}_i)$, where the x_i and $\bar{\omega}_i$ are given in terms of the parameters of the bases, and all satisfy $|x_i|_7 > ||\bar{\omega}_i||_7$.
- This means we can compute each of these terms in \mathbb{Q}_7 using our "large x" expansion

$$G_{7,2}(x;\bar{\omega}) = -\frac{1}{2}B_{2,2}(x;\bar{\omega})\log_7 x + \frac{3}{4\omega_1\omega_2}x^2 + B_{2,1}(0;\bar{\omega})x$$
$$+ \sum_{j=3}^{\infty} \frac{(-1)^j B_{2,j}(0;\bar{\omega})}{j(j-1)(j-2)}x^{2-j}.$$

We have programmed all of this in PARI routines.

Realizing the trace coefficient λ_5

By this method we compute the 7-adic approximation

$$\beta = 7^{12} \cdot \sum_{\sigma \in G} 7^{6\zeta_{7}(0,\sigma)} \cdot \exp_{7}(-6\zeta'_{5,7}(0,\sigma))$$

$$= 1 + 3 \cdot 7 + 3 \cdot 7^{2} + 7^{3} + 4 \cdot 7^{4} + 7^{5} + 3 \cdot 7^{7} + 3 \cdot 7^{8}$$

$$+ 6 \cdot 7^{9} + 6 \cdot 7^{10} + 0 \cdot 7^{11} + O(7^{12}) = (133141033660...)_{7}$$

to $7^{12}\lambda_5=c_5+e_5\theta_{\mathfrak{p}}$, which in turn yields the approximation $\beta/\sqrt{29}=$ (113016104651...)₇ to the integer e_5 .

By this method we compute the 7-adic approximation

$$\beta = 7^{12} \cdot \sum_{\sigma \in G} 7^{6\zeta_{7}(0,\sigma)} \cdot \exp_{7}(-6\zeta'_{5,7}(0,\sigma))$$

$$= 1 + 3 \cdot 7 + 3 \cdot 7^{2} + 7^{3} + 4 \cdot 7^{4} + 7^{5} + 3 \cdot 7^{7} + 3 \cdot 7^{8}$$

$$+ 6 \cdot 7^{9} + 6 \cdot 7^{10} + 0 \cdot 7^{11} + O(7^{12}) = (133141033660...)_{7}$$

to $7^{12}\lambda_5=c_5+e_5\theta_{\mathfrak{p}}$, which in turn yields the approximation $\beta/\sqrt{29}=$ (113016104651...)₇ to the integer e_5 .

• We truncate this 7-adic expansion mod 7^{12} as indicated, giving the integer e=3655104881; considering the bound $2\binom{6}{5}/\sqrt{29}=2.2283...$, we know that e_5 must be exactly one of $\{e-2\cdot 7^{12}, e-7^{12}, e, e+7^{12}\}$.

By this method we compute the 7-adic approximation

$$\beta = 7^{12} \cdot \sum_{\sigma \in G} 7^{6\zeta_{7}(0,\sigma)} \cdot \exp_{7}(-6\zeta'_{S,7}(0,\sigma))$$

$$= 1 + 3 \cdot 7 + 3 \cdot 7^{2} + 7^{3} + 4 \cdot 7^{4} + 7^{5} + 3 \cdot 7^{7} + 3 \cdot 7^{8}$$

$$+ 6 \cdot 7^{9} + 6 \cdot 7^{10} + 0 \cdot 7^{11} + O(7^{12}) = (133141033660...)_{7}$$

to $7^{12}\lambda_5=c_5+e_5\theta_{\mathfrak{p}}$, which in turn yields the approximation $\beta/\sqrt{29}=$ (113016104651...)₇ to the integer e_5 .

- We truncate this 7-adic expansion mod 7^{12} as indicated, giving the integer e=3655104881; considering the bound $2\binom{6}{5}/\sqrt{29}=2.2283...$, we know that e_5 must be exactly one of $\{e-2\cdot 7^{12}, e-7^{12}, e, e+7^{12}\}$.
- Exactly one of these choices for e_5 should be such that $\beta e_5\theta_{\mathfrak{p}}$ is recognizable as an integer c_5 satisfying the bound $|c_5| \leq {6 \choose 5}(1+1/\sqrt{29}) \cdot 7^{12}$.

By this method we compute the 7-adic approximation

$$\begin{split} \beta &= 7^{12} \cdot \sum_{\sigma \in G} 7^{6\zeta_{T}(0,\sigma)} \cdot \exp_{7}(-6\zeta_{S,7}'(0,\sigma)) \\ &= 1 + 3 \cdot 7 + 3 \cdot 7^{2} + 7^{3} + 4 \cdot 7^{4} + 7^{5} + 3 \cdot 7^{7} + 3 \cdot 7^{8} \\ &+ 6 \cdot 7^{9} + 6 \cdot 7^{10} + 0 \cdot 7^{11} + O(7^{12}) = (133141033660...)_{7} \end{split}$$

to $7^{12}\lambda_5=c_5+e_5\theta_{\mathfrak{p}}$, which in turn yields the approximation $\beta/\sqrt{29}=$ (113016104651...)₇ to the integer e_5 .

- We truncate this 7-adic expansion mod 7^{12} as indicated, giving the integer e=3655104881; considering the bound $2\binom{6}{5}/\sqrt{29}=2.2283...$, we know that e_5 must be exactly one of $\{e-2\cdot 7^{12}, e-7^{12}, e, e+7^{12}\}$.
- Exactly one of these choices for e_5 should be such that $\beta e_5\theta_{\mathfrak{p}}$ is recognizable as an integer c_5 satisfying the bound $|c_5| \leq {6 \choose 5}(1+1/\sqrt{29}) \cdot 7^{12}$.
- Beyond the 7¹²s digit, such an integer must have 7-adic digits either all zeros or all sixes.

By this method we compute the 7-adic approximation

$$\beta = 7^{12} \cdot \sum_{\sigma \in G} 7^{6\zeta_{7}(0,\sigma)} \cdot \exp_{7}(-6\zeta'_{S,7}(0,\sigma))$$

$$= 1 + 3 \cdot 7 + 3 \cdot 7^{2} + 7^{3} + 4 \cdot 7^{4} + 7^{5} + 3 \cdot 7^{7} + 3 \cdot 7^{8}$$

$$+ 6 \cdot 7^{9} + 6 \cdot 7^{10} + 0 \cdot 7^{11} + O(7^{12}) = (133141033660...)_{7}$$

to $7^{12}\lambda_5 = c_5 + e_5\theta_n$, which in turn yields the approximation $\beta/\sqrt{29} = (113016104651...)_7$ to the integer e_5 .

- We truncate this 7-adic expansion mod 7¹² as indicated, giving the integer e = 3655104881; considering the bound $2\binom{6}{5}/\sqrt{29} = 2.2283...$, we know that e_5 must be exactly one of $\{e-2\cdot 7^{12}, e-7^{12}, e, e+7^{12}\}$.
- Exactly one of these choices for e_5 should be such that $\beta e_5\theta_{\mathfrak{p}}$ is recognizable as an integer c_5 satisfying the bound $|c_5| \leq {6 \choose 5} (1+1/\sqrt{29}) \cdot 7^{12}$.
- Beyond the 7¹²s digit, such an integer must have 7-adic digits either all zeros or all sixes.
- We find that $e_5 = e 7^{12} = -10186182320$ and $c_5 = -849169895$.

The Gross-Stark unit α given explicitly

The same method determines the other coefficients λ_i , which are also symmetric functions of the $\sigma(\alpha)$. The minimal polynomial satisfied by the Gross-Stark unit α over F is

$$y^{6} + \frac{849169895 + 10186182320\theta}{7^{12}}y^{5} + \frac{46850752816 + 989316304\theta}{7^{12}}y^{4} \\ + \frac{1168907600 + 18302965248\theta}{7^{12}}y^{3} + \frac{46850752816 + 989316304\theta}{7^{12}}y^{2} \\ + \frac{849169895 + 10186182320\theta}{7^{12}}y + 1$$

where $\theta=(1+\sqrt{29})/2$ is a root of the polynomial x^2-x-7 such that $\{1,\theta\}$ is a basis for \mathcal{O}_F over \mathbb{Z} . We verified this numerically to sixty-seven 7-adic digits.

The Gross-Stark unit α given explicitly

The same method determines the other coefficients λ_i , which are also symmetric functions of the $\sigma(\alpha)$. The minimal polynomial satisfied by the Gross-Stark unit α over F is

$$y^{6} + \frac{849169895 + 10186182320\theta}{7^{12}}y^{5} + \frac{46850752816 + 989316304\theta}{7^{12}}y^{4} \\ + \frac{1168907600 + 18302965248\theta}{7^{12}}y^{3} + \frac{46850752816 + 989316304\theta}{7^{12}}y^{2} \\ + \frac{849169895 + 10186182320\theta}{7^{12}}y + 1$$

where $\theta=(1+\sqrt{29})/2$ is a root of the polynomial x^2-x-7 such that $\{1,\theta\}$ is a basis for \mathcal{O}_F over \mathbb{Z} . We verified this numerically to sixty-seven 7-adic digits.

• We verify computationally that α is indeed a square in K and that $K = F(\alpha)$ is in fact the totally complex extension originally specified.

The Gross-Stark unit α given explicitly

The same method determines the other coefficients λ_i , which are also symmetric functions of the $\sigma(\alpha)$. The minimal polynomial satisfied by the Gross-Stark unit α over F is

$$y^{6} + \frac{849169895 + 10186182320\theta}{7^{12}}y^{5} + \frac{46850752816 + 989316304\theta}{7^{12}}y^{4} \\ + \frac{1168907600 + 18302965248\theta}{7^{12}}y^{3} + \frac{46850752816 + 989316304\theta}{7^{12}}y^{2} \\ + \frac{849169895 + 10186182320\theta}{7^{12}}y + 1$$

where $\theta = (1 + \sqrt{29})/2$ is a root of the polynomial $x^2 - x - 7$ such that $\{1, \theta\}$ is a basis for \mathcal{O}_F over \mathbb{Z} . We verified this numerically to sixty-seven 7-adic digits.

- We verify computationally that α is indeed a square in K and that $K = F(\alpha)$ is in fact the totally complex extension originally specified.
- In the spirit of Hilbert's Twelfth Problem, we have given a 7-adic analytic construction of a specific totally complex abelian extension K of of F, using only information from F.

So we can calculate the Gross-Stark units α attached to relative abelian totally complex extensions of real quadratic fields; now what?

• Improve the implementation in PARI; find more efficient ways to choose the prime $(p) = p\overline{p}$, for example.

- Improve the implementation in PARI; find more efficient ways to choose the prime $(p) = p\overline{p}$, for example.
- We found some new relations in the course of this work; for example, for each class $\mathcal{C}_+ \in H_+(\mathfrak{m}\mathfrak{p})$ we have $\zeta'_{\mathfrak{m}\mathfrak{p},\rho}(0,[\nu]_+\mathcal{C}_+) = \zeta'_{\mathfrak{m}\mathfrak{p},\rho}(0,\mathcal{C}_+)$, where $\nu := \mathsf{N}(\mathfrak{m}\mathfrak{p}) 1$ and $[\nu]_+$ denotes the narrow class modulo $\mathfrak{m}\mathfrak{p}$ to which the principal ideal (ν) belongs; are there others? Can we exploit them?

- Improve the implementation in PARI; find more efficient ways to choose the prime $(p) = p\overline{p}$, for example.
- We found some new relations in the course of this work; for example, for each class $\mathcal{C}_+ \in H_+(\mathfrak{mp})$ we have $\zeta'_{\mathfrak{mp},p}(0,[\nu]_+\mathcal{C}_+) = \zeta'_{\mathfrak{mp},p}(0,\mathcal{C}_+)$, where $\nu := \mathsf{N}(\mathfrak{mp}) 1$ and $[\nu]_+$ denotes the narrow class modulo \mathfrak{mp} to which the principal ideal (ν) belongs; are there others? Can we exploit them?
- Can we use our explicit analytic construction of the Gross-Stark units to suggest an *algebraic* description of them? For example, in the case where the base field is $F=\mathbb{Q}$ the Gross-Stark units are roots of unity or sums thereof.

- Improve the implementation in PARI; find more efficient ways to choose the prime $(p) = p\overline{p}$, for example.
- We found some new relations in the course of this work; for example, for each class $\mathcal{C}_+ \in H_+(\mathfrak{mp})$ we have $\zeta'_{\mathfrak{mp},p}(0,[\nu]_+\mathcal{C}_+) = \zeta'_{\mathfrak{mp},p}(0,\mathcal{C}_+)$, where $\nu := \mathsf{N}(\mathfrak{mp}) 1$ and $[\nu]_+$ denotes the narrow class modulo \mathfrak{mp} to which the principal ideal (ν) belongs; are there others? Can we exploit them?
- Can we use our explicit analytic construction of the Gross-Stark units to suggest an *algebraic* description of them? For example, in the case where the base field is $F=\mathbb{Q}$ the Gross-Stark units are roots of unity or sums thereof.
- Can a more constructive independent proof of Darmon-Dasgupta-Pollack theorem be given?

- Improve the implementation in PARI; find more efficient ways to choose the prime $(p) = p\overline{p}$, for example.
- We found some new relations in the course of this work; for example, for each class $\mathcal{C}_+ \in H_+(\mathfrak{mp})$ we have $\zeta'_{\mathfrak{mp},p}(0,[\nu]_+\mathcal{C}_+) = \zeta'_{\mathfrak{mp},p}(0,\mathcal{C}_+)$, where $\nu := \mathsf{N}(\mathfrak{m}\mathfrak{p}) - 1$ and $[\nu]_+$ denotes the narrow class modulo $\mathfrak{m}\mathfrak{p}$ to which the principal ideal (ν) belongs; are there others? Can we exploit them?
- Can we use our explicit analytic construction of the Gross-Stark units to suggest an algebraic description of them? For example, in the case where the base field is $F = \mathbb{Q}$ the Gross-Stark units are roots of unity or sums thereof.
- Can a more constructive independent proof of Darmon-Dasgupta-Pollack theorem be given?
- Extend the algorithm to higher-degree totally real base fields F, using higher p-adic multiple log gamma functions we have developed. (note: the Gross-Stark conjecture is only known *conditionally* in the general case)

• Thanks for the opportunity to speak!

- Thanks for the opportunity to speak!
- Preprints may be found at

http://youngp.people.cofc.edu/

- Thanks for the opportunity to speak!
- Preprints may be found at

```
http://youngp.people.cofc.edu/
```

 Video abstract "On p-adic multiple zeta and log gamma functions" may be found at

$$\verb|http://www.youtube.com/watch?v = I9Bv_CycEd8|$$

or

http://www.youtube.com/user/JournalNumberTheory

- Thanks for the opportunity to speak!
- Preprints may be found at

 Video abstract "On p-adic multiple zeta and log gamma functions" may be found at

$$\verb|http://www.youtube.com/watch?v = I9Bv_CycEd8|$$

or

 Video abstract "Explicit computation of Gross-Stark units over real quadratic fields" may be found at

http://www.youtube.com/watch?
$$v = 8h1 - GW - sTNc$$