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Apollonius’s Theorem

Theorem
Given three mutually tangent circles, there exists exactly two
circles tangent to all three.



Descartes’ Theorem

Theorem
Given four mutually tangent circles, the curvatures a, b, c, and d
satisfy the Descartes equation

a2 + b2 + c2 + d2 =
1

2
(a + b + c + d)2.



Apollonian Circle Packings

(−1, 2, 2, 3) Apollonian Circle Packing



Apollonian Circle Packings

(−3, 5, 8, 8) Apollonian Circle Packing



Apollonian Circle Packings

(−10, 18, 23, 27) Apollonian Circle Packing



If (a, b, c , d) is a Descartes quadruple, then so is (a, b, c , d ′) where

d ′ = 2a + 2b + 2c − d .

Corollary

If an Apollonian circle packing has four mutually tangent circles
with integral curvatures, then all curvatures will be integral.



If (a, b, c , d) is a Descartes quadruple, then so is (a, b, c , d ′) where

d ′ = 2a + 2b + 2c − d .

Corollary

If an Apollonian circle packing has four mutually tangent circles
with integral curvatures, then all curvatures will be integral.



Root Quadruples

A root quadruple is a Descartes quadruple (a, b, c , d) with
a ≤ 0 ≤ b ≤ c ≤ d and a + b + c ≥ d .

(−1, 2, 2, 3) (−2, 3, 6, 7) (−3, 4, 12, 13) (−3, 5, 8, 8)

(−4, 5, 20, 21) (−4, 8, 9, 9) (−5, 6, 30, 31) (−5, 7, 18, 18)

(−6, 7, 42, 43) (−6, 10, 15, 19) (−6, 11, 14, 15) . . .

Root quadruples correspond to the curvatures of the four largest
circles (taking the negative to be the curvature of the outside
circle). Root quadruples are unique, although an Apollonian circle
packing may contain more than one Descartes configuration with
these curvatures.
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Number of Root Quadruples

Question: How many distinct packings are there?

Infinitely many: (−n, n + 1, n(n + 1), n(n + 1) + 1).

Better Question: How many distinct packings are there with
outside circle having curvature −n?
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Root Quadruples

How many primitive root quadruples with negative element −n?

n 1 2 3 4 5 6 7 8 9 10
N(−n) 1 1 2 2 2 3 3 3 4 4

n 11 12 13 14 15 16 17 18 19 20
N(−n) 4 6 4 5 6 5 5 7 6 6

n 1009 1013 2003 2011 3001 3011 4001 4003
N(−n) 253 254 502 504 751 754 1001 1004

It would appear that N(−p) ≈ p
4 for large prime p.
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Characterization of Root Quadruples

Theorem (Graham, Lagarias, Mallows, Wilks, Yan)

The Apollonian root quadruples (−n, x , y , z) are in one-to-one
correspondence with positive definite integral binary quadratic
forms of discriminant −4n2 having non-negative middle coefficient.

Associated binary quadratic form Q(X ,Y ) = AX 2 + BXY + CY 2:

[A,B,C ] = [−n + x ,−n + x + y − z ,−n + y ]

Example: The associated BQF of (−6, 10, 15, 19) is [4, 0, 9].
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Characterization of Root Quadruples

[A,B,C ] = [−n + x ,−n + x + y − z ,−n + y ]

Primitive root quadruples correspond to reduced binary quadratic
forms having nonnegative middle coefficient. The number N(−n)
of primitive root quadruples with least element −n satisfies

N(−n) = h±(−4n2)

where h±(−4n2) is the number of equivalence classes of positive
definite primitive binary integral forms of discriminant −4n2.

Using analytic class number formulas, there is an exact formula for
N(−n) depending only on the prime factorization of n.



Open Question (GLMWY)

Is there a direct way for determining the root quadruple to which a
given Descartes quadruple belongs?



Apollonian Group

If (a, b, c , d) is a Descartes quadruple, then so is (a, b, c , d ′) where

d ′ = 2a + 2b + 2c − d .

S1 =


−1 2 2 2

0 1 0 0
0 0 1 0
0 0 0 1

 S2 =


1 0 0 0
2 −1 2 2
0 0 1 0
0 0 0 1



S3 =


1 0 0 0
0 1 0 0
2 2 −1 2
0 0 0 1

 S4 =


1 0 0 0
0 1 0 0
0 0 1 0
2 2 2 −1


The Apollonian group A is the subgroup of GL4(Z) generated by
S1, S2, S3, and S4. (Note: S2

i = I .)
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Properties of the Apollonian Group

Descartes Quadratic Form:

Q(x1, x2, x3, x4) = 2(x2
1 + x2

2 + x2
3 + x2

4 )− (x1 + x2 + x3 + x4)2

Orthogonal Group:

OQ(Z) =
{

g ∈ GL4(Z) : Q(xg) = Q(x)
}

Let A be the Apollonian group and Q be the Decartes quadratic
form. Then

I A is “small”: A is an infinite-index subgroup of the
orthogonal OQ(Z) fixing Q.

I A is “not too small”: A is Zariski dense in OQ(Z).
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Apollonian Group Action

The Apollonian group A action on integral Descartes quadruples
allows one to “walk around” a given Apollonian circle packing.

There will be 4 · 3n−2 circles at the nth generation.



Reduction Algorithm (GLMWY)

Input:
A Descartes quadruple (a, b, c , d) with a + b + c + d > 0.

1. Test in order 1 ≤ i ≤ 4 whether some Si decreases the sum
a + b + c + d . If so, apply it to produce a new quadruple and
continue.

2. If no Si decreases the sum, order the elements of the
quadruple in increasing order and halt.

If a, b, c, d are integers, then the reduction algorithm will halt at a
root quadruple in finitely many steps.
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Associated Quadratic Form

For an ordered Descartes quadruple v = (a, b, c , d)T

(a ≤ b ≤ c ≤ d), define the associated quadratic form
Q(X ,Y ) = AX 2 + BXY + CU2 to be

[A,B,C ] = [a + b, a + b + c − d , a + c].

The discriminant is −4a2.



Theorem (Morgenstern, E.)

The associated quadratic form for an ordered Descartes quadruple
v = (a, b, c, d)T is (improperly) equivalent to the associated
quadratic forms of S2v, S3v, and S4v. In particular, the
discriminant is invariant under B1 = 〈S2,S3,S4〉.



(−6, 10, 15, 19) Apollonian Cirlce Packing



The associated quadratic form for S1v doesn’t even have the same
discriminant as the associated quadratic form for v.

Theorem (Morgenstern, E.)

If v = [a, b, c , d ] is an ordered Descartes quadruple with associated
quadratic form [A,B,C ], then the reduced form [A′,B ′,C ′] will
produce another (usually) ordered Descartes quadruple v′ in the
same Apollonian packing as v:

v′ = (a′, b′, c ′, d ′) = (A′ − a,C ′ − a,A′ + B ′ + C ′ − a, a).

Unless v is a root quadruple, a′ + b′ + c ′ + d ′ < a + b + c + d.
Furthermore, the associated quadratic form of v′ will have smaller
discriminant than the associated quadratic form of v.
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Improved Reduction Algorithm

Input:
A Descartes quadruple (a, b, c , d) with a + b + c + d > 0.

1. Find the associated quadratic form (A,B,C ).

2. Reduce the quadratic form (A′,B ′,C ′) with |B ′| ≤ A′ ≤ C ′.

3. Produce the (usually) ordered quadruple

(a′, b′, c ′, d ′) = (A′ − a,C ′ − a,A′ + B ′ + C ′ − a, a)

where a is the smallest term from the original vector

4. Repeat steps 1-3, inputing the result of the previous iteration,
until the smallest term is nonpositive.

5. When a ≤ 0, perform steps 1-3 once more, then return the
root quadruple (−n, x , y , z).
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Example

Descartes Quadruple:

(a, b, c , d) = (1200139418, 3576170042, 9994848203, 29197576575)

[A′,B ′,C ′] = [1208222152,−1110731620, 1447387637]

(a, b, c , d) = (8082734, 247248219, 344738751, 1200139418)

[A′,B ′,C ′] = [8082724,−7584880, 9862169]

(a, b, c , d) = (−10, 1779435, 2277279, 8082734)

[A′,B ′,C ′] = [4, 0, 25]

Root quadruple:

(a, b, c , d) = (−10, 14, 35, 39)
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Definition
A talk is called a Rob Akscyn talk if the speaker is quoted by Rob
Akscyn during his talk at WCNT.

Examples: Carl Pomerance, Colin Weir, Renate Scheidler, . . .

Conjecture

This talk is a Rob Akscyn talk.

Proof. To be proven or disproven by Rob at next year’s WCNT.
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