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Main Theorem

Theorem (G-)

The equation
X2N + 22Lp2M = Z5

has no solution for odd prime p, with X, Z, N , L, M ∈ Z+, N > 1, and
gcd(X,Z, 2p) = 1.

In the proof, I use methods from

Bennett (2006)

Bennett & Skinner (2004)
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Preliminaries

X2N + 22Lp2M = Z5

We can assume that N is prime.

Lemma (Bennett)

If a, b, c ∈ Z−{0} s.t. a2 + b2 = c5 with gcd(a, b, c) = 1, then ∃u, v ∈ Z− {0}
coprime of opposite parity s.t.

a = u(u4 − 10u2v2 + 5v4)

and
b = v(v4 − 10u2v2 + 5u4).
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Modular Approach

Let E/Q be an elliptic curve.

For a prime q ∈ Z, let

aq(E) = (q + 1)− |E(Fq)|.

The trace is bounded by −2√q ≤ aq(E) ≤ 2
√
q.

“Arises from”, ∼n, is an equivalence relation.

Lemma

Let E,F be an elliptic curves over Q with conductors N,M . If E ∼n F ,
then ∀q, prime,

if q|NM , then aq(E) ≡ aq(F ) (mod n), or

if q||N and q - M , then aq(F ) ≡ ±(q + 1) (mod n).
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Theorem (Bennett-Skinner)

For prime n ≥ 7, Axn +Byn = Cz2

(w/ a few conditions) has

E : Y 2 +XY = X3 +
Cz − 1

4
X2 +

BCyn

64
X.

If v2(Byn) ≥ 6, z ≡ C (mod 4), and xy 6= ±1, then E has conductor

N ′ =

{
2−1C2 rad(ABxy), if v2(By7) = 6,
C2 rad(ABxy), if v2(By7) ≥ 7.

and E ∼n f , for some newform f of level

N =

 C2 rad(AB), if v2(B) 6= 0, 6,
2C2 rad(AB), if v2(B) = 0,
2−1C2 rad(AB), if v2(B) = 6.

Further, E has nontrivial 2-torsion.
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Proof of the Main Theorem

Suppose that (X,Z,N,L,M) = (x, z, n, `,m) is a solution to

X2N + 22Lp2M = Z5,

with p ≥ 3 and x, z, n, `, m ∈ Z+, n > 1, and gcd(x, z, 2p) = 1. So

x2n + 22`p2m = z5.

Notice that gcd(x, 2p) = gcd(z, 2p) = gcd(x, z) = 1.
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x2n + 22`p2m = z5 =⇒ (xn)
2
+
(
2`pm

)2
= z5

Apply Lemma, ∃u, v ∈ Z− {0} coprime, opposite parity s.t.

xn = u(u4 − 10u2v2 + 5v4) and 2`pm = v(v4 − 10u2v2 + 5u4).

gcd(u, v) = 1 =⇒ gcd(u, u4 − 10u2v2 + 5v4) = 1 or 5.

and gcd(v, v4 − 10u2v2 + 5u4) = 1 or 5.

u 6≡ v (mod 2) =⇒ v4 − 10u2v2 + 5u4 is odd =⇒ 2`|v.

v = ±2`pj and v4 − 10u2v2 + 5u4 = ±pm−j

for j ∈ Z, where j = m− 1 when p = 5 and j = 0 otherwise.
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2
+
(
2`pm

)2
= z5
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Case I: n ≥ 7: Modular Approach

If 5 - u, then gcd(u, u4 − 10u2v2 + 5v4) = 1 and ∃A,B ∈ Z− {0}
coprime s.t.

u = An and u4 − 10u2v2 + 5v4 = Bn,

v = ±2`pj and v4 − 10u2v2 + 5u4 = ±pm−j .

Completing the square, using 20v4 = 24`+254j+1 with w ≡ u2 − 5v2,

Bn + 24`+254j+1 = w2 =⇒ Bn + 2r15r2(2k15k2)n = w2

for 0 ≤ r1, r2 < n.

For primes q, vq(2
r15r2) ≤ max{r1, r2} < n.

v2(2
4`+254j+1) = 4`+ 2 ≥ 6.

24`+254j+1 ± 1 is not a square =⇒ 2k15k2B 6= ±1.

Apply Bennett-Skinner with n ≥ 7, prime.
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Applying Bennett-Skinner with n ≥ 7, prime,

we have

E : Y 2 +XY = X3 +
w − 1

4
X2 + 24`−454j+1X,

and E ∼n f for some newform f of level

N =


1, if r1 = 6 and r2 = 0,
2, if r1 6= 6 and r2 = 0,
5, if r1 = 6 and r2 6= 0,
10, if r1 6= 6 and r2 6= 0.

However, there are no newforms of level 1, 2, 5, or 10. Hence 5|u.
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Modular Approach Continued

5|u =⇒ gcd(u, u4 − 10u2v2 + 5v4) = 5

and gcd(u, v) = 1 =⇒ 5 - v.
Then j = 0 and p 6= 5. Thus ∃C,D ∈ Z− {0} coprime s.t.

u = 5n−1Cn and u4 − 10u2v2 + 5v4 = 5Dn

v = ±2`pj and v4 − 10u2v2 + 5u4 = ±pm−j
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Completing the square,

with 5w1 = u2 − 5v2,

Dn + 24`+2 = 5w2
1 =⇒ Dn + 2r(2k)n = 5w2

1

with 0 ≤ r < n.

For all primes q, vq(2
r) ≤ r < n.

Since ` ≥ 1, v2(2
4`+2) ≥ 6.

5Dn ≡ 1 (mod 8) and so D 6= ±1.

Again, apply Bennett-Skinner for n ≥ 7.
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u = 5n−1Cn and u4 − 10u2v2 + 5v4 = 5Dn

v = ±2` and v4 − 10u2v2 + 5u4 = ±pm

Completing the square, with 5w1 = u2 − 5v2,

Dn + 24`+2 = 5w2
1 =⇒ Dn + 2r(2k)n = 5w2

1

with 0 ≤ r < n.

For all primes q, vq(2
r) ≤ r < n.

Since ` ≥ 1, v2(2
4`+2) ≥ 6.

5Dn ≡ 1 (mod 8) and so D 6= ±1.

Again, apply Bennett-Skinner for n ≥ 7.
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Applying Bennett-Skinner with n ≥ 7, prime,

we have

F : Y 2 +XY = X3 +
5w1 − 1

2
X2 + 24`−45X

with M ′ = 2α52rad(D). F ∼n g for newform g of level

M =

{
25, if r = 6,
50, if r 6= 6.

Thus M = 50. Newforms of level 50 are

g1 = q − q2 + q3 + q4 − q6 + . . .

and
g2 = q + q2 − q3 + q4 − q6 + . . . .

correspond to elliptic curves, F1 and F2, defined over Q.

g = gi and corresponds to Fi for i = 1 or 2.

Since 3 - 50, c3(g) = a3(Fi). Thus a3(Fi) = ±1.
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From Bennett-Skinner, F has nontrivial 2-torsion.

Thus

Ft(Q) contains a point of order 2 =⇒ 2 divides |F (F3)|.

Hence a3(F ) = (3 + 1)− |F (F3)| is even. Further,

−2
√
3 ≤ a3(F ) ≤ 2

√
3 =⇒ a3(F ) ∈ {−2, 0, 2}.

Recall that F ∼n g, thus F ∼n Fi. By Lemma,

a3(Fi) ≡
{

a3(F ) (mod n), if 3 - rad(D),
±4 (mod n), if 3| rad(D).

3 - rad(D) =⇒ a3(F ) ≡ a3(Fi) = ±1 (mod n). Thus n ≤ 3.

3|rad(D) =⇒ ±1 ≡ a3(Fi) ≡ ±4 (mod n). Then n ≤ 5.

Contradictions in both cases. Hence n ∈ {2, 3, 5}.
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Theorem (G-)

The equation
X2N + 22Lp2M = Z5

has no solution for odd prime p, with X, Z, N , L, M ∈ Z+, N > 1, and
gcd(X,Z, 2p) = 1.
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