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Main Theorem

The equation

X?N +22Lp2M _ Z5

has no solution for odd prime p, with X, Z, N, L, M € Z+, N > 1, and
ged(X, Z,2p) = 1.
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Main Theorem

The equation

X2N +22Lp2M _ Z5

has no solution for odd prime p, with X, Z, N, L, M € Z+, N > 1, and
ged(X, Z,2p) = 1.

In the proof, | use methods from
e Bennett (2006)
@ Bennett & Skinner (2004)

Eva Goedhart Bryn Mawr College On the Diophantine equation x2N + 22Lp2M = z5



Preliminaries

XZN +22LP2M — Z5
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Preliminaries

X2N +22Lp2M — Z5

We can assume that N is prime.
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Preliminaries

X2N =+ 22Lp2M — Z5

We can assume that N is prime.

Lemma (Bennett)

If a,b,c € Z—{0} s.t. a® +b* = ¢® with ged(a,b,c) = 1, then Ju,v € Z — {0}
coprime of opposite parity s.t.

a = u(u® — 100’0 + 50%)

and
b=v(v* — 10u’0® + 5u’).
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Modular Approach

Let E/Q be an elliptic curve.
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Modular Approach
Let F/Q be an elliptic curve. For a prime g € Z, let

ag(E) = (¢+1) — [E(F,)|-
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Modular Approach
Let F/Q be an elliptic curve. For a prime g € Z, let
ag(E) = (¢+1) - [E(F,)|.

The trace is bounded by —2,/7 < a,(F) < 2,/7.
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Modular Approach
Let F/Q be an elliptic curve. For a prime g € Z, let
ag(E) = (¢+1) — [E(F,)|.

The trace is bounded by —2,/7 < a,(F) < 2,/7.

Arises from”, ~,,, is an equivalence relation.
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Modular Approach
Let F/Q be an elliptic curve. For a prime g € Z, let
ag(E) = (¢+1) - [E(F,)|.

The trace is bounded by —2,/7 < a,(F) < 2,/7.

“Arises from", ~,,, is an equivalence relation.

Let E, F be an elliptic curves over Q with conductors N, M.
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Modular Approach
Let F/Q be an elliptic curve. For a prime g € Z, let
ag(E) = (¢+1) - [E(F,)|.

The trace is bounded by —2,/7 < a,(F) < 2,/7.

“Arises from", ~,,, is an equivalence relation.

Let E, F be an elliptic curves over Q with conductors N,M. If E ~, F,
then Yq, prime,
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Modular Approach
Let F/Q be an elliptic curve. For a prime g € Z, let
ag(E) = (¢+1) - [E(F,)|.

The trace is bounded by —2,/7 < a,(F) < 2,/7.

“Arises from", ~,,, is an equivalence relation.

Let E, F be an elliptic curves over Q with conductors N,M. If E ~, F,
then Yq, prime,

e if g{NM, then ay(E) = aq(F) (mod n), or
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Modular Approach
Let F/Q be an elliptic curve. For a prime g € Z, let
ag(E) = (¢+1) - [E(F,)|.

The trace is bounded by —2,/7 < a,(F) < 2,/7.

“Arises from", ~,,, is an equivalence relation.

Let E, F be an elliptic curves over Q with conductors N,M. If E ~, F,
then Yq, prime,

o ifq{NM, then ay(E) = aq(F) (mod n), o
o ifq||N and g1 M, then aq(F) = £(q+1) (mod n).
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Theorem (Bennett-Skinner)

For primen >17, Az™+ By" = Cz?
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Theorem (Bennett-Skinner)

For primen > 7, Axz"™+ By"™ =C2?  (w/ a few conditions)

Eva Goedhart Bryn Mawr College On the Diophantine equation x2N + 22Lp2M = z5



Theorem (Bennett-Skinner)

For primen > 17, Axz"™+ By" = Cz?>  (w/ a few conditions) has
=1 BCy"
C’z4 Cy X

X2
+ 64

E: Y’+XYy=X%+
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Theorem (Bennett-Skinner)

For primen > 17, Axz"™+ By" = Cz?>  (w/ a few conditions) has
=1 BCy"
C’z4 Cy X

X2
+ 64

E: Y’+XYy=X%+

Ifva(By™) > 6, z=C (mod 4), and zy # £1,
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Theorem (Bennett-Skinner)

For primen > 17, Axz"™+ By" = Cz?>  (w/ a few conditions) has
Cz—1 BCy"
4 64

Ifva(By™) > 6, z=C (mod 4), and xy # £1, then E has conductor

E: Y’ 4+Xy=X3+ K2 4 X.

N = 271C? rad(ABxy), ifva(By’) =6,
| C?rad(ABxy), ifva(By") > 7.
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Theorem (Bennett-Skinner)

For primen > 17, Axz"™+ By" = Cz?>  (w/ a few conditions) has
Cz—1 BCy"
4 64

Ifva(By™) > 6, z=C (mod 4), and xy # £1, then E has conductor

E: Y’ 4+Xy=X3+ K2 4 X.

N = 271C? rad(ABxy), ifva(By’) =6,
| C?rad(ABxy), ifva(By") > 7.

and E ~, f,
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Theorem (Bennett-Skinner)

For primen > 17,  Aaz"+ By" = Cz*>  (w/ a few conditions) has

BCy"™

X.
64

I

—1
o Y2+XY:X3+—CZ4

Ifva(By™) > 6, z=C (mod 4), and xy # £1, then E has conductor

N = 271C? rad(ABxy), ifva(By’) =6,
| C?rad(ABuwy), ifva(By") > 7.

and E ~,, f, for some newform f of level

C?rad(AB), if va(B) # 0,6,
N =< 2C?rad(AB), ifva(B) =0,
271C%rad(AB), ifvy(B)=6.
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Theorem (Bennett-Skinner)

For primen > 17,  Aaz"+ By" = Cz*>  (w/ a few conditions) has
Cz—1 BCy"
4 64

Ifva(By™) > 6, z=C (mod 4), and xy # £1, then E has conductor

E: Y’ 4+Xy=X3+ K2 4 X.

N = 271C? rad(ABxy), ifva(By’) =6,
| C?rad(ABuwy), ifva(By") > 7.

and E ~,, f, for some newform f of level

C?rad(AB), if va(B) # 0,6,
N =< 2C?rad(AB), ifva(B) =0,
271C? rad(AB), ifvy(B) =6.

Further, E has nontrivial 2-torsion.
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Proof of the Main Theorem
Suppose that (X, Z, N, L, M) = (x, z,n,£,m) is a solution to

XQN +22LP2M — ZS,
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Proof of the Main Theorem
Suppose that (X, Z, N, L, M) = (x, z,n,£,m) is a solution to
X2N 4 92L2M _ 5

withp>3and z, 2, n, {,meZ", n>1, and ged(z, 2,2p) = 1.
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Proof of the Main Theorem
Suppose that (X, Z, N, L, M) = (x, z,n,£,m) is a solution to
X2N 4 2L 2M _ 5
withp>3and z, 2, n, £, meZ", n>1, and ged(x, 2,2p) = 1. So

.1132” + 22€p2m _ 25'
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Proof of the Main Theorem
Suppose that (X, Z, N, L, M) = (x, z,n,£,m) is a solution to
X2N 4 2L 2M _ 5
withp >3 and x, z, n, £, m € Z*, n > 1, and ged(x, 2,2p) = 1. So

22 4 22p2m — 5

Notice that ged(z, 2p) = ged(z, 2p) = ged(x, 2) = 1.
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CL,Zn + 222p2m N (:L‘n)2 + (2€pm)2 _ 5
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2
xQn + 22£p2m — 2,5 — (1‘”)2 + (2£pm) — 25

Apply Lemma, Ju,v € Z — {0} coprime, opposite parity s.t.

2" = u(ut —10u?0? + 50*)  and 2™ = v(v* — 10u%0? + 5ut).
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22 4 2Hpm = 25— (g")? 4 (2£pm)2 _ .5

Apply Lemma, Ju,v € Z — {0} coprime, opposite parity s.t.

2" = u(ut —10u?0? + 50*)  and 2™ = v(v* — 10u%0? + 5ut).

ged(u,v) =1 = ged(u, ut — 10u%0? 4 5v%) = 1 or 5.
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22 4 2Hpm = 25— (g")? 4 (2£pm)2 _ .5

Apply Lemma, Ju,v € Z — {0} coprime, opposite parity s.t.

2" = u(ut —10u?0? + 50*)  and 2™ = v(v* — 10u%0? + 5ut).

ged(u,v) =1 = ged(u, ut — 10u%0? 4 5v%) = 1 or 5.

and ged(v, v* — 10u?0? + 5u*) =1 or 5.
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22 22p?m = 25— ()2 4 (2£pm)2 _ .5

Apply Lemma, Ju,v € Z — {0} coprime, opposite parity s.t.

2" = u(ut —10u?0? + 50*)  and 2™ = v(v* — 10u%0? + 5ut).

ged(u,v) =1 = ged(u, u* — 10uv? 4+ 50%) = 1 or 5.

and ged(v, v* — 10u®v? + 5u*) = 1 or 5.

uZ v (mod 2)

Eva Goedhart Bryn Mawr College On the Diophantine equation x2N + 22LP2M = z5



22 22p?m = 25— ()2 4 (2£pm)2 _ .5

Apply Lemma, Ju,v € Z — {0} coprime, opposite parity s.t.

2" = u(ut —10u?0? + 50*)  and 2™ = v(v* — 10u%0? + 5ut).

ged(u,v) =1 = ged(u, u* — 10uv? 4+ 50%) = 1 or 5.

and ged(v, v* — 10u®v? + 5u*) = 1 or 5.

u#v (mod 2) = v* — 10u?v? + 5u* is odd
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22 22p?m = 25— ()2 4 (2£pm)2 _ .5

Apply Lemma, Ju,v € Z — {0} coprime, opposite parity s.t.

2" = u(ut —10u?0? + 50*)  and 2™ = v(v* — 10u%0? + 5ut).

ged(u,v) =1 = ged(u, u* — 10uv? 4+ 50%) = 1 or 5.

and ged(v, v* — 10u®v? + 5u*) = 1 or 5.

u#wv (mod 2) = v* —10u?v? 4 5u? is odd = 2¢|v.
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22 22p?m = 25— ()2 4 (2£pm)2 _ .5

Apply Lemma, Ju,v € Z — {0} coprime, opposite parity s.t.

2" = u(ut —10u?0? + 50*)  and 2™ = v(v* — 10u%0? + 5ut).

ged(u,v) =1 = ged(u, u* — 10uv? 4+ 50%) = 1 or 5.

and ged(v, v* — 10u®v? + 5u*) = 1 or 5.

u#wv (mod 2) = v* —10u?v? 4 5u? is odd = 2¢|v.
v==42% and o*—10u%0? + 5ut = £pm I

for j € Z,
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22 22p?m = 25— ()2 4 (2£pm)2 _ .5

Apply Lemma, Ju,v € Z — {0} coprime, opposite parity s.t.

2" = u(ut —10u?0? + 50*)  and 2™ = v(v* — 10u%0? + 5ut).

ged(u,v) =1 = ged(u, u* — 10uv? 4+ 50%) = 1 or 5.

and ged(v, v* — 10u®v? + 5u*) = 1 or 5.

u#wv (mod 2) = v* —10u?v? 4 5u? is odd = 2¢|v.
v==42% and o*—10u%0? + 5ut = £pm I

for j € Z, where j=m —1whenp=5
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22 22p?m = 25— ()2 4 (Qme)Z _ .5

Apply Lemma, Ju,v € Z — {0} coprime, opposite parity s.t.

2" = u(ut —10u?0? + 50*)  and 2™ = v(v* — 10u%0? + 5ut).

ged(u,v) =1 = ged(u, u* — 10uv? 4+ 50%) = 1 or 5.

and ged(v, v* — 10u®v? + 5u*) = 1 or 5.

u#wv (mod 2) = v* —10u?v? 4 5u? is odd = 2¢|v.
v==42% and o*—10u%0? + 5ut = £pm I

for j € Z, where j =m — 1 when p =15 and j = 0 otherwise.
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Case I: n > 7: Modular Approach
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Case I: n > 7: Modular Approach

If 51w,
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Case I: n > 7: Modular Approach

If 51w, then ged(u, u* — 10u?v? + 5vt) =1
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Case I: n > T7: Modular Approach

If 51w, then ged(u, u* — 10u?v? + 50*) = 1 and 34, B € Z — {0}
coprime s.t.

u=A" and u*—10u?? + 50 = B",
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Case I: n > T7: Modular Approach

If 51w, then ged(u, u* — 10u?v? + 50*) = 1 and 34, B € Z — {0}
coprime s.t.

u=A" and u*—10u?? + 50 = B",

v==2% and v*—10u%0? + 5ut = £p™ .
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Case I: n > T7: Modular Approach

If 51w, then ged(u, u* — 10u?v? + 50*) = 1 and 34, B € Z — {0}
coprime s.t.

u=A" and u*—10u?? + 50 = B",

v==2% and v*—10u%0? + 5ut = £p™ .

Completing the square,
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Case I: n > T7: Modular Approach

If 51w, then ged(u, u* — 10u?v? + 50*) = 1 and 34, B € Z — {0}
coprime s.t.

u=A" and u*—10u?? + 50 = B",

v==2% and v*—10u%0? + 5ut = £p™ .

Completing the square, using 20v* = 24+25%+1 with w = u? — 502,
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Case I: n > T7: Modular Approach

If 51w, then ged(u, u* — 10u?v? + 50*) = 1 and 34, B € Z — {0}
coprime s.t.

u=A" and u*—10u?? + 50 = B",

v==2% and v*—10u%0? + 5ut = £p™ .

Completing the square, using 20v* = 24+25%+1 with w = u? — 502,

Bn + 24£+254j+1 — w2
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Case I: n > T7: Modular Approach

If 51w, then ged(u, u* — 10u?v? + 50*) = 1 and 34, B € Z — {0}
coprime s.t.

u=A" and u*—10u?? + 50 = B",

v==2% and v*—10u%0? + 5ut = £p™ .

Completing the square, using 20v* = 24+25%+1 with w = u? — 502,
Bn + 24£+254j+1 — w2 — Bn + 2T15T2 (2k15k2)n — w2

for 0 < rq,1r9 < n.
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Case I: n > T7: Modular Approach

If 51w, then ged(u, u* — 10u?v? + 50*) = 1 and 34, B € Z — {0}
coprime s.t.

u=A" and u*—10u?? + 50 = B",

v==2% and v*—10u%0? + 5ut = £p™ .

Completing the square, using 20v* = 24+25%+1 with w = u? — 502,
Bn + 24£+254j+1 — w2 — Bn + 2T15T2 (2k15k2)n — w2
for 0 < rq,1r9 < n.

@ For primes ¢, v4(2"5") < max{ry, 72} < n.
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Case I: n > T7: Modular Approach

If 51w, then ged(u, u* — 10u?v? + 50*) = 1 and 34, B € Z — {0}
coprime s.t.

u=A" and u*—10u?? + 50 = B",

v==2% and v*—10u%0? + 5ut = £p™ .

Completing the square, using 20v* = 24+25%+1 with w = u? — 502,
Bn + 24£+254j+1 — w2 — Bn + 2T15T2 (2k15k2)n — w2
for 0 < rq,1r9 < n.

@ For primes ¢, v4(2"5") < max{ry, 72} < n.
o up(24F254H) = 40 + 2 > 6.
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Case I: n > T7: Modular Approach

If 51w, then ged(u, u* — 10u?v? + 50*) = 1 and 34, B € Z — {0}
coprime s.t.

u=A" and u*—10u?? + 50 = B",

v==2% and v*—10u%0? + 5ut = £p™ .

Completing the square, using 20v* = 24+25%+1 with w = u? — 502,
Bn + 24£+254j+1 — w2 — Bn + 2T15T2 (2k15k2)n — w2
for 0 < ry,r9 < n.

@ For primes ¢, v4(2"5") < max{ry, 72} < n.
o up(24F254H) = 40 + 2 > 6.
o 24425441 4+ 1 is not a square = 2F15F2 B £ 41.
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Case I: n > T7: Modular Approach

If 51w, then ged(u, u* — 10u?v? + 50*) = 1 and 34, B € Z — {0}
coprime s.t.

u=A" and u*—10u?? + 50 = B",

v==2% and v*—10u%0? + 5ut = £p™ .

Completing the square, using 20v* = 24+25%+1 with w = u? — 502,
Bn + 24£+254j+1 — w2 — Bn + 27‘1 5T2 (2161 5k2)n — w2
for 0 < ry,r9 < n.

@ For primes ¢, v4(2"5") < max{ry, 72} < n.
o up(24F254H) = 40 + 2 > 6.
o 24425441 4+ 1 is not a square = 2F15F2 B £ 41.

Apply Bennett-Skinner with n. > 7, prime.
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Applying Bennett-Skinner with n > 7, prime,
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Applying Bennett-Skinner with n > 7, prime, we have

-1 .
E: Y2 =+ XY = X3 + ,LUT)(2 + 242—454J+1X,
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Applying Bennett-Skinner with n > 7, prime, we have

-1 )
E: Y2 + XY = X3 + wTX2 + 24@—454_7-‘,-1)(7

and E ~,, f for some newform f of level

1, if 1 =6and 7, =0,
2, if r1 #6 and ro =0,
5
1

, if 1 =6 and o, #0,
0, ifr17é6and 7“27'50.
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Applying Bennett-Skinner with n > 7, prime, we have

-1 )
E: Y2 + XY = X3 + wTX2 + 24@—454_7-‘,-1)(7

and E ~,, f for some newform f of level

17 ifm:Gand 7‘2:0,
2, if r1 #6 and ro =0,
5, if 1 =6 and o, #0,
10, if (&1 7é 6 and T2 7é 0.

However, there are no newforms of level 1,2, 5, or 10.
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Applying Bennett-Skinner with n > 7, prime, we have

-1 )
E: Y2 + XY = X3 + wTX2 + 24@—454_7-‘,-1)(7

and E ~,, f for some newform f of level

17 ifm:Gand 7’2:0,
2, if r1 #6 and ro =0,
5, if 1 =6 and o, #0,
10, if (&1 7é 6 and T2 7é 0.

However, there are no newforms of level 1,25, or 10. Hence 5|u.
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Modular Approach Continued

5lu = ged(u,u* — 10uv? + 50%) = 5
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Modular Approach Continued

5lu = ged(u,u* — 10u?v? 4+ 5v*) =5 and ged(u,v) =1 = 54 v.
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Modular Approach Continued

5lu = ged(u,u* — 10u?v? 4+ 5v*) =5 and ged(u,v) =1 = 54 v.
Then j =0 and p # 5.
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Modular Approach Continued

5lu = ged(u,u* — 10u?v? 4+ 5v*) =5 and ged(u,v) =1 = 54 v.
Then j=0and p#5. Thus 3C, D € Z — {0} coprime s.t.

wu=>5""1C" and u*—10u%v®+ 50* =5D"
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Modular Approach Continued

5lu = ged(u,u* — 10u?v? 4+ 5v*) =5 and ged(u,v) =1 = 54 v.
Then j=0and p#5. Thus 3C, D € Z — {0} coprime s.t.

wu=>5""1C" and u*—10u%v®+ 50* =5D"
v==2 and v*—10u%v? +5ut = £p™
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Modular Approach Continued

5lu = ged(u,u* — 10u?v? 4 5v*) =5 and ged(u,v) =1 = 54 wv.
Then j=0and p#5. Thus 3C,D € Z — {0} coprime s.t.

u=5""1C" and wu'—10u*? + 50t =5D"
v=+2¢ and  v* — 10u?v? + 5ut = £p™

Completing the square,
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Modular Approach Continued

5lu = ged(u,u* — 10u?v? 4 5v*) =5 and ged(u,v) =1 = 54 wv.
Then j=0and p#5. Thus 3C,D € Z — {0} coprime s.t.

u=5""1C" and wu'—10u*? + 50t =5D"
v=+2¢ and  v* — 10u?v? + 5ut = £p™

Completing the square, with 5w, = u? — 502,
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Modular Approach Continued

5lu = ged(u,u* — 10u?v? 4 5v*) =5 and ged(u,v) =1 = 54 wv.
Then j=0and p#5. Thus 3C,D € Z — {0} coprime s.t.

u=5""1C" and wu'—10u*? + 50t =5D"
v=+2¢ and  v* — 10u?v? + 5ut = £p™

Completing the square, with 5w, = u? — 502,

D" 4242 = 5w}
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Modular Approach Continued

5lu = ged(u,u* — 10u?v? 4 5v*) =5 and ged(u,v) =1 = 54 wv.
Then j=0and p#5. Thus 3C,D € Z — {0} coprime s.t.

w=5""1C" and u*—10u®v?®+ 50t =5D"

v=+2¢ and  v* — 10u?v? + 5ut = £p™

Completing the square, with 5w, = u? — 502,
D" 4 24F2 — 52 — D" 4 2"(2F)" = 5u?

with 0 < r < n.
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Modular Approach Continued

5lu = ged(u,u* — 10u?v? 4 5v*) =5 and ged(u,v) =1 = 54 wv.
Then j=0and p#5. Thus 3C,D € Z — {0} coprime s.t.

u=5""1C" and wu'—10u*? + 50t =5D"
v=+2¢ and  v* — 10u?v? + 5ut = £p™

Completing the square, with 5w, = u? — 502,
D" 4 24F2 — 52 — D" 4 2"(2F)" = 5u?

with 0 < r < n.

@ For all primes ¢, v4(2") <r < n.
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Modular Approach Continued

5lu = ged(u,u* — 10u?v? 4 5v*) =5 and ged(u,v) =1 = 54 wv.
Then j=0and p#5. Thus 3C,D € Z — {0} coprime s.t.

u=5""1C" and wu'—10u*? + 50t =5D"
v=+2¢ and  v* — 10u?v? + 5ut = £p™

Completing the square, with 5w, = u? — 502,
D" 4 24F2 — 52 — D" 4 2"(2F)" = 5u?

with 0 < r < n.

@ For all primes ¢, v4(2") <r < n.
e Since £ > 1, vo(2%*2) > 6.
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Modular Approach Continued

5lu = ged(u,u* — 10u?v? 4 5v*) =5 and ged(u,v) =1 = 54 wv.
Then j=0and p#5. Thus 3C,D € Z — {0} coprime s.t.

u=5""1C" and wu'—10u*? + 50t =5D"
v=+2¢ and  v* — 10u?v? + 5ut = £p™

Completing the square, with 5w, = u? — 502,
D" 4 24F2 — 52 — D" 4 2"(2F)" = 5u?

with 0 < r < n.

@ For all primes ¢, v4(2") <r < n.
e Since £ > 1, vo(2%*2) > 6.
@ 5D" =1 (mod 8) and so D # =+1.
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Modular Approach Continued

5lu = ged(u,u* — 10u?v? 4 5v*) =5 and ged(u,v) =1 = 54 wv.
Then j=0and p#5. Thus 3C,D € Z — {0} coprime s.t.
w=5""1C" and u'—10uv? + 50t = 5D
v=+2¢ and  v* — 10u?v? + 5ut = £p™

Completing the square, with 5w, = u? — 502,
D" 4242 =50 = D" +27(2%)" = 5w}

with 0 < r < n.

@ For all primes ¢, v4(2") <r < n.
e Since £ > 1, vo(2%*2) > 6.
@ 5D" =1 (mod 8) and so D # =+1.

Again, apply Bennett-Skinner for n > 7.
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Applying Bennett-Skinner with n > 7, prime,
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Applying Bennett-Skinner with n > 7, prime, we have

X2 4 o¥45x

Bwy — 1
F: Y2+XY:X3—|——w12
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Applying Bennett-Skinner with n > 7, prime, we have

X2 4 o¥45x

Bwy — 1
F: Y2+XY:X3—|——w12

with M’ = 2%52rad(D).

Eva Goedhart Bryn Mawr College On the Diophantine equation x2N + 22Lp2M = z5



Applying Bennett-Skinner with n > 7, prime, we have

5w1—1

F: Y24+ XY =X3+ X2 yot-45x

with M’ = 2°5%rad(D). F ~,, g for newform g of level

25, ifr =6,
M‘{ 50, ifr 6.
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Applying Bennett-Skinner with n > 7, prime, we have

X2 4 o¥45x

Bwy — 1
F: Y2+XY:X3+L12

with M’ = 2°5%rad(D). F ~,, g for newform g of level

25, ifr =6,
M‘{ 50, ifr 6.

Thus M = 50.
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Applying Bennett-Skinner with n > 7, prime, we have

5w1—1

F: Y24+ XY =X3+ X2 yot-45x

with M’ = 2°5%rad(D). F ~,, g for newform g of level

25, ifr =6,
M‘{ 50, ifr 6.

Thus M = 50. Newforms of level 50 are

G=q—-C+¢+q" —¢"+...

and
4

P=q+¢ - +q —¢"+....
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Applying Bennett-Skinner with n > 7, prime, we have

57.1)1—1

F: Y24+ XY =X3+ X2 yot-45x

with M’ = 2°5%rad(D). F ~,, g for newform g of level

25, ifr =6,
M_{ 50, if r #£6.

Thus M = 50. Newforms of level 50 are

G=q—-C+¢+q" —¢"+...
and
P=q+¢ - +q —¢"+....

correspond to elliptic curves, F and F5, defined over Q.
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Applying Bennett-Skinner with n > 7, prime, we have

57.1)1—1

F: Y24+ XY =X3+ X2 yot-45x

with M’ = 2°5%rad(D). F ~,, g for newform g of level

25, ifr =6,
M_{ 50, if r #£6.

Thus M = 50. Newforms of level 50 are

G=q—-C+¢+q" —¢"+...
and
P=q+¢ - +q —¢"+....

correspond to elliptic curves, F and F5, defined over Q.

9g=29i
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Applying Bennett-Skinner with n > 7, prime, we have

57.1)1—1

F: Y24+ XY =X3+ X2 yot-45x

with M’ = 2°5%rad(D). F ~,, g for newform g of level

25, ifr =6,
M_{ 50, if r #£6.

Thus M = 50. Newforms of level 50 are

G=q—-C+¢+q" —¢"+...
and
P=q+¢ - +q —¢"+....

correspond to elliptic curves, F and F5, defined over Q.

g = g; and corresponds to F; for i =1 or 2.
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Applying Bennett-Skinner with n > 7, prime, we have

57.1)1—1

F: Y24+ XY =X3+ X2 yot-45x

with M’ = 2°5%rad(D). F ~,, g for newform g of level

25, ifr =6,
M_{ 50, if r #£6.

Thus M = 50. Newforms of level 50 are

G=q—-C+¢+q" —¢"+...
and
P=q+¢ - +q —¢"+....

correspond to elliptic curves, F and F5, defined over Q.

g = g; and corresponds to F; for i =1 or 2.

Since 3150, c3(g) = az(F;).
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Applying Bennett-Skinner with n > 7, prime, we have

X2 4 o¥45x

Bwy — 1
F: Y2+XY:X3+L12

with M’ = 2°5%rad(D). F ~,, g for newform g of level

25, ifr =6,
M_{ 50, if r #£6.

Thus M = 50. Newforms of level 50 are

G=q—-C+¢+q" —¢"+...
and
P=q+¢ - +q —¢"+....

correspond to elliptic curves, F and F5, defined over Q.

g = g; and corresponds to F; for i =1 or 2.

Since 3 Jf 50, Cg(g) = CLg(Fi). Thus ag(Fi) = +1.
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From Bennett-Skinner, F' has nontrivial 2-torsion.
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From Bennett-Skinner, F' has nontrivial 2-torsion. Thus

F;(Q) contains a point of order 2 = 2 divides |F'(FF3)|.
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From Bennett-Skinner, F' has nontrivial 2-torsion. Thus
F;(Q) contains a point of order 2 = 2 divides |F(F3)|.

Hence a3(F) = (3 + 1) — |F(F3)| is even.
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From Bennett-Skinner, F' has nontrivial 2-torsion. Thus
F;(Q) contains a point of order 2 = 2 divides |F(F3)|.
Hence a3(F) = (3 +1) — |F(F3)| is even. Further,

—2V3 < a3(F) <2V3
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From Bennett-Skinner, F' has nontrivial 2-torsion. Thus
F;(Q) contains a point of order 2 = 2 divides |F(F3)|.
Hence a3(F) = (3 +1) — |F(F3)| is even. Further,

—2V3 < a3(F) <2vV3 = a3(F) € {-2,0,2}.
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From Bennett-Skinner, F' has nontrivial 2-torsion. Thus
F;(Q) contains a point of order 2 = 2 divides |F(F3)|.
Hence a3(F) = (3 +1) — |F(F3)| is even. Further,

—2V3 < a3(F) <2vV3 = a3(F) € {-2,0,2}.

Recall that F' ~,, g, thus F' ~,, F;.
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From Bennett-Skinner, F' has nontrivial 2-torsion. Thus
F;(Q) contains a point of order 2 = 2 divides |F(F3)|.
Hence a3(F) = (3 + 1) — |F(FF3)| is even. Further,

—2V3 < a3(F) <2vV3 = a3(F) € {-2,0,2}.

Recall that F' ~,, g, thus F' ~,, F;. By Lemma,

_ [ a3(F) (mod n), if3¢trad(D),
az(F;) = { ig4 (mod n), if 3| rad(D).
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From Bennett-Skinner, F' has nontrivial 2-torsion. Thus
F;(Q) contains a point of order 2 = 2 divides |F(F3)|.
Hence a3(F) = (3 + 1) — |F(FF3)| is even. Further,

—2V3 < a3(F) <2vV3 = a3(F) € {-2,0,2}.

Recall that F' ~,, g, thus F' ~,, F;. By Lemma,

_ [ a3(F) (mod n), if3¢trad(D),
az(F;) = { ig4 (mod n), if 3| rad(D).

3t rad(D)
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From Bennett-Skinner, F' has nontrivial 2-torsion. Thus
F;(Q) contains a point of order 2 = 2 divides |F(F3)|.
Hence a3(F) = (3 + 1) — |F(FF3)| is even. Further,

—2V3 < a3(F) <2V3 = a3(F) € {-2,0,2}.

Recall that F' ~,, g, thus F' ~,, F;. By Lemma,

_ [ a3(F) (mod n), if3¢trad(D),
az(F;) = { ig4 (mod n), if 3| rad(D).

3trad(D) = a3(F) = a3(F;) = £1 (mod n).
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From Bennett-Skinner, F' has nontrivial 2-torsion. Thus
F;(Q) contains a point of order 2 = 2 divides |F(F3)|.
Hence a3(F) = (3 + 1) — |F(FF3)| is even. Further,

—2V3 < a3(F) <2V3 = a3(F) € {-2,0,2}.

Recall that F' ~,, g, thus F' ~,, F;. By Lemma,

_ [ a3(F) (mod n), if3¢trad(D),
az(F;) = { ig4 (mod n), if 3| rad(D).

3trad(D) = a3(F) = a3(F;) = £1 (mod n). Thus n < 3.
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From Bennett-Skinner, F' has nontrivial 2-torsion. Thus
F;(Q) contains a point of order 2 = 2 divides |F(F3)|.
Hence a3(F) = (3 + 1) — |F(FF3)| is even. Further,

—2V3 < a3(F) <2V3 = a3(F) € {-2,0,2}.

Recall that F' ~,, g, thus F' ~,, F;. By Lemma,

_ [ a3(F) (mod n), if3¢trad(D),
az(F;) = { ig4 (mod n), if 3| rad(D).

3trad(D) = a3(F) = a3(F;) = £1 (mod n). Thus n < 3.
3|rad(D)
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From Bennett-Skinner, F' has nontrivial 2-torsion. Thus
F;(Q) contains a point of order 2 = 2 divides |F(F3)|.
Hence a3(F) = (3 + 1) — |F(FF3)| is even. Further,

—2V3 < a3(F) <2V3 = a3(F) € {-2,0,2}.

Recall that F' ~,, g, thus F' ~,, F;. By Lemma,

_ [ a3(F) (mod n), if3¢trad(D),
az(F;) = { ig4 (mod n), if 3| rad(D).

3trad(D) = a3(F) = a3(F;) = £1 (mod n). Thus n < 3.
3|rad(D) = +1 = a3(F;) = £4 (mod n).
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From Bennett-Skinner, F' has nontrivial 2-torsion. Thus
F;(Q) contains a point of order 2 = 2 divides |F(F3)|.
Hence a3(F) = (3 + 1) — |F(FF3)| is even. Further,

—2V3 < a3(F) <2V3 = a3(F) € {-2,0,2}.

Recall that F' ~,, g, thus F' ~,, F;. By Lemma,

_ [ a3(F) (mod n), if3¢trad(D),
az(F;) = { ig4 (mod n), if 3| rad(D).

3trad(D) = a3(F) = a3(F;) = £1 (mod n). Thus n < 3.
3|rad(D) = +1 = a3(F;) = £4 (mod n). Then n < 5.
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From Bennett-Skinner, F' has nontrivial 2-torsion. Thus
F;(Q) contains a point of order 2 = 2 divides |F(F3)|.
Hence a3(F) = (3 + 1) — |F(FF3)| is even. Further,

—2V3 < a3(F) <2V3 = a3(F) € {-2,0,2}.

Recall that F' ~,, g, thus F' ~,, F;. By Lemma,

_ [ a3(F) (mod n), if3¢trad(D),
az(F;) = { ig4 (mod n), if 3| rad(D).

3trad(D) = a3(F) = a3(F;) = £1 (mod n). Thus n < 3.
3|rad(D) = +1 = a3(F;) = £4 (mod n). Then n < 5.

Contradictions in both cases.
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From Bennett-Skinner, F' has nontrivial 2-torsion. Thus
F;(Q) contains a point of order 2 = 2 divides |F(F3)|.
Hence a3(F) = (3 + 1) — |F(FF3)| is even. Further,

—2V3 < a3(F) <2V3 = a3(F) € {-2,0,2}.

Recall that F' ~,, g, thus F' ~,, F;. By Lemma,

_ [ a3(F) (mod n), if3¢trad(D),
az(F;) = { ig4 (mod n), if 3| rad(D).

3trad(D) = a3(F) = a3(F;) = £1 (mod n). Thus n < 3.
3|rad(D) = +1 = a3(F;) = £4 (mod n). Then n < 5.

Contradictions in both cases. Hence n € {2,3,5}.
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The equation

XZN +22Lp2M _ Z5

has no solution for odd prime p, with X, Z, N, L, M € Z+, N > 1, and
ged(X, Z,2p) = 1.
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