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the presentation is limited with 15 minutes.
They will, however, be contained
in the official PDF document
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§ 0. Summary of Aims

Capitulation

Distribution of Second Class Groups

99 1-2 are skipped almost entirely, since

the presentation is limited with 15 minutes.
They will, however, be contained

in the official PDF document
http://www.algebra.at/Asilomar2013.pdf.
Class Towers

To disprove incorrect assertions of
Scholz/Taussky [8] and

Heider /Schmithals [5]

concerning some pretended two-stage towers which
actually turned out to be three-stage towers.

On the one hand,

to underpin the caveats of Brink/Gold [3],
who had doubts about Scholz/Taussky’s claim,
but on the other hand,

to show that the arguments given by Brink/Gold
are unable to invalidate the Scholz/Taussky claim.



§ 1. Kernels and Targets of
Artin Transfers

Definition 1.1.

p > 2 a prime number,

G a pro-p group of generator rank d(G) = 2,
Hy, ..., Hyy <G its maximal subgroups,

Ti=Tcn : G/G'— H;/H], ¢G' —
N ngz/ lngG\HZ,
E<gG> T {gl+t_|_..._|_tp1HZ( 1fg c HZ‘,

foranyt € G\ H;and 1 <i<p+1,
the Artin transfers from G to the H; [1].

[1] E. Artin, Idealklassen in Oberkérpern und all-
gemeines Reziprozitatsgesetz, Abh. Math. Sem.
Univ. Hamburg 7 (1929), 46-51.
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§ 1. Kernels and Targets of
Artin Transfers

Definition 1.1.
p > 2 a prime number,
G a pro-p group of generator rank d(G) = 2,

Hy, ..., Hyy <G its maximal subgroups,
Ti=Tcn : G/G'— H;/H], ¢G' —

N ngz/ lngG\HZ,
E<gG> o {gl+t+m+tle-/ if q c HZ‘,
foranyt € G\ H;and 1 <i<p+1,
the Artin transfers from G to the H; [1].

The family »(G) = (ker(T3) )1<i<p+1

is called the transfer kernel type (TKT) of G
(T2], [T4].

The family 7(G) = (H;/H})1<i<p+1

is called the transfer target type (TTT) of G
(T3], [T4].

[1] E. Artin, Idealklassen in Oberkérpern und all-
gemeines Reziprozitatsgesetz, Abh. Math. Sem.
Univ. Hamburg 7 (1929), 46-51.



§ 2. Capitulation of p-Classes

Definition 2.1.

K a number field of p-class rank r,(K) = 2,

Ly, ..., Ly

its unramified cyclic extension fields of degree p,
jz' — jLz’|K . Clp<K) — C1p<LZ)

the extension homomorphisms of p-classes.

The family »(K) = (ker(Ji))i1<i<p+1
is called the p-capitulation type of K [8], [T2].
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K a number field of p-class rank r,(K) = 2,
Ly,....Ly

its unramified cyclic extension fields of degree p,
Ji = jrji @ Cly(K) — Cl,(L;)

the extension homomorphisms of p-classes.

The family »(K) = (ker(ji) 1<i<p+1

is called the p-capitulation type of K [8], [T2].

The family 7(K) = (CLy(L;))1<i<p+1
is called the p-class group type of K [T4].
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§ 2. Capitulation of p-Classes

Definition 2.1.

K a number field of p-class rank r,(K) = 2,
Ly,....Ly

its unramified cyclic extension fields of degree p,

Ji = Jrji @ Cly(K) — Cl,(L;)

the extension homomorphisms of p-classes.

The family »(K) = (ker(ji) 1<i<p+1

is called the p-capitulation type of K [8], [T2].
The family 7(K) = (CLy(L;))1<i<p+1

is called the p-class group type of K [T4].
Theorem 2.1. (Artin, 1929 [1])

The p-capitulation type 2(K), resp. p-class group
type 7(K), of K coincides with the TKT (G),

resp. TTT 7(G), of the nth p-class group G =
G (K), for any 2 <n < oco.

JL|K
ClL(K) — Cly(L;)
Artin 1 l Artin
isomorphism G/G' — H;/H! isomorphism

TG,H@
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§ 3. Exact Length of 3-Class Towers

Theorem 3.1. (Scholz & Taussky, 1934 [8])
The Galois group G = Gal(F5(K)|K) of the second
Hilbert 3-class field over the complex quadratic field

K = Q(+/—9748) has transfer kernel type E
»(G) =(2,3,3,4) ~ (2,4,3,4)
and the 3-class numbers of the non-Galois absolute

cubic subfields K7, ..., K4 of the unramified cyclic
cubic extension fields L1, ..., Ly of K are given by

<h3(K))1<z<4 (9 3,3 3)

[8] A. Scholz und O. Taussky, Die Hauptideale der
kubischen Klassenkorper imaginar quadratischer Zahlkorper:
ihre rechnerische Bestimmung und ihr Einflufl auf
den Klassenkorperturm, J. Reine Angew. Math.

171 (1934), 19-41.
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§ 3. Exact Length of 3-Class Towers

Theorem 3.1. (Scholz & Taussky, 1934 [8])
The Galois group G = Gal(F5(K)|K) of the second
Hilbert 3-class field over the complex quadratic field

K = Q(+/—9748) has transfer kernel type E
»(G) =(2,3,3,4) ~ (2,4,3,4)
and the 3-class numbers of the non-Galois absolute

cubic subfields K7, ..., K4 of the unramified cyclic
cubic extension fields L1, ..., Ly of K are given by

<h3(K))1<z<4 (9 3,3 3)

Corollary 3.1. (Mayer, 2009 [T3])

The Galois group G' = Gal(F35(K)|K) of the second
Hilbert 3-class field over the complex quadratic field

K = Q(v/—9748) has transfer target type
(@) = [(9,27), (3,9)°)

18] A. Scholz und O. Taussky, Die Hauptideale der
kubischen Klassenkorper imaginar quadratischer Zahlkorper:
ihre rechnerische Bestimmung und ihr Einflufl auf

den Klassenkorperturm, J. Reine Angew. Math.
171 (1934), 19-41.
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Definition 3.1. For a finite metabelian p-group
G = (x,y) with generator rank d(G) = 2 and main
commutator so = |y, x|, the ideal

AG) = {f(X,Y) € Z[X,Y] | 5" =1
is called the annihilator of G.
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Definition 3.1. For a finite metabelian p-group
G = (x,y) with generator rank d(G) = 2 and main
commutator so = |y, x|, the ideal

AG) = {f(X.Y) e ZIX,Y] | 55" = 1)
is called the annihilator of G.
Theorem 3.2. (Scholz & Taussky, 1934 [8])
The annihilator A(G) of the Galois group G =

Gal(F3(K)|K) of the second Hilbert 3-class field

over any quadratic field K = Q(v/D) with transfer
kernel type E

»(G) =1(2,3,3,4) ~ (2,4,3,4)
is one of the ideals
X, = (X% XY, Y? X?4+3X +3)
with even a > 4.
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A Deep Mystery since 80 Years

Claim 3.1. (Scholz & Taussky, 1934 [8])
The 3-class field tower over the complex quadratic
field K = Q(v/—9748) terminates at the second
stage,

Fi(K) = FA(K),
resp. has length /3(K) = 2.
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A Deep Mystery since 80 Years

Claim 3.1. (Scholz & Taussky, 1934 [8])
The 3-class field tower over the complex quadratic
field K = Q(v/—9748) terminates at the second
stage,

F3(K) = F3(K),
resp. has length /3(K) = 2.

Claim 3.2. (Heider & Schmithals, 1981 [5])

The 3-class field tower over any complex quadratic

field K = Q(v/D) with 3-capitulation type E
»(K)=(2,3,3,4) ~ (2,4,3,4)

has length /3(K) = 2.

5] F-P. Heider und B. Schmithals, Zur Kapitu-
lation der Idealklassen in unverzweigten primzykli-

schen Erweiterungen, J. Reine Angew. Math. 336
(1982), 1-25.
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A Deep Mystery since 80 Years

Claim 3.1. (Scholz & Taussky, 1934 [8])
The 3-class field tower over the complex quadratic
field K = Q(v/—9748) terminates at the second
stage,

Fi(K) = FA(K),
resp. has length (3(K) = 2.

Claim 3.2. (Heider & Schmithals, 1981 [5])

The 3-class field tower over any complex quadratic

field K = Q(v/D) with 3-capitulation type E
»(K)=(2,3,3,4) ~ (2,4,3,4)

has length /3(K) = 2.

Claim 3.2 on p. 20 of Heider and Schmithals [5] has been used in the table on p. 84 of our paper
[7], where the rows Nr. 6, 8, 9, and 14 are marked by the symbol x to indicate a two-stage tower.

5] F.-P. Heider und B. Schmithals, Zur Kapitu-
lation der Idealklassen in unverzweigten primzykli-
schen Erweiterungen, J. Reine Angew. Math. 336

(1982), 1-25.
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A Caveat by Brink and Gold

Theorem 3.3. (Brink and Gold, 1987 [2,3])

The 3-groups with parametrized presentation
MQ(ﬁ) — <$, Y, S92, 53, t37 u |

[y7 33] — 52, [327 QU] — 83, [827 y] — t37

(83, ] = 82_35537527 [s3,y] = u?, [s3, 5] = u,

[t3, @] = [t3,y] = [t3, 82 = [t3,85] = 1, 13 =,

3=t P =s,%s5", s;’ﬁ = Sgﬂ =ul=1)

have cyclic second derived subgroup Ms(3)” of order

3, for all parameter values § > 2. Hence, they are

non-metabelian with derived length

dI(M>(B)) = 3.
The annihilator ideal 21(G) of the metabelianization
G = Ma(B)/My(B)" s given by
X, = (X XY, Y% X?+3X +3)
with even a = 23 > 4.
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A Caveat by Brink and Gold

Theorem 3.3. (Brink and Gold, 1987 [2,3])

The 3-groups with parametrized presentation
MQ(ﬁ) — <$, Y, S92, 53, t37 u |

[y7 33] — 52, [327 QU] — 83, [827 y] — t37

(83, ] = 82_35537527 [s3,y] = u?, [s3, 5] = u,

[t3, @] = [t3,y] = [t3, 82 = [t3,85] = 1, 13 =,

3=t P =s,%s5", s;’ﬁ = Sgﬂ =ul=1)

have cyclic second derived subgroup Ms(3)” of order

3, for all parameter values § > 2. Hence, they are

non-metabelian with derived length

dI(M>(B)) = 3.
The annihilator ideal 21(G) of the metabelianization
G = Ma(B)/My(B)" s given by
X, = (X XY, Y% X?+3X +3)
with even a = 23 > 4.

Claim 3.3. (Brink and Gold, 1987 [2,3])

The groups My(8) with 3 > 2 are possible can-
didates for Galois groups Gal(M|K) of unramified
cyclic cubic extensions M |F3(K) within the third
Hilbert 3-class field F5(K) over complex quadratic
fields K = Q(v/D), D < 0, with 3-capitulation
type E

2(K) = (2,3,3,4) ~ (2,4,3, 4).
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Crucial Ingredients for the Disproof

Definition 3.2. p > 3 an odd prime.

A pro-p group G is called a o-group,

if it admits an automorphism o € Aut(G) acting
as inversion o — x~! on the abelianization G /G".



Crucial Ingredients for the Disproof

Definition 3.2. p > 3 an odd prime.
A pro-p group G is called a o-group,
if it admits an automorphism o € Aut(G) acting

as inversion o — x~! on the abelianization G /G".

Theorem 3.4. (Artin, 1928 [4])

For any quadratic field K = Q(v/'D),

the p-tower group G°(K') and the higher
p-class groups GZ(K ), for n > 2, are g-groups.

21
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Crucial Ingredients for the Disproof

Definition 3.2. p > 3 an odd prime.

A pro-p group G is called a o-group,

if it admits an automorphism o € Aut(G) acting
as inversion o — x~! on the abelianization G /G".

Theorem 3.4. (Artin, 1928 [4])

For any quadratic field K = Q(v/'D),
the p-tower group G°(K') and the higher
p-class groups GZ(K ), for n > 2, are g-groups.

p > 3 an odd prime,

G a pro-p group,

d(G) = dimg,(H'(G,F,)) the generator rank of G,
r(G) = dimg, (H*(G, F,)) the relation rank of G.

Definition 3.3. A pro-p group G which satisfies
the equation r(G) = d(G) is said to have a
balanced presentation, or to be a Schur group.
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Crucial Ingredients for the Disproof

Definition 3.2. p > 3 an odd prime.

A pro-p group G is called a o-group,

if it admits an automorphism o € Aut(G) acting
as inversion o — x~! on the abelianization G /G".

Theorem 3.4. (Artin, 1928 [4])

For any quadratic field K = Q(v/'D),

the p-tower group G°(K') and the higher

p-class groups GZ(K ), for n > 2, are g-groups.

p > 3 an odd prime,

G a pro-p group,

d(G) = dimg,(H'(G,F,)) the generator rank of G,
r(G) = dimg, (H*(G, F,)) the relation rank of G.
Definition 3.3. A pro-p group G which satisfies

the equation r(G) = d(G) is said to have a
balanced presentation, or to be a Schur group.

Theorem 3.5. (Shafarevich, 1963 [10])
The p-tower group G°(K) of a complex quadratic

field K = Q(v/D), D < 0, is a Schur group.
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Theorem 3.6. (Mayer, Boston & Bush, 2012)
There are exactly two non-isomorphic metabelian
3-groups GG1 and G with transfer kernel type E

»(G;) =(2,3,3,4) ~ (2,4, 3,4)
and transfer target type
T<Gz> — [(97 27)7 <37 9>3]'
(1 and Gy do not have a balanced presentation.
Further, there are exactly two non-isomorphic non-
metabelian 3-groups H; and Hy such that G; ~

H;/H!. Hy, and H, are Schur o-groups of derived
length dI(H;) = 3.
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Theorem 3.6. (Mayer, Boston & Bush, 2012)
There are exactly two non-isomorphic metabelian
3-groups GG1 and G with transfer kernel type E

»(G;) =(2,3,3,4) ~ (2,4, 3,4)
and transfer target type
T<Gz> — [(97 27)7 <37 9>3]'
(1 and Gy do not have a balanced presentation.
Further, there are exactly two non-isomorphic non-
metabelian 3-groups H; and Hy such that G; ~
H;/H!. Hy, and H, are Schur o-groups of derived
length dI(H;) = 3.
Remark 3.1. The identifiers of these 3-groups are
G1 ~ (2187, 302),
G ~ (2187, 306)
in the SmallGroups library, resp.
Hy ~ (729,54) — #2: 2,
Hy ~ (729,54) — #2: 6
in the ANUPQ) package of GAP and MAGMA.
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Theorem 3.6. (Mayer, Boston & Bush, 2012)
There are exactly two non-isomorphic metabelian
3-groups GG1 and G with transfer kernel type E

»(G;) =(2,3,3,4) ~ (2,4, 3,4)
and transfer target type
T<Gz> — [(97 27)7 <37 9>3]'
(1 and Gy do not have a balanced presentation.
Further, there are exactly two non-isomorphic non-
metabelian 3-groups H; and Hy such that G; ~
H;/H!. Hy, and H, are Schur o-groups of derived
length dI(H;) = 3.
Remark 3.1. The identifiers of these 3-groups are
G1 ~ (2187, 302),
G ~ (2187, 306)
in the SmallGroups library, resp.
Hy ~ (729,54) — #2: 2,
Hy ~ (729,54) — #2: 6
in the ANUPQ) package of GAP and MAGMA.
Corollary 3.6. (Mayer, Boston & Bush, 2012)

The 3-class field tower over the complex quadratic
field Q(v/—9748) terminates at the third stage,

Fy(K) = F3(K) > F3(K),
resp. has exact length /3(K) = 3.
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Brink and Gold — Tidy !!!

Theorem 3.7. (Mayer and Newman, 2013)
Brink and Gold’s 3-groups G = Ms(3) with param-
eter values 3 > 2 are of order 327*4, class 203 + 1,
and fixed coclass 3.

None of these groups has a balanced presentation
and further they are all of transfer kernel type ¢

#(G) = (2,0,3,4).
Their metabelianizations My(3)/Ms(8)" are the main-
line groups of order 32°*3 on the tree 7,°((243, 8)).
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Brink and Gold — Tidy !!!

Theorem 3.7. (Mayer and Newman, 2013)
Brink and Gold’s 3-groups G = M>(3) with param-
eter values 3 > 2 are of order 327*4, class 203 + 1,
and fixed coclass 3.

None of these groups has a balanced presentation
and further they are all of transfer kernel type ¢

#(G) = (2,0,3,4).
Their metabelianizations My(3)/Ms(8)" are the main-
line groups of order 3273 on the tree 7,*((243, 8)).

Corollary 3.7. (Mayer and Newman, 2013)

None of Brink and Gold’s 3-groups Ms(3), 8 > 2,
can be the Galois group Gal(M | K) of an unramified
cyclic cubic extension M|F3(K) within the third
Hilbert 3-class field F3(K) over any complex qua-
dratic field K = Q(v/D), D < 0, with 3-capitulation
type E

w(K) = (2,3,3,4) ~ (2,4,3,4).
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FIGURE 1. TKT-pruned descendant tree 7*((243, 8)) restricted to o-groups with
balanced covers in ovals, Brink/Gold’s groups in rectangles, projections to the
metabelianizations, and formal identifiers

Order r(2)
24335 7

Mé2) (not coclass-settled)
729+ 36

15 bifurcation

2187137

M

6561 138

1]

Még) (not coclass-settled)

19683137

2nd hifurcation

59049 + 310

4
My

177147 1 311

Ml(;l) (not coclass-settled)

531441 + 312

3td hifurcation

1594323 1 313

4782969 1 314

TKT: 1 9 3 ) 1 9] 3 ) 1 9 73 o Al b M3 ) ‘
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FIGURE 2. Normal lattice, including upper and lower central series, of a three-
stage non-metabelian Schur o-group G, e.g. G = S{S), with TKT E, class 5.

order
6561 +  S—
9187 | first
stage
729 T —
243 +
81+
second
stage
27+
9 4+
3+ —
third
stage
A N
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FI1GURE 3. Normal lattice, including upper and lower central series, of a three-
stage non-metabelian Schur o-group G, e.g. G = S{4), with TKT E, class 7.

order
A
177147 + 1G) =GC ———
59049 | st
19683 + —F
6561 T
2187+
729 +
second
stage
243 1
81+
271
9t —
third
31 stage
1 1 — Yy
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§ 4. Proof of Theorem 3.6

§ 4.1. Starting Generation of 3-Groups

We start our search for 3-groups with TKT in sec-
tion E at the abelian root C3 x C5 ~ (9,2) of the
unique coclass tree 77 in coclass graph G(3, 1). How-
ever, we leave this graph very quickly, since all 3-
oroups of maximal class have TK'T's in sections a,A.
The immediate descendant G§(0,0) ~ (27, 3) gives
rise to a bifurcation from G(3,1) to G(3,2), but
the following mainline vertex Gg(0,0) ~ (81,9) is
coclass-settled and no further bifurcations can oc-
cur.
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FIGURE 4. Starting 3-group generation at the top of coclass graph G(3,1)

Order 3™
i b ) ,
9+3 1y O O3 x Cs TKT: a.l
(0000)
1 a3
bifurcation from G(3,1) to G(3,2)
81 1 34 Pq
29
243 1 35 (29)
101
729 1 36 (101)
2187+ 37
main
6561 - 38 " line
T,(C3 x C3)
Gy(=1,0)  Gy(1,0)  Gg(o,1)  G{(0,0)  GY(0,-1)  GY(0,0)  GY(0,1)
TKT: a.3 a.3 a.2 a.l a.l a.l a.l

(2000) (2000) (1000) (0000) (0000) (0000) (0000)

We start our search for 3-groups with TKT in section E at the abelian root C3 x C3 ~ (9, 2) of the
unique coclass tree 77 in coclass graph G(3,1). However, we leave this graph very quickly, since
all 3-groups of maximal class have TKTs in sections a,A.

The immediate descendant G3(0,0) =~ (27,3) gives rise to a bifurcation from G(3,1) to G(3,2),
but the following mainline vertex Gg(0,0) ~ (81,9) is coclass-settled and no further bifurcations
can occur.
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§ 4.2. TKT-Pruning G(3,2)

The top vertices (243,5) and (243, 7) are terminal
metabelian Schur o-groups without descendants. De-
scendants of (243,9), resp. (243,4), share a fixed
TKT G.19, resp H4. And the TKT of all de-
scendants of (243, 3) must contain a transposition,
which is not the case for TKTs in sections ¢ and E.
Therefore, only descendants of (243, 6) and (243, 8)
can have TK'Ts in sections ¢ and E.



Order 3™

97132

27 1 33

81 1

243

729

2187 -

k34

k35

;37

FIGURE 5. TKT-pruning the top of coclass graph G(3,2)

CgXCg

‘l G%(OD 0)

s\ (5) \ (7)

Edges of depth 2 forming the interface
between G(3,1) and G(3,2)

TKT: D.10 D.5
(2241) (4224)
(57)4 (45) 4 .<4O> 6
i3 Dy D40, Pay
mn M 4*L’14* [ ]
TKT: G.19 H.A4
(2143) (4443)

Y

75((729,40))

35

¢(49)

2 mainlines

[[T—_0®

o(54)

Y

75((243,6)) 72((243,8))

TKT: b.10
(0043)

c.18
(0313)

c.21
(0231)

The top vertices (243, 5) and (243, 7) are terminal metabelian Schur o-groups without descendants.
Descendants of (243,9), resp. (243,4), share a fixed TKT G.19, resp H.4. And the TKT of all
descendants of (243, 3) must contain a transposition, which is not the case for TKTs in sections ¢
and E. Therefore, only descendants of (243, 6) and (243, 8) can have TKTs in sections ¢ and E.
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§ 4.3. TKT-Pruning 75((243, 8))

Definition 4.1.

The TKT-pruned descendant tree T*({243,8))

consists of all descendants G of the root (243, 8)

such that

(1) 22(G) is one of the TKTs ¢.21 or E.8 or E.9
(that is, we cancel all the trash with TKT G.16),

(2) if 22(G) is of TKT ¢.21 then G has descendants,
(i.e., we omit terminal vertices with TKT ¢.21),

(3) G is a o-group.

(See Figures 7,8.)

Remark 4.1.

The motivation for defining 7*((243, 8)) is that Brink
and Gold indicated a possible length ¢3(K) > 3 for
the field K = Q(+/—9748) with TKT E.9 for which
Scholz and Taussky had claimed /3(K) = 2.

(See [2], [3], and page 41 in [8].)



Order 3™

243

729

2187~

6561 -

19683

59 049 1

177147 -

k35

k36

k37

k38

k39

L 310

L 311

FIGURE 6. TKT-pruning the coclass tree 73((243, 8))

main
2 ' line \.*2 *3 *3 *2
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§ 4.4. Construction of 7%((243,8))

Here we also prune the tree from vertices with TKT
c.21 at depth 1 with respect to the mainlines, which
are terminal and do not give rise to further descen-
dants. The TKTs are briefly denoted by

sy = (2334) ~ 2o = (2434) E.9,

ny = (2234) E.8,

»y = (2034) ¢.21.

The bifurcation at (729,54) has not been investi-
cated further in previous papers, since Ascione re-
stricted her trees to coclass 2 and Nebelung devoted
her attention to metabelian 3-groups.
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FIGURE 7. TKT-pruned descendant tree 7*((243, 8)) restricted to o-groups with
balanced covers in ovals, Brink/Gold’s groups in rectangles, and identifiers of
SmallGroups and ANUPQ

Order (8)
243135
(54) (not coclass-settled)
729 136
15¢ bifurcation
2187137
2;3
6561 138
1;1 (not coclass-settled)

19683137

2°d bifurcation

59049 + 310
2;1
177147 1 311 ¥
1;1 (not coclass-settled)
531441+ 312 176 s n
L4 v 34 bifurcation
1594323 + 313 ' !
Ty ((729,54) — #23) L6 4.4 12
2;1
4782969 + 314 i
T ((729,54) — #2;3 — #1;1 — #2;1)
0

T55((729,54) — ##2;3 — #1; 1 — ##2; 1 — #1;1 — #2; 1)

’ TKT: 1 9 3 ) 1 9] 3 ) 1 9 73 o Al b M3 ) ‘

Here we also prune the tree from vertices with TKT ¢.21 at depth 1 with respect to the mainlines,
which are terminal and do not give rise to further descendants. The TKTs are briefly denoted by
1 = (2334) ~ 30 = (2434) E.9,

w3 = (2234) E.8,

o = (2034) c.21.
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§ 4.5. Biperiodic Structure of 7%((243,8))

We consider the intersections of 77((243,8)) with
coclass graphs G(3,7). We put

7,7((243,8)) = T7((243,8)) N G(3,2)
and, for all » > 3,

Gr((243,8)) = T7((243,8)) N G(3,71).

Theorem 4.1. (First periodicity).
(See Figures 6 and 7.8.)

(1) 757((243,8)) is a subtree of 7*((243,8)).
(2) All vertices are metabelian and unbalanced.
(3) Vertices of TKT ¢.21 form an infinite mainline

with unique group M7§2) of each order 3", n > 5.
(4) Every branch is of depth 1 and contains

two groups % fo; of TKT E.9

n,1’
and a single group fo)g of TKT E.S,
cach of order 3" with odd n > 7.
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Theorem 4.2. (Second periodicity).
(See Figures 7,8.)
For 3 <r <5,
(1) the graph G*((243,8)) consists of
3 isolated vertices S,gr), 1< k<3,
and a subtree T5(M 3(7~) ,) of 77((243,8)),

(2) 7 (M. 3T 1) is isomorphic to 757((243,8)) as a
graph, and additionally, the two trees share the
same distribution of TKTSs,

(3) all vertices G of G*((243,8)) are
non-metabelian of derived length dl(G) = 3
with
cyclic second derived subgroup G” of order 372
contained in the centre (;(G) of type (3,3 1),

(4) the tree root M?EZ:)—1 and the isolated vertices
S g) are of order 3% 1,

(5) only the isolated Vertices S, ") are Schur T-groups,
two of them S1 ,S ") have TKT E.9,
and the remaining one 53 has TKT E.8,

(6) each S ,ir) is the unique element in the balanced

cover cov*(Ggi)Jrl’ ) of the branch group Ggi)ﬂ, ,

of order 3”1 on the tree 7,7((243,8)).

Conjecture 4.2.
Theorem 4.2 is also correct for any » > 6.
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FIGURE 8. TKT-pruned descendant tree 7*((243, 8)) restricted to o-groups with
balanced covers in ovals, Brink/Gold’s groups in rectangles, projections to the
metabelianizations, and formal identifiers

Order r(2)
24335 7

Mé2) (not coclass-settled)
729+ 36

15 bifurcation

2187137

M

6561 138

1]

Még) (not coclass-settled)

19683137

2nd hifurcation

59049 + 310

4
My

177147 1 311

Ml(;l) (not coclass-settled)

531441 + 312

3td hifurcation

1594323 1 313

4782969 1 314

TKT: 1 9 3 ) 1 9] 3 ) 1 9 73 o Al b M3 ) ‘
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The techniques for reaching the targets of this pre-
sentation are based on the results of

Our Tetralogy.
'T1] D. C. Mayer,
The second p-class group of a number field,
Int. J. Number Theory 8 (2012),
no. 2, 471-505.
'T2] D. C. Mayer,
Transfers of metabelian p-groups,
Monatsh. Math. 166 (2012),
no. 34, 467-495.
T3] D. C. Mayer,
Principalization algorithm
via class group structure,
J. Théor. Nombres Bordeaux (submitted 2011).
(T4] D. C. Mayer,
The distribution of second p-class groups
on coclass graphs,
J. Théor. Nombres Bordeauxr 25 (2013),
no. 2, 401-456.
(27th Journées Arithmétiques,
Faculty of Mathematics and Informatics,
Vilnius University, Vilnius, Lithuania, 2011).
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