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§ 0. Summary of Aims

Section 1. Capitulation
Section 2. Distribution of Second Class Groups

§§ 1–2 are skipped almost entirely, since
the presentation is limited with 15 minutes.
They will, however, be contained
in the official PDF document
http://www.algebra.at/Asilomar2013.pdf.
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§ 0. Summary of Aims

Section 1. Capitulation
Section 2. Distribution of Second Class Groups

§§ 1–2 are skipped almost entirely, since
the presentation is limited with 15 minutes.
They will, however, be contained
in the official PDF document
http://www.algebra.at/Asilomar2013.pdf.

Section 3. Class Towers
3.1. To disprove incorrect assertions of

Scholz/Taussky [8] and
Heider/Schmithals [5]
concerning some pretended two-stage towers which
actually turned out to be three-stage towers.

3.2. On the one hand,
to underpin the caveats of Brink/Gold [3],
who had doubts about Scholz/Taussky’s claim,
but on the other hand,
to show that the arguments given by Brink/Gold
are unable to invalidate the Scholz/Taussky claim.
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§ 1. Kernels and Targets of
Artin Transfers

Definition 1.1.
p ≥ 2 a prime number,
G a pro-p group of generator rank d(G) = 2,
H1, . . . , Hp+1 / G its maximal subgroups,
Ti = TG,Hi : G/G′ → Hi/H

′
i, gG

′ 7→

Ti(gG
′) =

{
gpH ′i if g ∈ G \Hi,

g1+t+···+tp−1
H ′i if g ∈ Hi,

for any t ∈ G \Hi and 1 ≤ i ≤ p + 1,
the Artin transfers from G to the Hi [1].

[1] E. Artin, Idealklassen in Oberkörpern und all-
gemeines Reziprozitätsgesetz, Abh. Math. Sem.
Univ. Hamburg 7 (1929), 46–51.
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g1+t+···+tp−1
H ′i if g ∈ Hi,

for any t ∈ G \Hi and 1 ≤ i ≤ p + 1,
the Artin transfers from G to the Hi [1].

The family κ(G) = (ker(Ti))1≤i≤p+1

is called the transfer kernel type (TKT) of G
[T2], [T4].

[1] E. Artin, Idealklassen in Oberkörpern und all-
gemeines Reziprozitätsgesetz, Abh. Math. Sem.
Univ. Hamburg 7 (1929), 46–51.
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§ 1. Kernels and Targets of
Artin Transfers

Definition 1.1.
p ≥ 2 a prime number,
G a pro-p group of generator rank d(G) = 2,
H1, . . . , Hp+1 / G its maximal subgroups,
Ti = TG,Hi : G/G′ → Hi/H

′
i, gG

′ 7→

Ti(gG
′) =

{
gpH ′i if g ∈ G \Hi,

g1+t+···+tp−1
H ′i if g ∈ Hi,

for any t ∈ G \Hi and 1 ≤ i ≤ p + 1,
the Artin transfers from G to the Hi [1].

The family κ(G) = (ker(Ti))1≤i≤p+1

is called the transfer kernel type (TKT) of G
[T2], [T4].

The family τ (G) = (Hi/H
′
i)1≤i≤p+1

is called the transfer target type (TTT) of G
[T3], [T4].

[1] E. Artin, Idealklassen in Oberkörpern und all-
gemeines Reziprozitätsgesetz, Abh. Math. Sem.
Univ. Hamburg 7 (1929), 46–51.
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§ 2. Capitulation of p-Classes

Definition 2.1.
K a number field of p-class rank rp(K) = 2,
L1, . . . , Lp+1

its unramified cyclic extension fields of degree p,
ji = jLi|K : Clp(K)→ Clp(Li)
the extension homomorphisms of p-classes.

The family κ(K) = (ker(ji))1≤i≤p+1

is called the p-capitulation type of K [8], [T2].
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§ 2. Capitulation of p-Classes

Definition 2.1.
K a number field of p-class rank rp(K) = 2,
L1, . . . , Lp+1

its unramified cyclic extension fields of degree p,
ji = jLi|K : Clp(K)→ Clp(Li)
the extension homomorphisms of p-classes.

The family κ(K) = (ker(ji))1≤i≤p+1

is called the p-capitulation type of K [8], [T2].

The family τ (K) = (Clp(Li))1≤i≤p+1

is called the p-class group type of K [T4].

Theorem 2.1. (Artin, 1929 [1])
The p-capitulation type κ(K), resp. p-class group
type τ (K), of K coincides with the TKT κ(G),
resp. TTT τ (G), of the nth p-class group G =
Gn
p(K), for any 2 ≤ n ≤ ∞.

jLi|K

Clp(K) −→ Clp(Li)

Artin ↓ ↓ Artin

isomorphism G/G′ −→ Hi/H
′
i isomorphism

TG,Hi
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§ 3. Exact Length of 3-Class Towers

Theorem 3.1. (Scholz & Taussky, 1934 [8])
The Galois group G = Gal(F2

3(K)|K) of the second
Hilbert 3-class field over the complex quadratic field
K = Q(

√
−9748) has transfer kernel type E

κ(G) = (2, 3, 3, 4) ∼ (2, 4, 3, 4)

and the 3-class numbers of the non-Galois absolute
cubic subfields K1, . . . , K4 of the unramified cyclic
cubic extension fields L1, . . . , L4 of K are given by

(h3(Ki))1≤i≤4 = (9, 3, 3, 3) .

[8] A. Scholz und O. Taussky, Die Hauptideale der
kubischen Klassenkörper imaginär quadratischer Zahlkörper:
ihre rechnerische Bestimmung und ihr Einfluß auf
den Klassenkörperturm, J. Reine Angew. Math.
171 (1934), 19–41.
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§ 3. Exact Length of 3-Class Towers

Theorem 3.1. (Scholz & Taussky, 1934 [8])
The Galois group G = Gal(F2

3(K)|K) of the second
Hilbert 3-class field over the complex quadratic field
K = Q(

√
−9748) has transfer kernel type E

κ(G) = (2, 3, 3, 4) ∼ (2, 4, 3, 4)

and the 3-class numbers of the non-Galois absolute
cubic subfields K1, . . . , K4 of the unramified cyclic
cubic extension fields L1, . . . , L4 of K are given by

(h3(Ki))1≤i≤4 = (9, 3, 3, 3) .

Corollary 3.1. (Mayer, 2009 [T3])
The Galois group G = Gal(F2

3(K)|K) of the second
Hilbert 3-class field over the complex quadratic field
K = Q(

√
−9748) has transfer target type

τ (G) = [(9, 27), (3, 9)3].

[8] A. Scholz und O. Taussky, Die Hauptideale der
kubischen Klassenkörper imaginär quadratischer Zahlkörper:
ihre rechnerische Bestimmung und ihr Einfluß auf
den Klassenkörperturm, J. Reine Angew. Math.
171 (1934), 19–41.



13

Definition 3.1. For a finite metabelian p-group
G = 〈x, y〉 with generator rank d(G) = 2 and main
commutator s2 = [y, x], the ideal

A(G) = {f (X, Y ) ∈ Z[X, Y ] | sf(x−1,y−1)
2 = 1}

is called the annihilator of G.
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Definition 3.1. For a finite metabelian p-group
G = 〈x, y〉 with generator rank d(G) = 2 and main
commutator s2 = [y, x], the ideal

A(G) = {f (X, Y ) ∈ Z[X, Y ] | sf(x−1,y−1)
2 = 1}

is called the annihilator of G.

Theorem 3.2. (Scholz & Taussky, 1934 [8])
The annihilator A(G) of the Galois group G =
Gal(F2

3(K)|K) of the second Hilbert 3-class field
over any quadratic field K = Q(

√
D) with transfer

kernel type E

κ(G) = (2, 3, 3, 4) ∼ (2, 4, 3, 4)

is one of the ideals

Xα = 〈Xα, XY, Y 2, X2 + 3X + 3〉
with even α ≥ 4.
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A Deep Mystery since 80 Years

Claim 3.1. (Scholz & Taussky, 1934 [8])
The 3-class field tower over the complex quadratic
field K = Q(

√
−9748) terminates at the second

stage,
F3

3(K) = F2
3(K),

resp. has length `3(K) = 2.
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A Deep Mystery since 80 Years

Claim 3.1. (Scholz & Taussky, 1934 [8])
The 3-class field tower over the complex quadratic
field K = Q(

√
−9748) terminates at the second

stage,
F3

3(K) = F2
3(K),

resp. has length `3(K) = 2.

Claim 3.2. (Heider & Schmithals, 1981 [5])
The 3-class field tower over any complex quadratic
field K = Q(

√
D) with 3-capitulation type E

κ(K) = (2, 3, 3, 4) ∼ (2, 4, 3, 4)

has length `3(K) = 2.

[5] F.-P. Heider und B. Schmithals, Zur Kapitu-
lation der Idealklassen in unverzweigten primzykli-
schen Erweiterungen, J. Reine Angew. Math. 336
(1982), 1–25.
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A Deep Mystery since 80 Years

Claim 3.1. (Scholz & Taussky, 1934 [8])
The 3-class field tower over the complex quadratic
field K = Q(

√
−9748) terminates at the second

stage,
F3

3(K) = F2
3(K),

resp. has length `3(K) = 2.

Claim 3.2. (Heider & Schmithals, 1981 [5])
The 3-class field tower over any complex quadratic
field K = Q(

√
D) with 3-capitulation type E

κ(K) = (2, 3, 3, 4) ∼ (2, 4, 3, 4)

has length `3(K) = 2.
Claim 3.2 on p. 20 of Heider and Schmithals [5] has been used in the table on p. 84 of our paper
[7], where the rows Nr. 6, 8, 9, and 14 are marked by the symbol × to indicate a two-stage tower.

[5] F.-P. Heider und B. Schmithals, Zur Kapitu-
lation der Idealklassen in unverzweigten primzykli-
schen Erweiterungen, J. Reine Angew. Math. 336
(1982), 1–25.



18

A Caveat by Brink and Gold

Theorem 3.3. (Brink and Gold, 1987 [2,3])
The 3-groups with parametrized presentation
M2(β) = 〈x, y, s2, s3, t3, u |

[y, x] = s2, [s2, x] = s3, [s2, y] = t3,
[s3, x] = s−3

2 s−3
3 t63, [s3, y] = u2, [s3, s2] = u,

[t3, x] = [t3, y] = [t3, s2] = [t3, s3] = 1, t33 = u,

x3 = t−1
3 , y3 = s−3

2 s−1
3 , s3β

2 = s3β
3 = u3 = 1 〉

have cyclic second derived subgroupM2(β)′′ of order
3, for all parameter values β ≥ 2. Hence, they are
non-metabelian with derived length

dl(M2(β)) = 3.

The annihilator ideal A(G) of the metabelianization
G = M2(β)/M2(β)′′ is given by

Xα = 〈Xα, XY, Y 2, X2 + 3X + 3〉
with even α = 2β ≥ 4.
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A Caveat by Brink and Gold

Theorem 3.3. (Brink and Gold, 1987 [2,3])
The 3-groups with parametrized presentation
M2(β) = 〈x, y, s2, s3, t3, u |

[y, x] = s2, [s2, x] = s3, [s2, y] = t3,
[s3, x] = s−3

2 s−3
3 t63, [s3, y] = u2, [s3, s2] = u,

[t3, x] = [t3, y] = [t3, s2] = [t3, s3] = 1, t33 = u,

x3 = t−1
3 , y3 = s−3

2 s−1
3 , s3β

2 = s3β
3 = u3 = 1 〉

have cyclic second derived subgroupM2(β)′′ of order
3, for all parameter values β ≥ 2. Hence, they are
non-metabelian with derived length

dl(M2(β)) = 3.

The annihilator ideal A(G) of the metabelianization
G = M2(β)/M2(β)′′ is given by

Xα = 〈Xα, XY, Y 2, X2 + 3X + 3〉
with even α = 2β ≥ 4.

Claim 3.3. (Brink and Gold, 1987 [2,3])
The groups M2(β) with β ≥ 2 are possible can-
didates for Galois groups Gal(M |K) of unramified
cyclic cubic extensions M |F2

3(K) within the third
Hilbert 3-class field F3

3(K) over complex quadratic
fields K = Q(

√
D), D < 0, with 3-capitulation

type E

κ(K) = (2, 3, 3, 4) ∼ (2, 4, 3, 4).
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Crucial Ingredients for the Disproof

Definition 3.2. p ≥ 3 an odd prime.
A pro-p group G is called a σ-group,
if it admits an automorphism σ ∈ Aut(G) acting
as inversion x 7→ x−1 on the abelianization G/G′.



21

Crucial Ingredients for the Disproof

Definition 3.2. p ≥ 3 an odd prime.
A pro-p group G is called a σ-group,
if it admits an automorphism σ ∈ Aut(G) acting
as inversion x 7→ x−1 on the abelianization G/G′.

Theorem 3.4. (Artin, 1928 [4])
For any quadratic field K = Q(

√
D),

the p-tower group G∞p (K) and the higher
p-class groups Gn

p(K), for n ≥ 2, are σ-groups.
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Definition 3.2. p ≥ 3 an odd prime.
A pro-p group G is called a σ-group,
if it admits an automorphism σ ∈ Aut(G) acting
as inversion x 7→ x−1 on the abelianization G/G′.

Theorem 3.4. (Artin, 1928 [4])
For any quadratic field K = Q(

√
D),

the p-tower group G∞p (K) and the higher
p-class groups Gn

p(K), for n ≥ 2, are σ-groups.

p ≥ 3 an odd prime,
G a pro-p group,
d(G) = dimFp(H

1(G,Fp)) the generator rank of G,
r(G) = dimFp(H

2(G,Fp)) the relation rank of G.

Definition 3.3. A pro-p group G which satisfies
the equation r(G) = d(G) is said to have a
balanced presentation, or to be a Schur group.
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Crucial Ingredients for the Disproof

Definition 3.2. p ≥ 3 an odd prime.
A pro-p group G is called a σ-group,
if it admits an automorphism σ ∈ Aut(G) acting
as inversion x 7→ x−1 on the abelianization G/G′.

Theorem 3.4. (Artin, 1928 [4])
For any quadratic field K = Q(

√
D),

the p-tower group G∞p (K) and the higher
p-class groups Gn

p(K), for n ≥ 2, are σ-groups.

p ≥ 3 an odd prime,
G a pro-p group,
d(G) = dimFp(H

1(G,Fp)) the generator rank of G,
r(G) = dimFp(H

2(G,Fp)) the relation rank of G.

Definition 3.3. A pro-p group G which satisfies
the equation r(G) = d(G) is said to have a
balanced presentation, or to be a Schur group.

Theorem 3.5. (Shafarevich, 1963 [10])
The p-tower group G∞p (K) of a complex quadratic

field K = Q(
√
D), D < 0, is a Schur group.
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Theorem 3.6. (Mayer, Boston & Bush, 2012)
There are exactly two non-isomorphic metabelian
3-groups G1 and G2 with transfer kernel type E

κ(Gi) = (2, 3, 3, 4) ∼ (2, 4, 3, 4)

and transfer target type

τ (Gi) = [(9, 27), (3, 9)3].

G1 and G2 do not have a balanced presentation.
Further, there are exactly two non-isomorphic non-
metabelian 3-groups H1 and H2 such that Gi '
Hi/H

′′
i . H1 and H2 are Schur σ-groups of derived

length dl(Hi) = 3.
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Theorem 3.6. (Mayer, Boston & Bush, 2012)
There are exactly two non-isomorphic metabelian
3-groups G1 and G2 with transfer kernel type E

κ(Gi) = (2, 3, 3, 4) ∼ (2, 4, 3, 4)

and transfer target type

τ (Gi) = [(9, 27), (3, 9)3].

G1 and G2 do not have a balanced presentation.
Further, there are exactly two non-isomorphic non-
metabelian 3-groups H1 and H2 such that Gi '
Hi/H

′′
i . H1 and H2 are Schur σ-groups of derived

length dl(Hi) = 3.

Remark 3.1. The identifiers of these 3-groups are

G1 ' 〈2187, 302〉,
G2 ' 〈2187, 306〉

in the SmallGroups library, resp.

H1 ' 〈729, 54〉 −#2; 2,

H2 ' 〈729, 54〉 −#2; 6

in the ANUPQ package of GAP and MAGMA.
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Theorem 3.6. (Mayer, Boston & Bush, 2012)
There are exactly two non-isomorphic metabelian
3-groups G1 and G2 with transfer kernel type E

κ(Gi) = (2, 3, 3, 4) ∼ (2, 4, 3, 4)

and transfer target type

τ (Gi) = [(9, 27), (3, 9)3].

G1 and G2 do not have a balanced presentation.
Further, there are exactly two non-isomorphic non-
metabelian 3-groups H1 and H2 such that Gi '
Hi/H

′′
i . H1 and H2 are Schur σ-groups of derived

length dl(Hi) = 3.

Remark 3.1. The identifiers of these 3-groups are

G1 ' 〈2187, 302〉,
G2 ' 〈2187, 306〉

in the SmallGroups library, resp.

H1 ' 〈729, 54〉 −#2; 2,

H2 ' 〈729, 54〉 −#2; 6

in the ANUPQ package of GAP and MAGMA.

Corollary 3.6. (Mayer, Boston & Bush, 2012)
The 3-class field tower over the complex quadratic
field Q(

√
−9748) terminates at the third stage,

F4
3(K) = F3

3(K) > F2
3(K),

resp. has exact length `3(K) = 3.
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Brink and Gold — Tidy !!!

Theorem 3.7. (Mayer and Newman, 2013)
Brink and Gold’s 3-groups G = M2(β) with param-
eter values β ≥ 2 are of order 32β+4, class 2β + 1,
and fixed coclass 3.

None of these groups has a balanced presentation
and further they are all of transfer kernel type c

κ(G) = (2, 0, 3, 4).

Their metabelianizationsM2(β)/M2(β)′′ are the main-
line groups of order 32β+3 on the tree T ∗2 (〈243, 8〉).
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Brink and Gold — Tidy !!!

Theorem 3.7. (Mayer and Newman, 2013)
Brink and Gold’s 3-groups G = M2(β) with param-
eter values β ≥ 2 are of order 32β+4, class 2β + 1,
and fixed coclass 3.

None of these groups has a balanced presentation
and further they are all of transfer kernel type c

κ(G) = (2, 0, 3, 4).

Their metabelianizationsM2(β)/M2(β)′′ are the main-
line groups of order 32β+3 on the tree T ∗2 (〈243, 8〉).
Corollary 3.7. (Mayer and Newman, 2013)
None of Brink and Gold’s 3-groups M2(β), β ≥ 2,
can be the Galois group Gal(M |K) of an unramified
cyclic cubic extension M |F2

3(K) within the third
Hilbert 3-class field F3

3(K) over any complex qua-
dratic fieldK = Q(

√
D),D < 0, with 3-capitulation

type E

κ(K) = (2, 3, 3, 4) ∼ (2, 4, 3, 4).
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Figure 1. TKT-pruned descendant tree T ∗(〈243, 8〉) restricted to σ-groups with
balanced covers in ovals, Brink/Gold’s groups in rectangles, projections to the
metabelianizations, and formal identifiers
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Figure 2. Normal lattice, including upper and lower central series, of a three-
stage non-metabelian Schur σ-group G, e.g. G = S

(3)
1 , with TKT E, class 5.
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Figure 3. Normal lattice, including upper and lower central series, of a three-
stage non-metabelian Schur σ-group G, e.g. G = S

(4)
1 , with TKT E, class 7.
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§ 4. Proof of Theorem 3.6

§ 4.1. Starting Generation of 3-Groups

We start our search for 3-groups with TKT in sec-
tion E at the abelian root C3 × C3 ' 〈9, 2〉 of the
unique coclass tree T1 in coclass graph G(3, 1). How-
ever, we leave this graph very quickly, since all 3-
groups of maximal class have TKTs in sections a,A.
The immediate descendant G3

0(0, 0) ' 〈27, 3〉 gives
rise to a bifurcation from G(3, 1) to G(3, 2), but
the following mainline vertex G4

0(0, 0) ' 〈81, 9〉 is
coclass-settled and no further bifurcations can oc-
cur.
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Figure 4. Starting 3-group generation at the top of coclass graph G(3, 1)
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We start our search for 3-groups with TKT in section E at the abelian root C3×C3 ' 〈9, 2〉 of the
unique coclass tree T1 in coclass graph G(3, 1). However, we leave this graph very quickly, since
all 3-groups of maximal class have TKTs in sections a,A.
The immediate descendant G3

0(0, 0) ' 〈27, 3〉 gives rise to a bifurcation from G(3, 1) to G(3, 2),
but the following mainline vertex G4

0(0, 0) ' 〈81, 9〉 is coclass-settled and no further bifurcations
can occur.
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§ 4.2. TKT-Pruning G(3, 2)

The top vertices 〈243, 5〉 and 〈243, 7〉 are terminal
metabelian Schur σ-groups without descendants. De-
scendants of 〈243, 9〉, resp. 〈243, 4〉, share a fixed
TKT G.19, resp H.4. And the TKT of all de-
scendants of 〈243, 3〉 must contain a transposition,
which is not the case for TKTs in sections c and E.
Therefore, only descendants of 〈243, 6〉 and 〈243, 8〉
can have TKTs in sections c and E.
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Figure 5. TKT-pruning the top of coclass graph G(3, 2)
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The top vertices 〈243, 5〉 and 〈243, 7〉 are terminal metabelian Schur σ-groups without descendants.
Descendants of 〈243, 9〉, resp. 〈243, 4〉, share a fixed TKT G.19, resp H.4. And the TKT of all
descendants of 〈243, 3〉 must contain a transposition, which is not the case for TKTs in sections c
and E. Therefore, only descendants of 〈243, 6〉 and 〈243, 8〉 can have TKTs in sections c and E.
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§ 4.3. TKT-Pruning T2(〈243, 8〉)
Definition 4.1.
The TKT-pruned descendant tree T ∗(〈243, 8〉)
consists of all descendants G of the root 〈243, 8〉
such that

(1) κ(G) is one of the TKTs c.21 or E.8 or E.9
(that is, we cancel all the trash with TKT G.16),

(2) if κ(G) is of TKT c.21 then G has descendants,
(i.e., we omit terminal vertices with TKT c.21),

(3) G is a σ-group.

(See Figures 7,8.)

Remark 4.1.
The motivation for defining T ∗(〈243, 8〉) is that Brink
and Gold indicated a possible length `3(K) ≥ 3 for
the field K = Q(

√
−9748) with TKT E.9 for which

Scholz and Taussky had claimed `3(K) = 2.
(See [2], [3], and page 41 in [8].)
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Figure 6. TKT-pruning the coclass tree T2(〈243, 8〉)
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§ 4.4. Construction of T ∗(〈243, 8〉)
Here we also prune the tree from vertices with TKT
c.21 at depth 1 with respect to the mainlines, which
are terminal and do not give rise to further descen-
dants. The TKTs are briefly denoted by
κ1 = (2334) ∼ κ2 = (2434) E.9,
κ3 = (2234) E.8,
κ0 = (2034) c.21.

The bifurcation at 〈729, 54〉 has not been investi-
gated further in previous papers, since Ascione re-
stricted her trees to coclass 2 and Nebelung devoted
her attention to metabelian 3-groups.
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Figure 7. TKT-pruned descendant tree T ∗(〈243, 8〉) restricted to σ-groups with
balanced covers in ovals, Brink/Gold’s groups in rectangles, and identifiers of
SmallGroups and ANUPQ
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Here we also prune the tree from vertices with TKT c.21 at depth 1 with respect to the mainlines,
which are terminal and do not give rise to further descendants. The TKTs are briefly denoted by
κ1 = (2334) ∼ κ2 = (2434) E.9,
κ3 = (2234) E.8,
κ0 = (2034) c.21.
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§ 4.5. Biperiodic Structure of T ∗(〈243, 8〉)
We consider the intersections of T ∗(〈243, 8〉) with
coclass graphs G(3, r). We put

T ∗2 (〈243, 8〉) = T ∗(〈243, 8〉) ∩ G(3, 2)

and, for all r ≥ 3,

G∗r (〈243, 8〉) = T ∗(〈243, 8〉) ∩ G(3, r).

Theorem 4.1. (First periodicity).
(See Figures 6 and 7,8.)

(1) T ∗2 (〈243, 8〉) is a subtree of T ∗(〈243, 8〉).
(2) All vertices are metabelian and unbalanced.
(3) Vertices of TKT c.21 form an infinite mainline

with unique groupM
(2)
n of each order 3n, n ≥ 5.

(4) Every branch is of depth 1 and contains

two groups G
(2)
n,1, G

(2)
n,2 of TKT E.9

and a single group G
(2)
n,3 of TKT E.8,

each of order 3n with odd n ≥ 7.
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Theorem 4.2. (Second periodicity).
(See Figures 7,8.)
For 3 ≤ r ≤ 5,

(1) the graph G∗r (〈243, 8〉) consists of

3 isolated vertices S
(r)
k , 1 ≤ k ≤ 3,

and a subtree T ∗r (M
(r)
3r−1) of T ∗(〈243, 8〉),

(2) T ∗r (M
(r)
3r−1) is isomorphic to T ∗2 (〈243, 8〉) as a

graph, and additionally, the two trees share the
same distribution of TKTs,

(3) all vertices G of G∗r (〈243, 8〉) are
non-metabelian of derived length dl(G) = 3
with
cyclic second derived subgroup G′′ of order 3r−2

contained in the centre ζ1(G) of type (3, 3r−1),

(4) the tree root M
(r)
3r−1 and the isolated vertices

S
(r)
k are of order 33r−1,

(5) only the isolated vertices S
(r)
k are Schur σ-groups,

two of them S
(r)
1 , S

(r)
2 have TKT E.9,

and the remaining one S
(r)
3 has TKT E.8,

(6) each S
(r)
k is the unique element in the balanced

cover cov∗(G
(2)
2r+1,k) of the branch group G

(2)
2r+1,k

of order 32r+1 on the tree T ∗2 (〈243, 8〉).
Conjecture 4.2.
Theorem 4.2 is also correct for any r ≥ 6.
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Figure 8. TKT-pruned descendant tree T ∗(〈243, 8〉) restricted to σ-groups with
balanced covers in ovals, Brink/Gold’s groups in rectangles, projections to the
metabelianizations, and formal identifiers
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The techniques for reaching the targets of this pre-
sentation are based on the results of

Our Tetralogy.
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