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Differences to Previous Talk

In a nutshell, replace

Z by Fq[x ] (i.e. rational integers by polynomials)
Q by Fq(x) (i.e. rational numbers by rational functions)
log by deg

where Fq is a finite field.

Assume q is odd and let ∆(x) ∈ Fq[x ] be monic of even degree:

∆(x) = x2m + a2m−1x
2m−1 + · · ·+ a0 (ai ∈ Fq)

=⇒
√

∆(x) = ±(xm + bm−1x
m−1 + · · ·+ b0 + b−1x

−1 + b−2x
−2 + · · · )

with bi ∈ Fq. This defines deg(
√

∆) = m and |
√

∆| = qm.

Fixing a square root, it also defines deg(a + b
√

∆) for a, b ∈ Fq(x).
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Quadratic Function Fields and Hyperelliptic Curves

Let q be odd and ∆ ∈ Fq[x ] is monic and square-free.

Quadratic function field: K = Fq(x)(
√

∆) = {a + b
√

∆ | a, b ∈ Fq(x)}
Maximal order of K : O = Fq[x ][

√
∆] = {a + b

√
∆ | a, b ∈ Fq[x ]}

K is

{
imaginary if deg(∆) = 2g + 1

real if deg(∆) = 2g + 2

where g is the genus of the hyperelliptic curve y2 = ∆(x).

Note that degrees are defined on real quadratic function fields.

Note: For q even, hyperelliptic curves have the form y2 + h(x)y = ∆(x)
with conditions on ∆ and h. We disregard this case here.
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Reduced Ideals

Let K = Fq(x ,
√

∆) and O = Fq[x ,
√

∆] with deg(∆) = 2g + 1 or 2g + 2

Definition

A reduced ideal of O is an Fq[x ]-module of rank 2 with an Fq[x ]-basis

{Q,P +
√

∆}

such that

Q,P ∈ Fq[x ] with Q monic

Q divides P2 −∆

deg(Q) ≤ g (so |Q| < |
√

∆|)

Here, Q is unique, P is unique modulo Q, and we write a = (Q,P).

Heuristically, with probability 1− O(q−1): deg(Q) = g .
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Applications of Compact Representations

For Real Quadratic Function Fields: same as for number fields

In addition: pairing computation (real and imaginary fields):

A reduced ideal ideal a = (Q,P) corresponds to the affine part of a
reduced divisor D with Mumford representation {Q,P}.
Suppose nD = div(θ) for some θ ∈ O, so an = (θ).

When computing pairings (for example, in hyperelliptic curve
cryptography), one needs to evaluate the function θ at some other
divisor.

Miller’s algorithm does this on the fly (via relative generators)

If a compact representation of θ is pre-computed, then this evaluation
could be done all at once.

Is this faster than using Miller’s method? Only an implementation will tell.
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Integer Representations

Definition

Fix a base m ∈ Z with m ≥ 2, and a digit bound Bm. For n ∈ N, an
(m,Bm)-expansion of n is a representation

n =
∑̀
i=0

b`−im
i with −Bm ≤ bi ≤ Bm

Examples:

Unsigned digits: 0 ≤ bi ≤ m − 1, Bm = m − 1

Signed digits, m odd: −(m − 1)/2 ≤ bi ≤ (m − 1)/2, Bm = (m − 1)/2

Signed digits, m even: −m/2 < bi ≤ m/2, Bm = m/2

Non-adjacent form: m = 2, −1 ≤ bi ≤ 1, bibi+1 = 0, Bm = 1
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Compact Representations in Imaginary Fields

Definition

Let n ∈ N, θ ∈ O, and a = (Q,P) a reduced O-ideal with (θ) = an.

Let ` be the length of a base (m,Bm)-expansion of n.

An (m,Bm)-compact representation of θ is a (2`+ 1)-tuple

(λ0, λ1, . . . λ`; L1, L2, . . . L`)

where

λi = Ui + Vi

√
∆ ∈ O with Ui monic,

deg(Ui ) ≤
(

(m + 1)g + Bm deg(Q)
)
/2 and

deg(Vi ) ≤
(

(m − 1)g + Bm deg(Q)− 1
)
/2,

Li ∈ Fq[x ] monic with deg(Li ) ≤ g , and

θ =
∏̀
i=0

(
λi
Lmi

)m`−i

with L0 ∈ F∗
q .
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Compact Representations in Imaginary Fields
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Size of a Compact Representation

# elements in Fq = (`+ 1)
(

(m + 1)g + Bm deg(Q)
)
− g

= `
(

(m + 1)g + Bm deg(Q)
)

+ O(mg)

=
log(n)

log(m)

(
(m + 1)g + Bm deg(Q)

)
+ O(mg)

To find the optimal m, minimize main term: solve an equation of the form

am log(m)− am − b = 0

for m, where a, b are

monic linear functions in g if deg(Q) = 1

constant if deg(Q) = g

Looks like m = 3 or m = 4 in all cases (to be confirmed by implementation).
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Distances in real quadratic fields

The distance of a reduced principal ideal a is δ(a) = deg(θ), where θ is
the monic generator of a of minimal non-negative degree.

Note that distances are integers, so no approximations are necessary!

For n ∈ N, let a[n] be the unique reduced principal ideal a such that

δ(a) maximal and δ(a) ≤ n

Heuristically, with probability 1− O(q−1):

Distances of neighbouring reduced ideals are spaced 1 apart.

δ(a[n]) = n for almost all n.

The number of reduction steps required to obtain the first reduced
ideal when starting at am is hm = d(m − 1)g/2e. So we are hm
“adjustment steps” short of distance mδ(a).
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Avoiding the Headwind

Let k be maximal with n ≥ hm
mk − 1

m − 1
(with “>” if m = 2 or n = m` + 1)

Properties:

k ≤ ` ≤ k + log(3g/2) if g ≥ 2, k = `+ 1 if g = 1

If N = n + hm
mk − 1

m − 1
, then n ≤ N < mn, so the

(m,Bm)-representations of n and N have the same length `

Set

s−1 = 0, si =

{
msi−1 + b̃i for 0 ≤ i ≤ `− k

msi−1 + b̃i − hm for `− k + 1 ≤ i ≤ `

where the b̃i are the (m,Bm)-digits of N.

Then s` = n and hence we expect δ(a[n]) = n.
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Compact Representations in Real Fields

Definition

Let n ∈ N and θ ∈ O with (θ) = a[n].

Let ` be the length of a base (m,Bm)-expansion of n and k as above.

An (m,Bm)-compact representation of θ is a (2`+ 1)-tuple

(λ0, λ1, . . . λ`; L1, L2, . . . L`)

where we expect

λi = Ui + Vi

√
∆ ∈ O with Ui monic,

deg(Ui ) ≤ 2hm + Bm + g , deg(Vi ) = 2hm + Bm − 1 for 0 ≤ i ≤ `− k,
deg(Ui ) ≤ hm +Bm + g , deg(Vi ) = hm +Bm− 1 for `− k + 1 ≤ i ≤ `,
Li ∈ Fq[x ] monic with deg(Li ) ≤ g , and

θ =
∏̀
i=0

(
λi
Lmi

)m`−i

with L0 ∈ F∗
q .
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Size of a Compact Representation

# elts in Fq = (`− k + 1)(4hm + 2Bm + g) + k(2hm + 2Bm + g)

= `
(

(m + 1)g + 2Bm + ε
)

+ O(mg log(g))

=
log(n)

log(m)

(
(m + 1)g + 2Bm + ε

)
+ O(mg log(g))

for m, where ε = 0 is the parity of (m + 1)g (0 if even, 1 if odd).

To find the optimal m, minimize main term: solve an equation of the form

am log(m)− am − b = 0

where a, b are monic linear functions in g .

Expect again that m = 3 or m = 4 (to be confirmed by implementation).
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Size of a Compact Representation

# elts in Fq = (`− k + 1)(4hm + 2Bm + g) + k(2hm + 2Bm + g)

= `
(

(m + 1)g + 2Bm + ε
)

+ O(mg log(g))

=
log(n)

log(m)

(
(m + 1)g + 2Bm + ε

)
+ O(mg log(g))

for m, where ε = 0 is the parity of (m + 1)g (0 if even, 1 if odd).

To find the optimal m, minimize main term: solve an equation of the form

am log(m)− am − b = 0

where a, b are monic linear functions in g .

Expect again that m = 3 or m = 4 (to be confirmed by implementation).
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That’s All, Folks!

∗ ∗ ∗ Questions? ∗ ∗ ∗
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