

Shorter Compact Representations on Hyperelliptic Curves

Renate Scheidler

West Coast Number Theory Conference

December 16, 2013

Shorter Compact Representations on Hyperelliptic Curves

Renate Scheidler

West Coast Number Theory Conference

December 16, 2013

Work in Progress

Differences to Previous Talk

In a nutshell, replace

- \mathbb{Z} by $\mathbb{F}_q[x]$ (i.e. rational integers by polynomials)
- \mathbb{Q} by $\mathbb{F}_q(x)$ (i.e. rational numbers by rational functions)
- \log by \deg

where \mathbb{F}_q is a finite field.

In a nutshell, replace

- \mathbb{Z} by $\mathbb{F}_q[x]$ (i.e. rational integers by polynomials)
- \mathbb{Q} by $\mathbb{F}_q(x)$ (i.e. rational numbers by rational functions)
- \log by \deg

where \mathbb{F}_q is a finite field.

Assume q is odd and let $\Delta(x) \in \mathbb{F}_q[x]$ be monic of even degree:

$$\Delta(x) = x^{2m} + a_{2m-1}x^{2m-1} + \cdots + a_0 \quad (a_i \in \mathbb{F}_q)$$
$$\implies \sqrt{\Delta(x)} = \pm(x^m + b_{m-1}x^{m-1} + \cdots + b_0 + b_{-1}x^{-1} + b_{-2}x^{-2} + \cdots)$$

with $b_i \in \mathbb{F}_q$.

In a nutshell, replace

- \mathbb{Z} by $\mathbb{F}_q[x]$ (i.e. rational integers by polynomials)
- \mathbb{Q} by $\mathbb{F}_q(x)$ (i.e. rational numbers by rational functions)
- \log by \deg

where \mathbb{F}_q is a finite field.

Assume q is odd and let $\Delta(x) \in \mathbb{F}_q[x]$ be monic of even degree:

$$\Delta(x) = x^{2m} + a_{2m-1}x^{2m-1} + \cdots + a_0 \quad (a_i \in \mathbb{F}_q)$$
$$\implies \sqrt{\Delta(x)} = \pm(x^m + b_{m-1}x^{m-1} + \cdots + b_0 + b_{-1}x^{-1} + b_{-2}x^{-2} + \cdots)$$

with $b_i \in \mathbb{F}_q$. This defines $\deg(\sqrt{\Delta}) = m$ and $|\sqrt{\Delta}| = q^m$.

In a nutshell, replace

- \mathbb{Z} by $\mathbb{F}_q[x]$ (i.e. rational integers by polynomials)
- \mathbb{Q} by $\mathbb{F}_q(x)$ (i.e. rational numbers by rational functions)
- \log by \deg

where \mathbb{F}_q is a finite field.

Assume q is odd and let $\Delta(x) \in \mathbb{F}_q[x]$ be monic of even degree:

$$\Delta(x) = x^{2m} + a_{2m-1}x^{2m-1} + \cdots + a_0 \quad (a_i \in \mathbb{F}_q)$$
$$\implies \sqrt{\Delta(x)} = \pm(x^m + b_{m-1}x^{m-1} + \cdots + b_0 + b_{-1}x^{-1} + b_{-2}x^{-2} + \cdots)$$

with $b_i \in \mathbb{F}_q$. This defines $\deg(\sqrt{\Delta}) = m$ and $|\sqrt{\Delta}| = q^m$.

Fixing a square root, it also defines $\deg(a + b\sqrt{\Delta})$ for $a, b \in \mathbb{F}_q(x)$.

Quadratic Function Fields and Hyperelliptic Curves

Let q be odd and $\Delta \in \mathbb{F}_q[x]$ is monic and square-free.

Quadratic function field: $K = \mathbb{F}_q(x)(\sqrt{\Delta}) = \{a + b\sqrt{\Delta} \mid a, b \in \mathbb{F}_q(x)\}$

Maximal order of K : $\mathcal{O} = \mathbb{F}_q[x][\sqrt{\Delta}] = \{a + b\sqrt{\Delta} \mid a, b \in \mathbb{F}_q[x]\}$

Quadratic Function Fields and Hyperelliptic Curves

Let q be odd and $\Delta \in \mathbb{F}_q[x]$ is monic and square-free.

Quadratic function field: $K = \mathbb{F}_q(x)(\sqrt{\Delta}) = \{a + b\sqrt{\Delta} \mid a, b \in \mathbb{F}_q(x)\}$

Maximal order of K : $\mathcal{O} = \mathbb{F}_q[x][\sqrt{\Delta}] = \{a + b\sqrt{\Delta} \mid a, b \in \mathbb{F}_q[x]\}$

$$K \text{ is } \begin{cases} \text{imaginary} & \text{if } \deg(\Delta) = 2g + 1 \\ \text{real} & \text{if } \deg(\Delta) = 2g + 2 \end{cases}$$

where g is the **genus** of the **hyperelliptic curve** $y^2 = \Delta(x)$.

Quadratic Function Fields and Hyperelliptic Curves

Let q be odd and $\Delta \in \mathbb{F}_q[x]$ is monic and square-free.

Quadratic function field: $K = \mathbb{F}_q(x)(\sqrt{\Delta}) = \{a + b\sqrt{\Delta} \mid a, b \in \mathbb{F}_q(x)\}$

Maximal order of K : $\mathcal{O} = \mathbb{F}_q[x][\sqrt{\Delta}] = \{a + b\sqrt{\Delta} \mid a, b \in \mathbb{F}_q[x]\}$

$$K \text{ is } \begin{cases} \text{imaginary} & \text{if } \deg(\Delta) = 2g + 1 \\ \text{real} & \text{if } \deg(\Delta) = 2g + 2 \end{cases}$$

where g is the **genus** of the **hyperelliptic curve** $y^2 = \Delta(x)$.

Note that degrees are defined on real quadratic function fields.

Quadratic Function Fields and Hyperelliptic Curves

Let q be odd and $\Delta \in \mathbb{F}_q[x]$ is monic and square-free.

Quadratic function field: $K = \mathbb{F}_q(x)(\sqrt{\Delta}) = \{a + b\sqrt{\Delta} \mid a, b \in \mathbb{F}_q(x)\}$

Maximal order of K : $\mathcal{O} = \mathbb{F}_q[x][\sqrt{\Delta}] = \{a + b\sqrt{\Delta} \mid a, b \in \mathbb{F}_q[x]\}$

K is $\begin{cases} \text{imaginary} & \text{if } \deg(\Delta) = 2g + 1 \\ \text{real} & \text{if } \deg(\Delta) = 2g + 2 \end{cases}$

where g is the **genus** of the **hyperelliptic curve** $y^2 = \Delta(x)$.

Note that degrees are defined on real quadratic function fields.

Note: For q even, hyperelliptic curves have the form $y^2 + h(x)y = \Delta(x)$ with conditions on Δ and h . We disregard this case here.

Let $K = \mathbb{F}_q(x, \sqrt{\Delta})$ and $\mathcal{O} = \mathbb{F}_q[x, \sqrt{\Delta}]$ with $\deg(\Delta) = 2g + 1$ or $2g + 2$

Let $K = \mathbb{F}_q(x, \sqrt{\Delta})$ and $\mathcal{O} = \mathbb{F}_q[x, \sqrt{\Delta}]$ with $\deg(\Delta) = 2g + 1$ or $2g + 2$

Definition

A **reduced ideal** of \mathcal{O} is an $\mathbb{F}_q[x]$ -module of rank 2 with an $\mathbb{F}_q[x]$ -basis

$$\{Q, P + \sqrt{\Delta}\}$$

such that

- $Q, P \in \mathbb{F}_q[x]$ with Q monic
- Q divides $P^2 - \Delta$
- $\deg(Q) \leq g$ (so $|Q| < |\sqrt{\Delta}|$)

Let $K = \mathbb{F}_q(x, \sqrt{\Delta})$ and $\mathcal{O} = \mathbb{F}_q[x, \sqrt{\Delta}]$ with $\deg(\Delta) = 2g + 1$ or $2g + 2$

Definition

A **reduced ideal** of \mathcal{O} is an $\mathbb{F}_q[x]$ -module of rank 2 with an $\mathbb{F}_q[x]$ -basis

$$\{Q, P + \sqrt{\Delta}\}$$

such that

- $Q, P \in \mathbb{F}_q[x]$ with Q monic
- Q divides $P^2 - \Delta$
- $\deg(Q) \leq g$ (so $|Q| < |\sqrt{\Delta}|$)

Here, Q is unique, P is unique modulo Q , and we write $\mathfrak{a} = (Q, P)$.

Let $K = \mathbb{F}_q(x, \sqrt{\Delta})$ and $\mathcal{O} = \mathbb{F}_q[x, \sqrt{\Delta}]$ with $\deg(\Delta) = 2g + 1$ or $2g + 2$

Definition

A **reduced ideal** of \mathcal{O} is an $\mathbb{F}_q[x]$ -module of rank 2 with an $\mathbb{F}_q[x]$ -basis

$$\{Q, P + \sqrt{\Delta}\}$$

such that

- $Q, P \in \mathbb{F}_q[x]$ with Q monic
- Q divides $P^2 - \Delta$
- $\deg(Q) \leq g$ (so $|Q| < |\sqrt{\Delta}|$)

Here, Q is unique, P is unique modulo Q , and we write $\mathfrak{a} = (Q, P)$.

Heuristically, with probability $1 - O(q^{-1})$: $\deg(Q) = g$.

Applications of Compact Representations

For Real Quadratic Function Fields: same as for number fields

For Real Quadratic Function Fields: same as for number fields

In addition: **pairing computation** (real and imaginary fields):

- A reduced ideal $\mathfrak{a} = (Q, P)$ corresponds to the affine part of a reduced divisor D with Mumford representation $\{Q, P\}$.

For Real Quadratic Function Fields: same as for number fields

In addition: **pairing computation** (real and imaginary fields):

- A reduced ideal $\mathfrak{a} = (Q, P)$ corresponds to the affine part of a reduced divisor D with Mumford representation $\{Q, P\}$.
- Suppose $nD = \text{div}(\theta)$ for some $\theta \in \mathcal{O}$, so $\mathfrak{a}^n = (\theta)$.

For Real Quadratic Function Fields: same as for number fields

In addition: **pairing computation** (real and imaginary fields):

- A reduced ideal $\mathfrak{a} = (Q, P)$ corresponds to the affine part of a reduced divisor D with Mumford representation $\{Q, P\}$.
- Suppose $nD = \text{div}(\theta)$ for some $\theta \in \mathcal{O}$, so $\mathfrak{a}^n = (\theta)$.
- When computing pairings (for example, in hyperelliptic curve cryptography), one needs to evaluate the function θ at some other divisor.

For Real Quadratic Function Fields: same as for number fields

In addition: **pairing computation** (real and imaginary fields):

- A reduced ideal $\mathfrak{a} = (Q, P)$ corresponds to the affine part of a reduced divisor D with Mumford representation $\{Q, P\}$.
- Suppose $nD = \text{div}(\theta)$ for some $\theta \in \mathcal{O}$, so $\mathfrak{a}^n = (\theta)$.
- When computing pairings (for example, in hyperelliptic curve cryptography), one needs to evaluate the function θ at some other divisor.
- Miller's algorithm does this on the fly (via relative generators)

For Real Quadratic Function Fields: same as for number fields

In addition: **pairing computation** (real and imaginary fields):

- A reduced ideal $\mathfrak{a} = (Q, P)$ corresponds to the affine part of a reduced divisor D with Mumford representation $\{Q, P\}$.
- Suppose $nD = \text{div}(\theta)$ for some $\theta \in \mathcal{O}$, so $\mathfrak{a}^n = (\theta)$.
- When computing pairings (for example, in hyperelliptic curve cryptography), one needs to evaluate the function θ at some other divisor.
- Miller's algorithm does this on the fly (via relative generators)
- If a compact representation of θ is pre-computed, then this evaluation could be done all at once.

For Real Quadratic Function Fields: same as for number fields

In addition: **pairing computation** (real and imaginary fields):

- A reduced ideal $\mathfrak{a} = (Q, P)$ corresponds to the affine part of a reduced divisor D with Mumford representation $\{Q, P\}$.
- Suppose $nD = \text{div}(\theta)$ for some $\theta \in \mathcal{O}$, so $\mathfrak{a}^n = (\theta)$.
- When computing pairings (for example, in hyperelliptic curve cryptography), one needs to evaluate the function θ at some other divisor.
- Miller's algorithm does this on the fly (via relative generators)
- If a compact representation of θ is pre-computed, then this evaluation could be done all at once.

Is this faster than using Miller's method? Only an implementation will tell.

Definition

Fix a base $m \in \mathbb{Z}$ with $m \geq 2$, and a digit bound B_m . For $n \in \mathbb{N}$, an **(m, B_m) -expansion of n** is a representation

$$n = \sum_{i=0}^{\ell} b_{\ell-i} m^i \quad \text{with} \quad -B_m \leq b_i \leq B_m$$

Definition

Fix a base $m \in \mathbb{Z}$ with $m \geq 2$, and a digit bound B_m . For $n \in \mathbb{N}$, an **(m, B_m) -expansion of n** is a representation

$$n = \sum_{i=0}^{\ell} b_{\ell-i} m^i \quad \text{with} \quad -B_m \leq b_i \leq B_m$$

Examples:

Unsigned digits: $0 \leq b_i \leq m - 1$, $B_m = m - 1$

Signed digits, m odd: $-(m - 1)/2 \leq b_i \leq (m - 1)/2$, $B_m = (m - 1)/2$

Signed digits, m even: $-m/2 < b_i \leq m/2$, $B_m = m/2$

Non-adjacent form: $m = 2$, $-1 \leq b_i \leq 1$, $b_i b_{i+1} = 0$, $B_m = 1$

Compact Representations in Imaginary Fields

Compact Representations in Imaginary Fields

Definition

Let $n \in \mathbb{N}$, $\theta \in \mathcal{O}$, and $\mathfrak{a} = (Q, P)$ a reduced \mathcal{O} -ideal with $(\theta) = \mathfrak{a}^n$.

Compact Representations in Imaginary Fields

Definition

Let $n \in \mathbb{N}$, $\theta \in \mathcal{O}$, and $\mathfrak{a} = (Q, P)$ a reduced \mathcal{O} -ideal with $(\theta) = \mathfrak{a}^n$.

Let ℓ be the length of a base (m, B_m) -expansion of n .

Compact Representations in Imaginary Fields

Definition

Let $n \in \mathbb{N}$, $\theta \in \mathcal{O}$, and $\mathfrak{a} = (Q, P)$ a reduced \mathcal{O} -ideal with $(\theta) = \mathfrak{a}^n$.

Let ℓ be the length of a base (m, B_m) -expansion of n .

An (m, B_m) -**compact representation** of θ

Compact Representations in Imaginary Fields

Definition

Let $n \in \mathbb{N}$, $\theta \in \mathcal{O}$, and $\mathfrak{a} = (Q, P)$ a reduced \mathcal{O} -ideal with $(\theta) = \mathfrak{a}^n$.

Let ℓ be the length of a base (m, B_m) -expansion of n .

An (m, B_m) -**compact representation** of θ is a $(2\ell + 1)$ -tuple

$$(\lambda_0, \lambda_1, \dots, \lambda_\ell; L_1, L_2, \dots, L_\ell)$$

Compact Representations in Imaginary Fields

Definition

Let $n \in \mathbb{N}$, $\theta \in \mathcal{O}$, and $\mathfrak{a} = (Q, P)$ a reduced \mathcal{O} -ideal with $(\theta) = \mathfrak{a}^n$.

Let ℓ be the length of a base (m, B_m) -expansion of n .

An (m, B_m) -**compact representation** of θ is a $(2\ell + 1)$ -tuple

$$(\lambda_0, \lambda_1, \dots, \lambda_\ell; L_1, L_2, \dots, L_\ell)$$

where

- $\lambda_i = U_i + V_i\sqrt{\Delta} \in \mathcal{O}$ with U_i monic,

Compact Representations in Imaginary Fields

Definition

Let $n \in \mathbb{N}$, $\theta \in \mathcal{O}$, and $\mathfrak{a} = (Q, P)$ a reduced \mathcal{O} -ideal with $(\theta) = \mathfrak{a}^n$.

Let ℓ be the length of a base (m, B_m) -expansion of n .

An (m, B_m) -**compact representation** of θ is a $(2\ell + 1)$ -tuple

$$(\lambda_0, \lambda_1, \dots, \lambda_\ell; L_1, L_2, \dots, L_\ell)$$

where

- $\lambda_i = U_i + V_i\sqrt{\Delta} \in \mathcal{O}$ with U_i monic,
 $\deg(U_i) \leq \left((m+1)g + B_m \deg(Q)\right)/2$ and
 $\deg(V_i) \leq \left((m-1)g + B_m \deg(Q) - 1\right)/2$,

Compact Representations in Imaginary Fields

Definition

Let $n \in \mathbb{N}$, $\theta \in \mathcal{O}$, and $\mathfrak{a} = (Q, P)$ a reduced \mathcal{O} -ideal with $(\theta) = \mathfrak{a}^n$.

Let ℓ be the length of a base (m, B_m) -expansion of n .

An (m, B_m) -**compact representation** of θ is a $(2\ell + 1)$ -tuple

$$(\lambda_0, \lambda_1, \dots, \lambda_\ell; L_1, L_2, \dots, L_\ell)$$

where

- $\lambda_i = U_i + V_i\sqrt{\Delta} \in \mathcal{O}$ with U_i monic,
 $\deg(U_i) \leq \left((m+1)g + B_m \deg(Q)\right)/2$ and
 $\deg(V_i) \leq \left((m-1)g + B_m \deg(Q) - 1\right)/2$,
- $L_i \in \mathbb{F}_q[x]$ monic with $\deg(L_i) \leq g$

Compact Representations in Imaginary Fields

Definition

Let $n \in \mathbb{N}$, $\theta \in \mathcal{O}$, and $\mathfrak{a} = (Q, P)$ a reduced \mathcal{O} -ideal with $(\theta) = \mathfrak{a}^n$.

Let ℓ be the length of a base (m, B_m) -expansion of n .

An (m, B_m) -**compact representation** of θ is a $(2\ell + 1)$ -tuple

$$(\lambda_0, \lambda_1, \dots, \lambda_\ell; L_1, L_2, \dots, L_\ell)$$

where

- $\lambda_i = U_i + V_i\sqrt{\Delta} \in \mathcal{O}$ with U_i monic,
 $\deg(U_i) \leq \left((m+1)g + B_m \deg(Q)\right)/2$ and
 $\deg(V_i) \leq \left((m-1)g + B_m \deg(Q) - 1\right)/2$,
- $L_i \in \mathbb{F}_q[x]$ monic with $\deg(L_i) \leq g$, and

$$\theta = \prod_{i=0}^{\ell} \left(\frac{\lambda_i}{L_i^m} \right)^{m^{\ell-i}} \quad \text{with } L_0 \in \mathbb{F}_q^*.$$

Size of a Compact Representation

$$\# \text{ elements in } \mathbb{F}_q = (\ell + 1) \left((m + 1)g + B_m \deg(Q) \right) - g$$

$$\begin{aligned}\#\text{ elements in } \mathbb{F}_q &= (\ell + 1) \left((m + 1)g + B_m \deg(Q) \right) - g \\ &= \ell \left((m + 1)g + B_m \deg(Q) \right) + O(mg)\end{aligned}$$

$$\begin{aligned}\#\text{ elements in } \mathbb{F}_q &= (\ell + 1) \left((m + 1)g + B_m \deg(Q) \right) - g \\ &= \ell \left((m + 1)g + B_m \deg(Q) \right) + O(mg) \\ &= \frac{\log(n)}{\log(m)} \left((m + 1)g + B_m \deg(Q) \right) + O(mg)\end{aligned}$$

$$\begin{aligned}\#\text{ elements in } \mathbb{F}_q &= (\ell + 1) \left((m + 1)g + B_m \deg(Q) \right) - g \\ &= \ell \left((m + 1)g + B_m \deg(Q) \right) + O(mg) \\ &= \frac{\log(n)}{\log(m)} \left((m + 1)g + B_m \deg(Q) \right) + O(mg)\end{aligned}$$

To find the optimal m , minimize main term: solve an equation of the form

$$am \log(m) - am - b = 0$$

for m , where a, b are

- monic linear functions in g if $\deg(Q) = 1$
- constant if $\deg(Q) = g$

$$\begin{aligned}\#\text{ elements in } \mathbb{F}_q &= (\ell + 1) \left((m + 1)g + B_m \deg(Q) \right) - g \\ &= \ell \left((m + 1)g + B_m \deg(Q) \right) + O(mg) \\ &= \frac{\log(n)}{\log(m)} \left((m + 1)g + B_m \deg(Q) \right) + O(mg)\end{aligned}$$

To find the optimal m , minimize main term: solve an equation of the form

$$am \log(m) - am - b = 0$$

for m , where a, b are

- monic linear functions in g if $\deg(Q) = 1$
- constant if $\deg(Q) = g$

Looks like $m = 3$ or $m = 4$ in all cases (to be confirmed by implementation).

The **distance** of a reduced principal ideal α is $\delta(\alpha) = \deg(\theta)$, where θ is the monic generator of α of minimal non-negative degree.

The **distance** of a reduced principal ideal α is $\delta(\alpha) = \deg(\theta)$, where θ is the monic generator of α of minimal non-negative degree.

Note that distances are integers, so no approximations are necessary!

The **distance** of a reduced principal ideal \mathfrak{a} is $\delta(\mathfrak{a}) = \deg(\theta)$, where θ is the monic generator of \mathfrak{a} of minimal non-negative degree.

Note that distances are integers, so no approximations are necessary!

For $n \in \mathbb{N}$, let $\mathfrak{a}[n]$ be the unique reduced principal ideal \mathfrak{a} such that

$$\delta(\mathfrak{a}) \text{ maximal and } \delta(\mathfrak{a}) \leq n$$

The **distance** of a reduced principal ideal \mathfrak{a} is $\delta(\mathfrak{a}) = \deg(\theta)$, where θ is the monic generator of \mathfrak{a} of minimal non-negative degree.

Note that distances are integers, so no approximations are necessary!

For $n \in \mathbb{N}$, let $\mathfrak{a}[n]$ be the unique reduced principal ideal \mathfrak{a} such that

$$\delta(\mathfrak{a}) \text{ maximal and } \delta(\mathfrak{a}) \leq n$$

Heuristically, with probability $1 - O(q^{-1})$:

- Distances of neighbouring reduced ideals are spaced 1 apart.

The **distance** of a reduced principal ideal \mathfrak{a} is $\delta(\mathfrak{a}) = \deg(\theta)$, where θ is the monic generator of \mathfrak{a} of minimal non-negative degree.

Note that distances are integers, so no approximations are necessary!

For $n \in \mathbb{N}$, let $\mathfrak{a}[n]$ be the unique reduced principal ideal \mathfrak{a} such that

$$\delta(\mathfrak{a}) \text{ maximal and } \delta(\mathfrak{a}) \leq n$$

Heuristically, with probability $1 - O(q^{-1})$:

- Distances of neighbouring reduced ideals are spaced 1 apart.
- $\delta(\mathfrak{a}[n]) = n$ for almost all n .

The **distance** of a reduced principal ideal \mathfrak{a} is $\delta(\mathfrak{a}) = \deg(\theta)$, where θ is the monic generator of \mathfrak{a} of minimal non-negative degree.

Note that distances are integers, so no approximations are necessary!

For $n \in \mathbb{N}$, let $\mathfrak{a}[n]$ be the unique reduced principal ideal \mathfrak{a} such that

$$\delta(\mathfrak{a}) \text{ maximal and } \delta(\mathfrak{a}) \leq n$$

Heuristically, with probability $1 - O(q^{-1})$:

- Distances of neighbouring reduced ideals are spaced 1 apart.
- $\delta(\mathfrak{a}[n]) = n$ for almost all n .
- The number of reduction steps required to obtain the first reduced ideal when starting at \mathfrak{a}^m is $h_m = \lceil (m-1)g/2 \rceil$. So we are h_m “adjustment steps” short of distance $m\delta(\mathfrak{a})$.

Let k be maximal with $n \geq h_m \frac{m^k - 1}{m - 1}$ (with “>” if $m = 2$ or $n = m^\ell + 1$)

Let k be maximal with $n \geq h_m \frac{m^k - 1}{m - 1}$ (with “>” if $m = 2$ or $n = m^\ell + 1$)

Properties:

- $k \leq \ell \leq k + \log(3g/2)$ if $g \geq 2$, $k = \ell + 1$ if $g = 1$

Let k be maximal with $n \geq h_m \frac{m^k - 1}{m - 1}$ (with “>” if $m = 2$ or $n = m^\ell + 1$)

Properties:

- $k \leq \ell \leq k + \log(3g/2)$ if $g \geq 2$, $k = \ell + 1$ if $g = 1$
- If $N = n + h_m \frac{m^k - 1}{m - 1}$, then $n \leq N < mn$, so the (m, B_m) -representations of n and N have the same length ℓ

Let k be maximal with $n \geq h_m \frac{m^k - 1}{m - 1}$ (with “>” if $m = 2$ or $n = m^\ell + 1$)

Properties:

- $k \leq \ell \leq k + \log(3g/2)$ if $g \geq 2$, $k = \ell + 1$ if $g = 1$
- If $N = n + h_m \frac{m^k - 1}{m - 1}$, then $n \leq N < mn$, so the (m, B_m) -representations of n and N have the same length ℓ

Set

$$s_{-1} = 0, \quad s_i = \begin{cases} ms_{i-1} + \tilde{b}_i & \text{for } 0 \leq i \leq \ell - k \\ ms_{i-1} + \tilde{b}_i - h_m & \text{for } \ell - k + 1 \leq i \leq \ell \end{cases}$$

where the \tilde{b}_i are the (m, B_m) -digits of N .

Let k be maximal with $n \geq h_m \frac{m^k - 1}{m - 1}$ (with “ $>$ ” if $m = 2$ or $n = m^\ell + 1$)

Properties:

- $k \leq \ell \leq k + \log(3g/2)$ if $g \geq 2$, $k = \ell + 1$ if $g = 1$
- If $N = n + h_m \frac{m^k - 1}{m - 1}$, then $n \leq N < mn$, so the (m, B_m) -representations of n and N have the same length ℓ

Set

$$s_{-1} = 0, \quad s_i = \begin{cases} ms_{i-1} + \tilde{b}_i & \text{for } 0 \leq i \leq \ell - k \\ ms_{i-1} + \tilde{b}_i - h_m & \text{for } \ell - k + 1 \leq i \leq \ell \end{cases}$$

where the \tilde{b}_i are the (m, B_m) -digits of N .

Then $s_\ell = n$ and hence we expect $\delta(\mathfrak{a}[n]) = n$.

Compact Representations in Real Fields

Definition

Let $n \in \mathbb{N}$ and $\theta \in \mathcal{O}$ with $(\theta) = \mathfrak{a}[n]$.

Definition

Let $n \in \mathbb{N}$ and $\theta \in \mathcal{O}$ with $(\theta) = \mathfrak{a}[n]$.

Let ℓ be the length of a base (m, B_m) -expansion of n and k as above.

Definition

Let $n \in \mathbb{N}$ and $\theta \in \mathcal{O}$ with $(\theta) = \mathfrak{a}[n]$.

Let ℓ be the length of a base (m, B_m) -expansion of n and k as above.

An (m, B_m) -**compact representation** of θ is a $(2\ell + 1)$ -tuple

$$(\lambda_0, \lambda_1, \dots, \lambda_\ell; L_1, L_2, \dots, L_\ell)$$

Definition

Let $n \in \mathbb{N}$ and $\theta \in \mathcal{O}$ with $(\theta) = \mathfrak{a}[n]$.

Let ℓ be the length of a base (m, B_m) -expansion of n and k as above.

An (m, B_m) -**compact representation** of θ is a $(2\ell + 1)$ -tuple

$$(\lambda_0, \lambda_1, \dots, \lambda_\ell; L_1, L_2, \dots, L_\ell)$$

where we expect

- $\lambda_i = U_i + V_i\sqrt{\Delta} \in \mathcal{O}$ with U_i monic,

Definition

Let $n \in \mathbb{N}$ and $\theta \in \mathcal{O}$ with $(\theta) = \mathfrak{a}[n]$.

Let ℓ be the length of a base (m, B_m) -expansion of n and k as above.

An (m, B_m) -**compact representation** of θ is a $(2\ell + 1)$ -tuple

$$(\lambda_0, \lambda_1, \dots, \lambda_\ell; L_1, L_2, \dots, L_\ell)$$

where we expect

- $\lambda_i = U_i + V_i\sqrt{\Delta} \in \mathcal{O}$ with U_i monic,
 $\deg(U_i) \leq 2h_m + B_m + g$, $\deg(V_i) = 2h_m + B_m - 1$ for $0 \leq i \leq \ell - k$,
 $\deg(U_i) \leq h_m + B_m + g$, $\deg(V_i) = h_m + B_m - 1$ for $\ell - k + 1 \leq i \leq \ell$,

Definition

Let $n \in \mathbb{N}$ and $\theta \in \mathcal{O}$ with $(\theta) = \mathfrak{a}[n]$.

Let ℓ be the length of a base (m, B_m) -expansion of n and k as above.

An (m, B_m) -**compact representation** of θ is a $(2\ell + 1)$ -tuple

$$(\lambda_0, \lambda_1, \dots, \lambda_\ell; L_1, L_2, \dots, L_\ell)$$

where we expect

- $\lambda_i = U_i + V_i\sqrt{\Delta} \in \mathcal{O}$ with U_i monic,
 $\deg(U_i) \leq 2h_m + B_m + g$, $\deg(V_i) = 2h_m + B_m - 1$ for $0 \leq i \leq \ell - k$,
 $\deg(U_i) \leq h_m + B_m + g$, $\deg(V_i) = h_m + B_m - 1$ for $\ell - k + 1 \leq i \leq \ell$,
- $L_i \in \mathbb{F}_q[x]$ monic with $\deg(L_i) \leq g$

Definition

Let $n \in \mathbb{N}$ and $\theta \in \mathcal{O}$ with $(\theta) = \mathfrak{a}[n]$.

Let ℓ be the length of a base (m, B_m) -expansion of n and k as above.

An (m, B_m) -**compact representation** of θ is a $(2\ell + 1)$ -tuple

$$(\lambda_0, \lambda_1, \dots, \lambda_\ell; L_1, L_2, \dots, L_\ell)$$

where we expect

- $\lambda_i = U_i + V_i\sqrt{\Delta} \in \mathcal{O}$ with U_i monic,
 $\deg(U_i) \leq 2h_m + B_m + g$, $\deg(V_i) = 2h_m + B_m - 1$ for $0 \leq i \leq \ell - k$,
 $\deg(U_i) \leq h_m + B_m + g$, $\deg(V_i) = h_m + B_m - 1$ for $\ell - k + 1 \leq i \leq \ell$,
- $L_i \in \mathbb{F}_q[x]$ monic with $\deg(L_i) \leq g$, and

$$\theta = \prod_{i=0}^{\ell} \left(\frac{\lambda_i}{L_i^m} \right)^{m^{\ell-i}} \quad \text{with } L_0 \in \mathbb{F}_q^*.$$

Size of a Compact Representation

$$\# \text{ elts in } \mathbb{F}_q = (\ell - k + 1)(4h_m + 2B_m + g) + k(2h_m + 2B_m + g)$$

$$\begin{aligned}\#\text{ elts in } \mathbb{F}_q &= (\ell - k + 1)(4h_m + 2B_m + g) + k(2h_m + 2B_m + g) \\ &= \ell \left((m+1)g + 2B_m + \epsilon \right) + O(mg \log(g))\end{aligned}$$

$$\begin{aligned}\#\text{ elts in } \mathbb{F}_q &= (\ell - k + 1)(4h_m + 2B_m + g) + k(2h_m + 2B_m + g) \\ &= \ell \left((m+1)g + 2B_m + \epsilon \right) + O(mg \log(g)) \\ &= \frac{\log(n)}{\log(m)} \left((m+1)g + 2B_m + \epsilon \right) + O(mg \log(g))\end{aligned}$$

for m , where $\epsilon = 0$ is the parity of $(m+1)g$ (0 if even, 1 if odd).

$$\begin{aligned}\#\text{ elts in } \mathbb{F}_q &= (\ell - k + 1)(4h_m + 2B_m + g) + k(2h_m + 2B_m + g) \\ &= \ell \left((m+1)g + 2B_m + \epsilon \right) + O(mg \log(g)) \\ &= \frac{\log(n)}{\log(m)} \left((m+1)g + 2B_m + \epsilon \right) + O(mg \log(g))\end{aligned}$$

for m , where $\epsilon = 0$ is the parity of $(m+1)g$ (0 if even, 1 if odd).

To find the optimal m , minimize main term: solve an equation of the form

$$am \log(m) - am - b = 0$$

where a, b are monic linear functions in g .

$$\begin{aligned}\#\text{ elts in } \mathbb{F}_q &= (\ell - k + 1)(4h_m + 2B_m + g) + k(2h_m + 2B_m + g) \\ &= \ell \left((m+1)g + 2B_m + \epsilon \right) + O(mg \log(g)) \\ &= \frac{\log(n)}{\log(m)} \left((m+1)g + 2B_m + \epsilon \right) + O(mg \log(g))\end{aligned}$$

for m , where $\epsilon = 0$ is the parity of $(m+1)g$ (0 if even, 1 if odd).

To find the optimal m , minimize main term: solve an equation of the form

$$am \log(m) - am - b = 0$$

where a, b are monic linear functions in g .

Expect again that $m = 3$ or $m = 4$ (to be confirmed by implementation).

* * * Questions? *