

Complexity of lattice problems on cyclic lattices

Xun Sun (Claremont Graduate University)

December 18, 2013

joint work with L. Fukshansky

Rotation shift operator and cyclic lattices

Complexity of
lattice
problems on
cyclic lattices

Xun Sun
(Claremont
Graduate
University)

Introduction

Complexity of
lattice
problems

Complexity on
cyclic lattices

Well-rounded
cyclic lattices

Future work

Define the rotational shift operator on \mathbb{R}^N , $N \geq 2$, by

$$\text{rot}(x_1, x_2, \dots, x_{N-1}, x_N) = (x_N, x_1, x_2, \dots, x_{N-1})$$

for every $(x_1, x_2, \dots, x_{N-1}, x_N) \in \mathbb{R}^N$. We will write rot^k for iterated application of rot k times for each $k \in \mathbb{Z}_{>0}$.

Remark 1

rot^0 is just the identity map, and $\text{rot}^{N+k} = \text{rot}^k$.

A full-rank sublattice Γ of \mathbb{Z}^N is called *cyclic* if $\text{rot}(\Gamma) = \Gamma$, i.e. for every $x \in \Gamma$, $\text{rot}(x) \in \Gamma$.

Cyclic lattices from ideals in $\mathbb{Z}[x]/(x^N - 1)$

Complexity of
lattice
problems on
cyclic lattices

Xun Sun
(Claremont
Graduate
University)

Introduction

Complexity of
lattice
problems

Complexity on
cyclic lattices

Well-rounded
cyclic lattices

Future work

Let

$$p(x) = \sum_{k=0}^{N-1} a_k x^k \in \mathbb{Z}[x]/(x^N - 1).$$

Define a map $\rho : \mathbb{Z}[x]/(x^N - 1) \rightarrow \mathbb{Z}^N$ by

$$\rho(p(x)) = (a_0, \dots, a_{N-1}) \in \mathbb{Z}^n,$$

then for any ideal $I \subseteq \mathbb{Z}[x]/(x^N - 1)$, $\rho(I)$ is a sublattice of \mathbb{Z}^N of full rank. Notice that for every $p(x) \in I$,

$$xp(x) = a_{N-1} + a_0 x + a_1 x^2 + \dots + a_{N-2} x^{N-1} \in I,$$

and so

$$\rho(xp(x)) = (a_{N-1}, a_0, a_1, \dots, a_{N-2}) = \text{rot}(\rho(p(x))) \in \rho(I).$$

In other words, $\Gamma \subseteq \mathbb{Z}^N$ is a cyclic lattice if and only if $\Gamma = \rho(I)$ for some ideal $I \subseteq \mathbb{Z}[x]/(x^N - 1)$.

Basic properties of cyclic lattices - 1

Complexity of
lattice
problems on
cyclic lattices

Xun Sun
(Claremont
Graduate
University)

Introduction

Complexity of
lattice
problems

Complexity on
cyclic lattices

Well-rounded
cyclic lattices

Future work

Definition 1

For a vector $a \in \mathbb{Z}^N$, define

$$\Lambda(a) = \text{span}_{\mathbb{Z}}\{a, \text{rot}(a), \dots, \text{rot}^{N-1}(a)\}.$$

This is always a cyclic lattice.

The following lemma indicates under which condition $\Lambda(a)$ is full rank.

Lemma 1

Let $a \in \mathbb{Z}^N$ and $p_a(x) \in \mathbb{Z}[x]/(x^N - 1)$ be a polynomial with coefficient vector a . Then $a, \text{rot}(a), \dots, \text{rot}^{N-1}(a)$ are linearly dependent if and only if $p_a(x)$ is divisible by some cyclotomic polynomial.

Basic properties of cyclic lattices - 2

Complexity of
lattice
problems on
cyclic lattices

Xun Sun
(Claremont
Graduate
University)

Introduction

Complexity of
lattice
problems

Complexity on
cyclic lattices

Well-rounded
cyclic lattices

Future work

Let

$$C_R^N = \{x \in \mathbb{R}^N : |x| := \max\{|x_1|, \dots, |x_N|\} \leq R\}$$

for every $R \in \mathbb{R}_{>0}$, i.e. C_R^N is a cube of side-length $2R$ centered at the origin in \mathbb{R}^N .

Lemma 2

Let $R > \frac{N-1}{2}$, then

$$\text{Prob}_{\infty, R}(\text{rk}(\Lambda(a)) = N) \geq 1 - \frac{N}{2R+1},$$

where probability $\text{Prob}_{\infty, R}(\cdot)$ is with respect to the uniform distribution among all points a in the set $C_R^N \cap \mathbb{Z}^N$.

Lattice Problems

Complexity of
lattice
problems on
cyclic lattices

Xun Sun
(Claremont
Graduate
University)

Introduction

Complexity of
lattice
problems

Complexity on
cyclic lattices

Well-rounded
cyclic lattices

Future work

There is a class of algorithmic optimization problems on lattices. We will consider two famous examples.

Definition 2 (Shortest Vector Problem - SVP)

Input: An $N \times N$ basis matrix A for a lattice $\Lambda = A\mathbb{Z}^N \subset \mathbb{R}^N$.

Output: A shortest nonzero vector in Λ , i.e. $x \in \Lambda$ such that

$$\|x\| = \min\{\|y\| : y \in \Lambda \setminus \{0\}\},$$

where $\|\cdot\|$ is Euclidean norm.

Remark 2

This is precisely a vector corresponding to λ_1 , the first successive minimum.

Lattice Problems

Complexity of
lattice
problems on
cyclic lattices

Xun Sun
(Claremont
Graduate
University)

Introduction

Complexity of
lattice
problems

Complexity on
cyclic lattices

Well-rounded
cyclic lattices

Future work

Definition 3 (Shortest Independent Vector Problem - SIVP)

Input: An $N \times N$ basis matrix A for a lattice $\Lambda = A\mathbb{Z}^N \subset \mathbb{R}^N$.

Output: A collection of n shortest linearly independent vectors in Λ , i.e. linearly independent $x_1, \dots, x_N \in \Lambda$ such that

$$\|x_i\| = \lambda_i,$$

the i -th successive minimum.

Clearly SIVP should generally be harder than SVP, but how much harder?

Complexity of lattice problems

Complexity of
lattice
problems on
cyclic lattices

Xun Sun
(Claremont
Graduate
University)

Introduction

Complexity of
lattice
problems

Complexity on
cyclic lattices

Well-rounded
cyclic lattices

Future work

SVP and SIVP are both known to be **NP**-hard. In fact, even the problem of finding the first successive minimum λ_1 of a given lattice is already **NP**-hard.

Theorem 3 (SIVP to SVP reduction by D. Micciancio (2002))

For lattices of rank N , there exists a polynomial time reduction algorithm from a solution to SVP to an approximate solution to SIVP within an approximation factor of \sqrt{N} - that is, a collection of linearly independent vectors $a_1, a_2, \dots, a_N \in \Lambda$ with

$$\|a_1\| \leq \|a_2\| \leq \dots \leq \|a_N\| \leq \sqrt{N} \lambda_N.$$

Complexity of lattice problems on cyclic lattices

Complexity of
lattice
problems on
cyclic lattices

Xun Sun
(Claremont
Graduate
University)

Introduction

Complexity of
lattice
problems

Complexity on
cyclic lattices

Well-rounded
cyclic lattices

Future work

How hard are SVP and SIVP on cyclic lattices? This is an open question, however there is some indication that SIVP to SVP reduction is easier.

Theorem 4 (Peikert, Rosen (2005))

Let N be **prime** and let $\Lambda \subset \mathbb{R}^N$ be a cyclic lattice of rank N . There exists a polynomial time algorithm that, given a solution to SVP on Λ , produces an approximate solution to SIVP on Λ within an approximation factor of 2. Specifically, given an oracle for SVP we can find a collection of linearly independent vectors $a_1, a_2, \dots, a_N \in \Lambda$ with

$$\|a_1\| \leq \|a_2\| \leq \dots \leq \|a_N\| \leq 2\lambda_N$$

in polynomial time. Furthermore, only one call to the oracle is needed.

Well-rounded lattices

Complexity of
lattice
problems on
cyclic lattices

Xun Sun
(Claremont
Graduate
University)

Introduction

Complexity of
lattice
problems

Complexity on
cyclic lattices

Well-rounded
cyclic lattices

Future work

More generally, we can show in **every** dimension N , SIVP is equivalent to SVP on a positive proportion of cyclic lattices.

A lattice $\Gamma \subset \mathbb{R}^N$ of rank n is called **well-rounded** (abbreviated WR) if

$$\lambda_1(\Gamma) = \lambda_2(\Gamma) = \dots = \lambda_N(\Gamma).$$

Notice that for a WR lattice, finding λ_1 is equivalent to finding all successive minima.

Our results: any dimension

Complexity of
lattice
problems on
cyclic lattices

Xun Sun
(Claremont
Graduate
University)

Introduction

Complexity of
lattice
problems

Complexity on
cyclic lattices

Well-rounded
cyclic lattices

Future work

Let \mathcal{C}_N be the set of all cyclic sublattices of \mathbb{Z}^N .

Theorem 5 (Fukshansky, S. (2013))

For each dimension $N \geq 2$, there exists a positive constant $\alpha_N \leq 1$, depending only on N , such that

$$\frac{\#\{\Gamma \in \mathcal{C}_N : \lambda_N(\Gamma) \leq R, \Gamma \text{ is WR}\}}{\#\{\Gamma \in \mathcal{C}_N : \lambda_N(\Gamma) \leq R\}} \geq \alpha_N \text{ as } R \rightarrow \infty. \quad (1)$$

Furthermore, SIVP and SVP are equivalent on a positive proportion of WR cyclic lattices, meaning that

$$\frac{\#\{\Gamma \in \mathcal{C}_N : \lambda_N(\Gamma) \leq R, \Gamma \text{ is WR, SIVP} = \text{SVP}\}}{\#\{\Gamma \in \mathcal{C}_N : \lambda_N(\Gamma) \leq R, \Gamma \text{ is WR}\}} \geq \beta_N \quad (2)$$

as $R \rightarrow \infty$ for some $0 < \beta_N \leq 1$.

Our results: $N = 2$

Complexity of
lattice
problems on
cyclic lattices

Xun Sun
(Claremont
Graduate
University)

Introduction

Complexity of
lattice
problems

Complexity on
cyclic lattices

Well-rounded
cyclic lattices

Future work

Theorem 6 (Fukshansky, S. (2013))

Let notation be as in Theorem 5 above, and let $N = 2$. Then $\beta_2 = 1$, meaning that SIVP is equivalent to SVP on all WR cyclic lattices in \mathbb{R}^2 , and

$$0.261386\dots \leq \alpha_2 \leq 0.348652\dots,$$

meaning that between 26% and 35% of cyclic lattices in \mathbb{R}^2 are WR.

Permutation invariant lattices

Complexity of
lattice
problems on
cyclic lattices

Xun Sun
(Claremont
Graduate
University)

Introduction

Complexity of
lattice
problems

Complexity on
cyclic lattices

Well-rounded
cyclic lattices

Future work

The symmetric group S_N has a natural action on \mathbb{R}^N by permutation of the coordinates. Cyclic lattices are precisely the sublattices of \mathbb{Z}^N closed under the action of the cyclic subgroup

$$\langle (1 \dots N) \rangle \leq S_N.$$

Question 1

What can be said about the proportion of WR lattices (and, respectively, relation between SVP and SIVP) among sublattices of \mathbb{Z}^N closed under the action of an arbitrary subgroup $H \leq S_N$?

This is currently work in progress.

Complexity of
lattice
problems on
cyclic lattices

Xun Sun
(Claremont
Graduate
University)

Introduction

Complexity of
lattice
problems

Complexity on
cyclic lattices

Well-rounded
cyclic lattices

Future work

