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Basis Representation

This talk will give one sort of duality between the algebraic and
geometric descriptions of finite fields.

We can view [Fyn as a vector space of dimension n over F,. Then,
any basis of [F;n over [F, can be used to represent the elements in
Fyn.

An element o € Fyn is normal if
n—1
N ={a,a,...;a7 '}

is a basis of Fyn over IF;. The basis N is a normal basis of Fyn
over F,.

By convention we define «; = ot for i = 0,1,...,n—1.



Normal bases in computation

Let {ag,1,...,an—1} be a normal basis of Fy» over F, with
a;=a, and A € Fyn be

n—1
A= (ap,a1,...,ap-1) = E a; 0.
=0

Then, since a = a;41 for i =0,1,...,n— 2 and a! | = a, we
have
n—1 n—1
_ q_ _
Al = E ao; = E a;ip1 = (p—1,00,-..,0,-2).
i=0 =0

g-th power <= cyclic shift of coordinates.

This means taking qth powers has negligible cost!



Normal Bases

The normal basis theorem for finite fields (Eisenstein, Schénemann,
Hensel) establishes that for any prime power ¢ and positive integer
n, there is a normal basis for F» over IF,.

An exact expression for the number of normal elements in [Fyn over
[F, was determined by Ore (1934). Explicit (easy to use) lower and
upper bounds are known. For example, the probability that an
arbitrary element in Fyn is normal is larger than 1/(161og, n).



As a geometric object

Let f(z) = 321" a;z’ € Fy[z] and define an action on the
algebraic closure of F, by

n—1 n—1 )
foa= Zaia;(a) = Zaioﬂl.
1=0 i=0

This action imbues I, with the structure of an F,[z]-module.
Using this action, we have trivially that
(z"—Doa=a? —a=0

if and only if o € Fyn. Moreover,

Fon = Fola]/ (2" = 1).



Additive order

Moreover, for any o € Fyn the annihilator of « is an ideal, and is
generated by a polynomial of minimum degree.

Definition. If Ann(a)) = (g) € Fy[z], then g is the F,-Order of «,
which we denote by Ord(«).

We have seen that o € Fy» implies that « is annihilated by 2™ — 1.
Moreover, if « is normal, it cannot be annihilated by a polynomial
of smaller degree.

Proposition. An element o € Fy» is normal if and only if

Ord(ar) = 2™ — 1.



k-normal elements

Definition. Let o € Fyn and let Ord(a) = g. If deg(g) =n — k,
then a is k-normal.



k-normal elements

Definition. Let o € Fygn and let Ord(a) = g¢. If deg(g) =n — k,
then a is k-normal.

In what follows, we need the natural analogue of the Euler phi
function for polynomials.

Definition. Let f € Fy[z] be monic, the Euler Phi function for
polynomials is given by ®,(f) = |(Fq[z]/fFq[x])*|.

Proposition. (Ore - 1934) Let f € F,[z] be monic and relatively
prime to x. Then the number of « in the algebraic closure of [,
with Ord(«) = f equals ®4(f).



The number of k-normal elements

Theorem. The number of k-normal elements of Fy» over [Fy is

given by
Z (I)Q(h)7

hlz™—1,
deg(h)=n—k

where divisors are monic and polynomial division is over F,.
When k = 0, that is, when counting the number of normal

elements, the above summation reduces to ®,(z" — 1), as
expected.



The number of k-normal elements

Theorem. The number of k-normal elements of Fy» over [Fy is

given by
Z (I)Q(h)7

hlz™—1,
deg(h)=n—k

where divisors are monic and polynomial division is over F,.

When k = 0, that is, when counting the number of normal
elements, the above summation reduces to ®,(z" — 1), as
expected.

Clearly,
2" —1=(x -1 +2" 2+ +1),

so the only values of k for which k-normal elements are guaranteed
to exist for every (q,n) are 0,1 and n — 1.



Some trivia about k-normals

Theorem. Let o € Fgn. The following are equivalent:
(i) «is k-normal over Fy;
(ii) deg(Ord(a)) =n —k;
(i) « gives rise to a basis {«, a?,.. .,oﬂn*k*l} of a g-modulus of
dimension n — k over Fy;

(iv) deg(ged(z™ —1,0z" '+ alz" 4. 4" ) =n—k;

2 n—1
o a? o7 ... af
n—1 n—2
af a of ... of
(v) Let A, = . . S .|, then
2 3
al a? aof o

rank(Aq,) =n — k.



Primitive and normal

Definition. An element o € Iy is primitive if (a) = F}.

Primitive elements are therefore generators of the multiplicative
(field-theoretic) structure of F; and normal elements are, in some
sense, generators of an additive (geometric) structure of [F,.

A natural question is whether elements exist which combine these
two notions.

Theorem. (Carlitz - 1952, Davenport - 1968, Lenstra and
Schoof - 1987, Cohen and Huczynska - 2003)

There exists an element o € F; which is simultaneously primitive
and normal.



Primitive k-normals

We have used a basic Sage program to enumerate every element of
small finite fields for k-normal and primitive k-normal elements.

q=2,n=26 q=5n==6
k | # k-norm.  # pr. k-norm. k | # k-norm.  # pr. k-norm.
0 24 18 0 9216 2568
1 12 12 1 4608 1320
2 18 6 2 1344 360
3 3 0 3 384 72
4 5 0 4 64 0
5 1 0 5 8 0
q=5n="7T

k | # k-norm.  # pr. k-norm.

0 62496 31248

1 15624 7812

2 0 0

3 0 0

4 0 0

5 0 0

6 4 0




Non-existence of some k-normals

Non-existence result. Let kK = n — 1. There are no primitive
k-normal elements.

Proof. Suppose « is a primitive (n — 1)-normal element. Then
(x — ) oo =0 for some € F,. Hence, a? — fa = 0 and
al~le Fy,.

Therefore, the multiplicative order of « divides (¢ — 1)2, which is a
contradiction for n > 2.

Similar reasoning shows that there are no primitive (n — 2)-normals
when ¢ =1 (mod 4). But this is incremental (boring).



The method of Carlitz and Davenport

Let

(d)
Z a o) > X,

dlgn—1 XGF;n,ord(X)zd
M(g)
Aa).
En: 3(0) 3 (a)
glzm—1 AEFn,0rd(N\)=g

The number of elements o € Fy» which are primitive and normal is

Z w(a)Q(a).

OLG]Fqn

Using standard Gauss sum arguments, it is easy to show that
primitive normal bases exist asymptotically (Carlitz, Davenport).
Finer counts and refinements are needed for the final result
(Lenstra and Schoof, Cohen and Huczynska).



Some issues to deal with

Difficulty 1. It is clear that primitive k-normals do not exist for all
k,n.

Difficulty 2. We do not have a characteristic function for
k-normality.

We can fix this in some cases by considering the notion of free

elements.

(a) Formlg" — 1, a € Fyn is m-free if a = B4, for any divisor d of
m, implies d = 1.

(b) For M|z"™ — 1, a € Fyn is M-free if « = H(3), where H is
the g-associate of a divisor h of M, implies h = 1.



Using freeness

Proposition. An element is primitive if and only if it is
(¢" — 1)-free. An element is normal if and only if it is (2™ — 1)-free.

Difficulty. If « is g-free for some divisor g of ™ — 1, then « is
h-free for all h|g.

Proposition. Suppose ™ — 1 has a non-repeated linear factor
x—(, €, Then

if and only if

n_

. x 1
« is a non-normal -free element.



Putting it together

So, instead we prove existence of:
1. (¢" — 1)-free,

-1
2. ( ] )-free,
3. Trace-0 (non-normal and with a known characteristic
function).

elements when p does not divide n.

Lucky for us: Character sums of this form were studied by Cohen
and Hachenberger (1999).



Our result

Theorem. Let ¢ = p© be a prime power and let n be a positive
integer with p fn. Assume that n > 6 if ¢ > 11 and that n > 3 if
3<g<9.

Then there exists a primitive 1-normal basis of F,» over [F,.



Concluding problems

Problem. Obtain a complete existence result for primitive 1-normal
elements of Fy» over IF,. We conjecture that such elements always

exist.

Problem. Determine the pairs (n, k) such that primitive k-normals
elements of Fy» over I, exist.
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