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The ratios of consecutive divisors
Example: The divisors of n = 2013 = 3 · 11 · 61 are

{d1, d2, . . . , d8} = {1, 3, 11, 33, 61, 183, 671, 2013}.

The ratios of consecutive divisors are{
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The maximum and minimum ratios are

R(2013) := max
1≤i<8

di+1

di
=

11
3
,

r(2013) := min
1≤i<8
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Maximum and minimum ratios for small n

R(n) := max
1≤i<τ(n)

di+1

di
, r(n) := min

1≤i<τ(n)

di+1

di
.

n R(n) r(n)

2 2 2
4 2 2
6 2 3/2
8 2 2
9 3 3

10 5/2 2
12 2 4/3
14 7/2 2
15 3 5/3
16 2 2
18 2 3/2
20 2 5/4
21 3 7/3



The minimum ratio of consecutive divisors

Let
r(n) = min

1≤i<τ(n)

di+1

di
,

S(x, t) := |{n ≤ x : r(n) ≥ t}|.

Erdős conjectured in the 1940s that for all fixed t > 1,

S(x, t) = o(x)

This was proved in 1984 by Maier and Tenenbaum.

A result for the case t = 2 by Stef is

x
(log x)β+o(1) ≤ S(x, 2) ≤ x e−c

√
log log x

where β = 0.00415..., c > 0 is some constant.



The minimum ratio of consecutive divisors

Let
r(n) = min

1≤i<τ(n)

di+1

di
,

S(x, t) := |{n ≤ x : r(n) ≥ t}|.
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An alternate formula for the maximum ratio

For n = pα1
1 · · · p

αk
k , p1 < . . . < pk, define

F(n) = max
1≤i≤k

pi(pαi
i pαi+1

i+1 · · · p
αk
k ).

Tenenbaum (1986) showed that

F(n)

n
= max

1≤i<τ(n)

di+1

di
(n ≥ 2).

Example: For n = 2013 = 3 · 11 · 61 we have

F(n) = max{32 · 11 · 61, 112 · 61, 612} = 112 · 61

and
F(2013)

2013
=

112 · 61
3 · 11 · 61

=
11
3
.
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The number of n ≤ x with t-dense divisors.

Define

D(x, t) := #

{
n ≤ x : max

1≤i<τ(n)

di+1

di
≤ t
}

= #

{
n ≤ x :

F(n)

n
≤ t
}

= "The number of n ≤ x with t-dense divisors"

Tenenbaum (1986): For t ≥ e(log log x)5/3+ε

x
log t
log x

� D(x, t)� x
log t log

(
2 log x
log t

)
log x

.

Saias (1997): For x ≥ t ≥ 2,

D(x, t)�� x
log t
log x
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Application: Longest path in the divisor graph
The divisor graph of order n is the graph with vertices {1, 2, . . . , n},
and an edge between a and b iff a|b or b|a.

1

2

3

4
5

6

7

8

9

10

11

12
13

14

15

16

Let f (n) := length of the longest path in the divisor graph of order n.
Example: f (16) = 14:

10→ 5→ 15→ 3→ 6→ 12→ 4→ 8→ 16→ 2→ 14→ 7→ 1→ 9.
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Application: Longest path in the divisor graph

f (n) is the length of the longest path in the divisor graph of order n.

Pollington (1983):

f (n) ≥ n exp
{
−(2 + o(1))

√
log n log log n

}
Tenenbaum (1995):

D̃(n/4, 2) ≤ f (n) ≤ 2D(n, (log n)5)

Saias (1998):
f (n)�� n

log n



An asymptotic formula for D(x, t)

Theorem (2003)
Uniformly for x ≥ t ≥ exp

{
(log log x)5/3+ε

}
,

D(x, t) = x d(v)

{
1 + O

(
1

log t

)}
,

where
v =

log x
log t

and d(v) is a continuous, decreasing function which satisfies

1.8 ≤ (v + 1) d(v) ≤ 3.4 (v ≥ 1).

Question: Does lim
v→∞

(v + 1) d(v) exist?
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D(x, t) ∼ x d
(

log x
log t

)
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Figure: A graph of d(v).



An asymptotic formula for d(v).

Theorem (2013)
For v ≥ 1 we have

d(v) =
C

v + 1

{
1 + O

(
v−2)},

where C =
1

1− e−γ
= 2.280291..., and γ = 0.577215... is Euler’s

constant.

Remark: The error term is almost best possible: the theorem would be
false if O(v−2) was replaced by O(v−2.1).
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1−e−γ
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Figure: A graph of (v + 1)d(v) and its limit C = 1/(1− e−γ).



Combining D(x, t) ∼ x d(v) with d(v) ∼ C
v+1

Corollary
Uniformly for x ≥ 3, x ≥ t ≥ exp

{
(log log x)5/3+ε

}
, we have

D(x, t) =
Cx log t
log xt

{
1 + O

(
1

log t
+

log2 t
log2 x

)}
.

Under the Riemann hypothesis, this holds for t ≥ (log x)4+ε.
However,

D(x, t) ∼ Cx log t
log xt

(x→∞)

can not hold in general for fixed t since

D(x, p)− D(x, p− 0)��p
x

log x
,

where the last estimate is due to Saias.
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Proof of d(v) ∼ C
v+1: A new functional equation

Define

χt(n) =

{
1 if n has t-dense divisors,
0 else.

Let
Φ(x, y) = |{n ≤ x : p|n⇒ p > y}|.

Lemma
For x ≥ 1, t ≥ 2 we have

[x] =
∑

1≤n≤x

χt(n) Φ(x/n, nt).
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Proof of d(v) ∼ C
v+1: Consequences of new equation

We get

D(x, t) = O(
√

x) + [x]−
∑

n≤
√

x/t

χt(n) Φ(x/n, nt).

With D(x, t) ∼ x d(v) this yields

d(v) = 1−
∫ ∞

0

d(u)

u + 1
ω

(
v− u
u + 1

)
du,

where ω(u) is Buchstab’s function.
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Proof of d(v) ∼ C
v+1: The Laplace transform

The integral equation for d(v) leads to the Laplace transform of
G(y) := eyd(ey − 1),

Ĝ(s) =

∫ ∞
0

e−syG(y) dy (Re s > 0),

namely

Ĝ(s) =
1

(s− 1)(1 + f (s)) + e−γ
,

where f is the entire function given by

f (s) =

∫ ∞
0

(
ω(u)− e−γ

) du
(u + 1)s .



Proof of d(v) ∼ C
v+1: Inversion of the Laplace transform

Let Pa denote the finite set of poles of Ĝ(s) with −a < Re s ≤ 0.

eyd(ey − 1) =: G(y) =
∑

sk∈Pa

Res
(

Ĝ(s)eys; sk

)
+ Oa

(
e−ay) .
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Figure: A contour plot of |Ĝ(s)|.



Open problems

I For t fixed, is

D(x, t) ∼ C(t)
x log t
log x

(x→∞)

for some discontinuous function C(t) ?

I Is
f (n) ∼ cn

log n
(n→∞)

for some constant c, where f (n) is the longest path in the divisor
graph ?
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