

# On the ratios of consecutive divisors

Andreas Weingartner

Department of Mathematics  
Southern Utah University

WCNT, December 15-19, 2013

# The ratios of consecutive divisors

**Example:** The divisors of  $n = 2013 = 3 \cdot 11 \cdot 61$  are

$$\{d_1, d_2, \dots, d_8\} = \{1, 3, 11, 33, 61, 183, 671, 2013\}.$$

# The ratios of consecutive divisors

**Example:** The divisors of  $n = 2013 = 3 \cdot 11 \cdot 61$  are

$$\{d_1, d_2, \dots, d_8\} = \{1, 3, 11, 33, 61, 183, 671, 2013\}.$$

The ratios of consecutive divisors are

$$\begin{aligned} \left\{ \frac{d_{i+1}}{d_i} : 1 \leq i < 8 \right\} &= \left\{ \frac{3}{1}, \frac{11}{3}, \frac{33}{11}, \frac{61}{33}, \frac{183}{61}, \frac{671}{183}, \frac{2013}{671} \right\} \\ &= \left\{ 3, \frac{11}{3}, 3, \frac{61}{33}, 3, \frac{11}{3}, 3 \right\} \end{aligned}$$

# The ratios of consecutive divisors

**Example:** The divisors of  $n = 2013 = 3 \cdot 11 \cdot 61$  are

$$\{d_1, d_2, \dots, d_8\} = \{1, 3, 11, 33, 61, 183, 671, 2013\}.$$

The ratios of consecutive divisors are

$$\begin{aligned} \left\{ \frac{d_{i+1}}{d_i} : 1 \leq i < 8 \right\} &= \left\{ \frac{3}{1}, \frac{11}{3}, \frac{33}{11}, \frac{61}{33}, \frac{183}{61}, \frac{671}{183}, \frac{2013}{671} \right\} \\ &= \left\{ 3, \frac{11}{3}, 3, \frac{61}{33}, 3, \frac{11}{3}, 3 \right\} \end{aligned}$$

The maximum and minimum ratios are

$$R(2013) := \max_{1 \leq i < 8} \frac{d_{i+1}}{d_i} = \frac{11}{3},$$

$$r(2013) := \min_{1 \leq i < 8} \frac{d_{i+1}}{d_i} = \frac{61}{33}.$$

## Maximum and minimum ratios for small $n$

$$R(n) := \max_{1 \leq i < \tau(n)} \frac{d_{i+1}}{d_i}, \quad r(n) := \min_{1 \leq i < \tau(n)} \frac{d_{i+1}}{d_i}.$$

| $n$ | $R(n)$ | $r(n)$ |
|-----|--------|--------|
| 2   | 2      | 2      |
| 4   | 2      | 2      |
| 6   | 2      | 3/2    |
| 8   | 2      | 2      |
| 9   | 3      | 3      |
| 10  | 5/2    | 2      |
| 12  | 2      | 4/3    |
| 14  | 7/2    | 2      |
| 15  | 3      | 5/3    |
| 16  | 2      | 2      |
| 18  | 2      | 3/2    |
| 20  | 2      | 5/4    |
| 21  | 3      | 7/3    |

# The minimum ratio of consecutive divisors

Let

$$r(n) = \min_{1 \leq i < \tau(n)} \frac{d_{i+1}}{d_i},$$

$$S(x, t) := |\{n \leq x : r(n) \geq t\}|.$$

# The minimum ratio of consecutive divisors

Let

$$r(n) = \min_{1 \leq i < \tau(n)} \frac{d_{i+1}}{d_i},$$

$$S(x, t) := |\{n \leq x : r(n) \geq t\}|.$$

Erdős conjectured in the 1940s that for all fixed  $t > 1$ ,

$$S(x, t) = o(x)$$

This was proved in 1984 by Maier and Tenenbaum.

# The minimum ratio of consecutive divisors

Let

$$r(n) = \min_{1 \leq i < \tau(n)} \frac{d_{i+1}}{d_i},$$

$$S(x, t) := |\{n \leq x : r(n) \geq t\}|.$$

Erdős conjectured in the 1940s that for all fixed  $t > 1$ ,

$$S(x, t) = o(x)$$

This was proved in 1984 by Maier and Tenenbaum.

A result for the case  $t = 2$  by Stef is

$$\frac{x}{(\log x)^{\beta+o(1)}} \leq S(x, 2) \leq x e^{-c\sqrt{\log \log x}}$$

where  $\beta = 0.00415\dots$ ,  $c > 0$  is some constant.

## An alternate formula for the maximum ratio

For  $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ ,  $p_1 < \dots < p_k$ , define

$$F(n) = \max_{1 \leq i \leq k} p_i(p_i^{\alpha_i} p_{i+1}^{\alpha_{i+1}} \cdots p_k^{\alpha_k}).$$

## An alternate formula for the maximum ratio

For  $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ ,  $p_1 < \dots < p_k$ , define

$$F(n) = \max_{1 \leq i \leq k} p_i(p_i^{\alpha_i} p_{i+1}^{\alpha_{i+1}} \cdots p_k^{\alpha_k}).$$

Tenenbaum (1986) showed that

$$\frac{F(n)}{n} = \max_{1 \leq i < \tau(n)} \frac{d_{i+1}}{d_i} \quad (n \geq 2).$$

## An alternate formula for the maximum ratio

For  $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ ,  $p_1 < \dots < p_k$ , define

$$F(n) = \max_{1 \leq i \leq k} p_i(p_i^{\alpha_i} p_{i+1}^{\alpha_{i+1}} \cdots p_k^{\alpha_k}).$$

Tenenbaum (1986) showed that

$$\frac{F(n)}{n} = \max_{1 \leq i < \tau(n)} \frac{d_{i+1}}{d_i} \quad (n \geq 2).$$

**Example:** For  $n = 2013 = 3 \cdot 11 \cdot 61$  we have

$$F(n) = \max\{3^2 \cdot 11 \cdot 61, 11^2 \cdot 61, 61^2\} = 11^2 \cdot 61$$

and

$$\frac{F(2013)}{2013} = \frac{11^2 \cdot 61}{3 \cdot 11 \cdot 61} = \frac{11}{3}.$$

# The number of $n \leq x$ with $t$ -dense divisors.

Define

$$D(x, t) := \# \left\{ n \leq x : \max_{1 \leq i < \tau(n)} \frac{d_{i+1}}{d_i} \leq t \right\} = \# \left\{ n \leq x : \frac{F(n)}{n} \leq t \right\}$$

= "The number of  $n \leq x$  with  $t$ -dense divisors"

# The number of $n \leq x$ with $t$ -dense divisors.

Define

$$D(x, t) := \# \left\{ n \leq x : \max_{1 \leq i < \tau(n)} \frac{d_{i+1}}{d_i} \leq t \right\} = \# \left\{ n \leq x : \frac{F(n)}{n} \leq t \right\}$$

= "The number of  $n \leq x$  with  $t$ -dense divisors"

Tenenbaum (1986): For  $t \geq e^{(\log \log x)^{5/3+\epsilon}}$

$$x \frac{\log t}{\log x} \ll D(x, t) \ll x \frac{\log t \log \left( \frac{2 \log x}{\log t} \right)}{\log x}.$$

# The number of $n \leq x$ with $t$ -dense divisors.

Define

$$D(x, t) := \# \left\{ n \leq x : \max_{1 \leq i < \tau(n)} \frac{d_{i+1}}{d_i} \leq t \right\} = \# \left\{ n \leq x : \frac{F(n)}{n} \leq t \right\}$$

= "The number of  $n \leq x$  with  $t$ -dense divisors"

Tenenbaum (1986): For  $t \geq e^{(\log \log x)^{5/3+\epsilon}}$

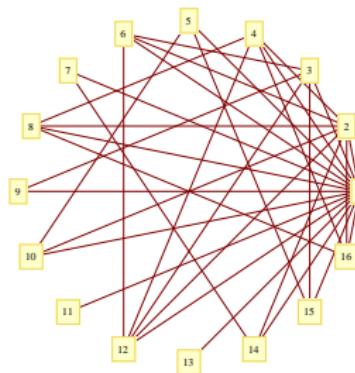
$$x \frac{\log t}{\log x} \ll D(x, t) \ll x \frac{\log t \log \left( \frac{2 \log x}{\log t} \right)}{\log x}.$$

Saias (1997): For  $x \geq t \geq 2$ ,

$$D(x, t) \ll \gg x \frac{\log t}{\log x}.$$

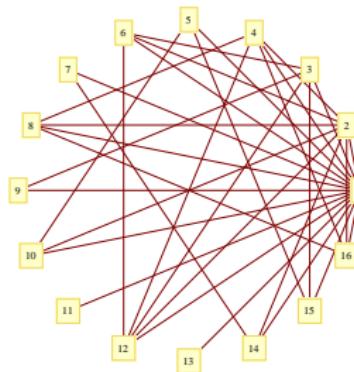
# Application: Longest path in the divisor graph

The divisor graph of order  $n$  is the graph with vertices  $\{1, 2, \dots, n\}$ , and an edge between  $a$  and  $b$  iff  $a|b$  or  $b|a$ .



## Application: Longest path in the divisor graph

The divisor graph of order  $n$  is the graph with vertices  $\{1, 2, \dots, n\}$ , and an edge between  $a$  and  $b$  iff  $a|b$  or  $b|a$ .



Let  $f(n) :=$  length of the longest path in the divisor graph of order  $n$ .

**Example:**  $f(16) = 14$ :

$10 \rightarrow 5 \rightarrow 15 \rightarrow 3 \rightarrow 6 \rightarrow 12 \rightarrow 4 \rightarrow 8 \rightarrow 16 \rightarrow 2 \rightarrow 14 \rightarrow 7 \rightarrow 1 \rightarrow 9$ .

## Application: Longest path in the divisor graph

$f(n)$  is the length of the longest path in the divisor graph of order  $n$ .

Pollington (1983):

$$f(n) \geq n \exp \left\{ -(2 + o(1)) \sqrt{\log n \log \log n} \right\}$$

Tenenbaum (1995):

$$\tilde{D}(n/4, 2) \leq f(n) \leq 2D(n, (\log n)^5)$$

Saias (1998):

$$f(n) \ll \gg \frac{n}{\log n}$$

# An asymptotic formula for $D(x, t)$

Theorem (2003)

Uniformly for  $x \geq t \geq \exp \{(\log \log x)^{5/3+\varepsilon}\}$ ,

$$D(x, t) = x d(v) \left\{ 1 + O\left(\frac{1}{\log t}\right) \right\},$$

where

$$v = \frac{\log x}{\log t}$$

and  $d(v)$  is a continuous, decreasing function which satisfies

$$1.8 \leq (v + 1) d(v) \leq 3.4 \quad (v \geq 1).$$

# An asymptotic formula for $D(x, t)$

Theorem (2003)

Uniformly for  $x \geq t \geq \exp\{(\log \log x)^{5/3+\varepsilon}\}$ ,

$$D(x, t) = x d(v) \left\{ 1 + O\left(\frac{1}{\log t}\right) \right\},$$

where

$$v = \frac{\log x}{\log t}$$

and  $d(v)$  is a continuous, decreasing function which satisfies

$$1.8 \leq (v + 1) d(v) \leq 3.4 \quad (v \geq 1).$$

**Question:** Does  $\lim_{v \rightarrow \infty} (v + 1) d(v)$  exist?

$$D(x, t) \sim x \, d\left(\frac{\log x}{\log t}\right)$$

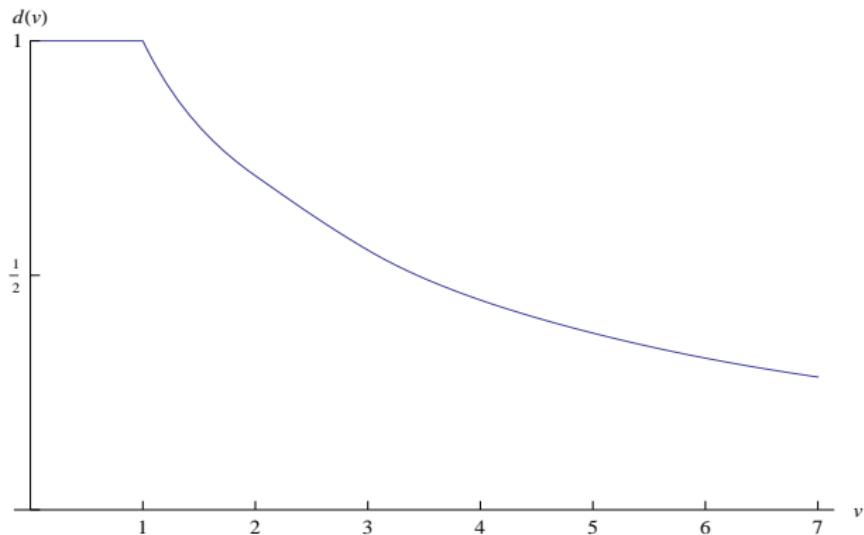


Figure: A graph of  $d(v)$ .

# An asymptotic formula for $d(v)$ .

Theorem (2013)

For  $v \geq 1$  we have

$$d(v) = \frac{C}{v+1} \left\{ 1 + O(v^{-2}) \right\},$$

where  $C = \frac{1}{1 - e^{-\gamma}} = 2.280291\dots$ , and  $\gamma = 0.577215\dots$  is Euler's constant.

# An asymptotic formula for $d(v)$ .

Theorem (2013)

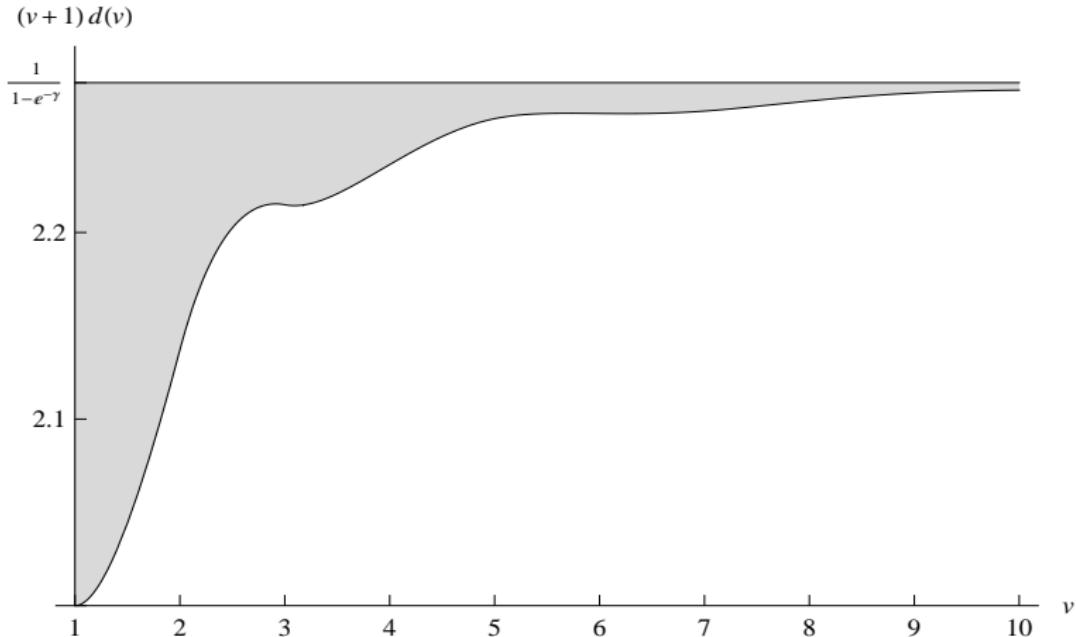
For  $v \geq 1$  we have

$$d(v) = \frac{C}{v+1} \left\{ 1 + O(v^{-2}) \right\},$$

where  $C = \frac{1}{1 - e^{-\gamma}} = 2.280291\dots$ , and  $\gamma = 0.577215\dots$  is Euler's constant.

**Remark:** The error term is almost best possible: the theorem would be false if  $O(v^{-2})$  was replaced by  $O(v^{-2.1})$ .

$$(v + 1) d(v) \sim \frac{1}{1 - e^{-\gamma}}$$



**Figure:** A graph of  $(v + 1)d(v)$  and its limit  $C = 1/(1 - e^{-\gamma})$ .

Combining  $D(x, t) \sim x d(v)$  with  $d(v) \sim \frac{C}{v+1}$

## Corollary

Uniformly for  $x \geq 3$ ,  $x \geq t \geq \exp\{(\log \log x)^{5/3+\varepsilon}\}$ , we have

$$D(x, t) = \frac{Cx \log t}{\log xt} \left\{ 1 + O\left(\frac{1}{\log t} + \frac{\log^2 t}{\log^2 x}\right) \right\}.$$

Combining  $D(x, t) \sim x d(v)$  with  $d(v) \sim \frac{C}{v+1}$

### Corollary

Uniformly for  $x \geq 3$ ,  $x \geq t \geq \exp\{(\log \log x)^{5/3+\varepsilon}\}$ , we have

$$D(x, t) = \frac{Cx \log t}{\log xt} \left\{ 1 + O\left(\frac{1}{\log t} + \frac{\log^2 t}{\log^2 x}\right) \right\}.$$

Under the Riemann hypothesis, this holds for  $t \geq (\log x)^{4+\varepsilon}$ .

However,

$$D(x, t) \sim \frac{Cx \log t}{\log xt} \quad (x \rightarrow \infty)$$

can **not** hold in general for fixed  $t$  since

$$D(x, p) - D(x, p-0) \ll \gg_p \frac{x}{\log x},$$

where the last estimate is due to Saias.

# Proof of $d(v) \sim \frac{C}{v+1}$ : A new functional equation

Define

$$\chi_t(n) = \begin{cases} 1 & \text{if } n \text{ has } t\text{-dense divisors,} \\ 0 & \text{else.} \end{cases}$$

# Proof of $d(v) \sim \frac{C}{v+1}$ : A new functional equation

Define

$$\chi_t(n) = \begin{cases} 1 & \text{if } n \text{ has } t\text{-dense divisors,} \\ 0 & \text{else.} \end{cases}$$

Let

$$\Phi(x, y) = |\{n \leq x : p|n \Rightarrow p > y\}|.$$

# Proof of $d(v) \sim \frac{C}{v+1}$ : A new functional equation

Define

$$\chi_t(n) = \begin{cases} 1 & \text{if } n \text{ has } t\text{-dense divisors,} \\ 0 & \text{else.} \end{cases}$$

Let

$$\Phi(x, y) = |\{n \leq x : p|n \Rightarrow p > y\}|.$$

## Lemma

For  $x \geq 1$ ,  $t \geq 2$  we have

$$[x] = \sum_{1 \leq n \leq x} \chi_t(n) \Phi(x/n, nt).$$

# Proof of $d(v) \sim \frac{C}{v+1}$ : Consequences of new equation

We get

$$D(x, t) = O(\sqrt{x}) + [x] - \sum_{n \leq \sqrt{x/t}} \chi_t(n) \Phi(x/n, nt).$$

# Proof of $d(v) \sim \frac{C}{v+1}$ : Consequences of new equation

We get

$$D(x, t) = O(\sqrt{x}) + [x] - \sum_{n \leq \sqrt{x/t}} \chi_t(n) \Phi(x/n, nt).$$

With  $D(x, t) \sim x d(v)$  this yields

$$d(v) = 1 - \int_0^\infty \frac{d(u)}{u+1} \omega\left(\frac{v-u}{u+1}\right) du,$$

where  $\omega(u)$  is Buchstab's function.

## Proof of $d(v) \sim \frac{C}{v+1}$ : The Laplace transform

The integral equation for  $d(v)$  leads to the Laplace transform of  $G(y) := e^y d(e^y - 1)$ ,

$$\widehat{G}(s) = \int_0^\infty e^{-sy} G(y) \, dy \quad (\operatorname{Re} s > 0),$$

namely

$$\widehat{G}(s) = \frac{1}{(s-1)(1+f(s)) + e^{-\gamma}},$$

where  $f$  is the entire function given by

$$f(s) = \int_0^\infty (\omega(u) - e^{-\gamma}) \frac{du}{(u+1)^s}.$$

# Proof of $d(v) \sim \frac{C}{v+1}$ : Inversion of the Laplace transform

Let  $P_a$  denote the finite set of poles of  $\widehat{G}(s)$  with  $-a < \operatorname{Re} s \leq 0$ .

$$e^y d(e^y - 1) =: G(y) = \sum_{s_k \in P_a} \operatorname{Res} \left( \widehat{G}(s) e^{ys}; s_k \right) + O_a(e^{-ay}).$$

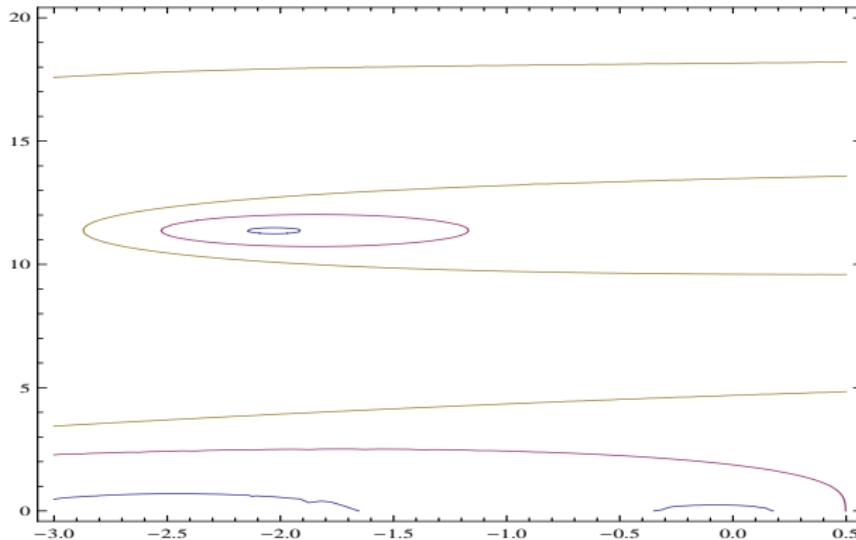


Figure: A contour plot of  $|\widehat{G}(s)|$ .

# Open problems

- ▶ For  $t$  fixed, is

$$D(x, t) \sim C(t) \frac{x \log t}{\log x} \quad (x \rightarrow \infty)$$

for some discontinuous function  $C(t)$  ?

# Open problems

- ▶ For  $t$  fixed, is

$$D(x, t) \sim C(t) \frac{x \log t}{\log x} \quad (x \rightarrow \infty)$$

for some discontinuous function  $C(t)$  ?

- ▶ Is

$$f(n) \sim \frac{cn}{\log n} \quad (n \rightarrow \infty)$$

for some constant  $c$ , where  $f(n)$  is the longest path in the divisor graph ?

-  E. Saias, Entiers à diviseurs denses 1, *J. Number Theory* **62** (1997), 163–191.
-  E. Saias, Entiers à diviseurs denses 2, *J. Number Theory* **86** (2001), 39–49.
-  E. Saias, Applications des entiers à diviseurs denses, *Acta Arith.* **83** (1998), 225–240.
-  G. Tenenbaum, Sur un problème de crible et ses applications, *Ann. Sci. École Norm. Sup. (4)* **19** (1986), 1–30.
-  G. Tenenbaum, Sur un problème de crible et ses applications, 2. Corrigendum et étude du graphe divisoriel. *Ann. Sci. École Norm. Sup. (4)* **28** (1995), 115–127.
-  A. Weingartner, Integers with dense divisors, *J. Number Theory* **108** (2004), 1–17.
-  A. Weingartner, Integers with dense divisors 2, *J. Number Theory* **108** (2004), 18–28.