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The ratios of consecutive divisors

Example: The divisors of n = 2013 =311 - 61 are

{di,d>,....ds} = {1,3,11,33,61,183,671,2013}.
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The ratios of consecutive divisors

Example: The divisors of n = 2013 =311 - 61 are

{di,d>,....ds} = {1,3,11,33,61,183,671,2013}.

The ratios of consecutive divisors are
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The maximum and minimum ratios are

. dirp 11
RE013) = o St = 5,
dir1 61

r(2013) := 12128 i T3
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Maximum and minimum ratios for small n

dit1 o dig
Rin) := 1§rin<a}(n) di’ r(n) = 1<iern) di
n | R(n) | r(n)
2 2 2
4 2 2
6 2 3/2
8 2 2
9 3 3
10 | 572 2
12 2 4/3
14| 772 2
15 3 5/3
16 2 2
18 2 372
20 2 5/4
21 3 7/3




The minimum ratio of consecutive divisors
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The minimum ratio of consecutive divisors

Let

B . dig
rln) = 1<igrn) d;

S(x, 1) .= |{n <x:r(n) >t}

i

Erdés conjectured in the 1940s that for all fixed r > 1,

S(x,t) = o(x)

This was proved in 1984 by Maier and Tenenbaum.



The minimum ratio of consecutive divisors

Let

d:
r(n) = min s
1<i<r(n) d;

S(x, 1) .= |{n <x:r(n) >t}

i

Erdés conjectured in the 1940s that for all fixed r > 1,

S(x,t) = o(x)

This was proved in 1984 by Maier and Tenenbaum.
A result for the case t = 2 by Stef is

X

(log x)F+o) < 8(x,2) < xe¢Vlogloex
ogx

where 8 = 0.00415..., ¢ > 0 is some constant.
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An alternate formula for the maximum ratio
Forn = p{'---p*, p1 <...< px define

_ A Qi i
F(”) = lrg?gkpl(pi Pit1 pkk)'

Tenenbaum (1986) showed that

F .
(I’l) — max dl+1
n 1<i<r(n) d;

(n>2).

Example: For n = 2013 =3 - 11 - 61 we have
F(n) = max{3%-11-61, 112-61, 61} = 112- 61

and
F(2013)  112-61 11

2013 3-11-61 3~



The number of n < x with ¢t-dense divisors.

Define
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= "The number of n < x with ¢t-dense divisors"
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Tenenbaum (1986): For 7 > e(lg log x)3/3+¢

logt
xii<D@ﬁ<x
log x

logtlog ( ZILoggtx>

log x



The number of n < x with ¢t-dense divisors.

Define

D(x,1) ::#{ngx: max dii §t}:#{n§x:Fin) gt}

1<i<r(n) d;

= "The number of n < x with ¢t-dense divisors"

Tenenbaum (1986): For ¢ > e(loglogx)*/**<

log ¢ log tlog (Zli,(;gtx>
x—— L D(x,1) < x .
log x log x
Saias (1997): Forx >t > 2,
logt

D(x,t) <> x ——.
log x



Application: Longest path in the divisor graph

The divisor graph of order n is the graph with vertices {1,2,...,n},
and an edge between a and b iff a|b or b|a.
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Application: Longest path in the divisor graph

The divisor graph of order n is the graph with vertices {1,2,...,n},
and an edge between a and b iff a|b or b|a.
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Let f(n) := length of the longest path in the divisor graph of order n.
Example: f(16) = 14:

100—-5—+15—-3—-6—12—-4—-8—>16—>2—14—7—>1—09.



Application: Longest path in the divisor graph

f(n) is the length of the longest path in the divisor graph of order n.
Pollington (1983):

f(n) > nexp {—(2+0(1))\/10gnloglogn}

Tenenbaum (1995):

D(n/4,2) < f(n) <2D(n, (log n)s)

Saias (1998):
n
fln) <>

logn



An asymptotic formula for D(x, ¢)

Theorem (2003)
Uniformly for x > t > exp { (loglog x)5/3+5},

D(x,t) = xd(v) {1 +0 (;y)}

_ logx

where

' log ¢t

and d(v) is a continuous, decreasing function which satisfies

18<(v+1)dv) <34  (v>1).



An asymptotic formula for D(x, ¢)

Theorem (2003)
Uniformly for x > t > exp { (loglog x)5/3+5},

D(x,t) = xd(v) {1 +0 <lolgt>}

where
_ logx

log ¢t

and d(v) is a continuous, decreasing function which satisfies

18<(v+1)dv) <34  (v>1).

Question: Does lim (v + 1) d(v) exist?

V—00



D(x,t) ~x d (%)

dv)
1

Figure: A graph of d(v).



An asymptotic formula for d(v).

Theorem (2013)

Forv > 1 we have

dv) =< {1+00™)},

v+1

where C = — = 2.280291..., and v = 0.577215... is Euler’s
—e
constant.



An asymptotic formula for d(v).

Theorem (2013)
Forv > 1 we have
C
d(v) = {1 o(v? }
(v) —— +0(v7?)
where C = — = 2.280291..., and v = 0.577215... is Euler’s
—e
constant.

Remark: The error term is almost best possible: the theorem would be
false if O(v=2) was replaced by O(v=%1).



(vV+1)d(v)
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1-e77
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Figure: A graph of (v 4 1)d(v) and its limit C = 1/(1 — e~ 7).



Combining D(x,t) ~ xd(v) with d(v) ~ vfl

Corollary

Uniformly for x > 3, x >t > exp {(log log x)5/3+’3}, we have

Cxlogt 1 log? ¢
Dlx, ) = EElog {1+o(+°g2>}.
log xt logr  log“x




Combining D(x,t) ~ xd(v) with d(v) ~ -

v+1

Corollary
Uniformly for x > 3, x >t > exp {(log log x)5/3+£}, we have

Cxlogt 1 log? ¢
D(x.1) = 1o {Ho(wi)}.
log xt logr  log“x

Under the Riemann hypothesis, this holds for # > (log x)**=.
However,

Cxlogt

D(x,t) ~ (x — o0)

log xt

can not hold in general for fixed ¢ since
D(x,p) — D( 0) <> *
x,p) —D(x,p — —
P P P logx’

where the last estimate is due to Saias.



Proof of d(v) ~ -~ A new functional equation

Define

1 if n has t-dense divisors,
Xi(n) =

0 else.
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Define

1 if n has t-dense divisors,
Xi(n) =

0 else.

Let
Q(x,y) = {n < x: pln=p >y}



Proof of d(v) ~ -1 A new functional equation

v+1°
Define
1 if n has t-dense divisors,
Xi(n) =
0 else.
Let
O(x,y) ={n<x:pln=p>y}
Lemma

Forx>1,t> 2 we have



Proof of d(v) ~ -5;: Consequences of new equation

We get



Proof of d(v) ~ -5;: Consequences of new equation

We get

With D(x, 1) ~ xd(v) this yields

=1 [ 2 ()

where w(u) is Buchstab’s function.




Proof of d(v) ~ V%: The Laplace transform

The integral equation for d(v) leads to the Laplace transform of
G(y):==ed(e — 1),

G(s) = /OOO e ”G(y)dy (Res>0),

namely
~ 1

O = D) T

where f is the entire function given by

fls) = /OOO(W(”) —e) (u jiru1)s'




Proof of d(v) ~ —=: Inversion of the Laplace transform
Let P, denote the ﬁmte set of poles of G( ) with —a < Res < 0.

ed(e — g Res ( s)e’; sk) + 04 (7).
skEP,
15 —
s ——
ot N ‘ e —— \\‘\’
73‘.0 —2.5 —2.0 —1.5 —1.0 —0.5 0.0 0.5

Figure: A contour plot of |G(s)|.



Open problems

» For ¢ fixed, is

xlogt

D(x,t) ~ C(1) Togx

(x — 00)

for some discontinuous function C(z) ?



Open problems

» For ¢ fixed, is

xlogt

D(x,t) ~ C(t
(50~ OO T (s )
for some discontinuous function C(z) ?
> Is cn
Fl) ~ o (o)

for some constant ¢, where f(n) is the longest path in the divisor
graph ?
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