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Motivation — Schoolbook construction of finite fields

The complexity of various computations over finite fields depends on the
basis representation used.

Let n be a positive integer and let g be a prime power. The finite
extension F4» over Iy, can be constructed by

© Picking a degree-n irreducible polynomial over [F.
@ Adjoining one of its roots
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N
The bottleneck.

Equivalently, pick f € Fg[x] irreducible. Then

Fan = Fq[x]/(F);

that is, the elements of Fgn are the polynomials of degree at most n — 1
over Fg. Arithmetic is performed (mod f).

The cost of arithmetic using this power basis is* directly related to the
number of terms in the modulus f (lower is better).

Obvious. Let f € Fa[x]. If f has an even number of nonzero terms, then f
is reducible.
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Swan-Stickelberger
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Stickelberger

So, for performing arithmetic over F», we prefer polynomials f which have
3,5,... non-zero terms.

Theorem. (Stickelberger) Suppose that f is a monic polynomial of degree
n with coefficients in Z, C IF, where F is a p-adic field. Let f=fFf

(mod p) and suppose f has no repeated roots. If f has r irreducible
factors over the residue class field, then

r=n (mod 2) if and only if D(f) is a square in F,
where f(x) = [[72¢(x — a;) and
n—1
D) =TT — e = (-1 D72 ] e,
i<j i=0

is its discriminant.
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Swan'’s contributions (1962)

Corollary. If f is an irreducible polynomial over Fy with D(f) # 0 and r is
its number of irreducible factors over 5, let g € Zy[x] such that g

(mod 2) = f. Then n=r (mod 2) if and only if D(g) =1 (mod 8).
Moreover, the discriminant of a trinomial is computable by hand.
Proposition.

D(x" 4+ x¥ + 1) = (=1)"(n—1)/2 (n”l + (=" (n - k)kl)d :

where d = ged(n, k), n1 = n/d and k1 = n/d.
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Swan’s Theorem (1962)

Theorem. Let n > k > 0. Wlog (considering instead the reverse
polynomial), assume precisely one of n, k is odd. If r is the number of
irreducible factors of x” 4+ x* + 1 € F5[x], then r is even when:

© neven, k odd, n # 2k and nk/2 =0,1 (mod 4);
@ nodd, k even, k f/2n and n=3,5 (mod 8);
@ nodd, k even, k|2n and n=1,7 (mod 8).

Experiment. (See Seroussi, HFF, Magma) For n < 10,000 approximately
50% of all degrees n have an irreducible trinomial.

In every case that there is not an irreducible trinomial, we find an
irreducible pentanomial.
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Pentanomials

Pentanomials
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Pentanomials

Some acknowledgements

Let f(x) = x" + x" + x° + x* + 1.

Personal notes of K. S. Williams provide:

© A table of congruences of n, r, s, t that conjectures the parity of the
number of irreducible factors of f.

@ Most of the following worked example.
And thanks to B. Hanson (UofT) for compiling this work in his Honours

project and contributing to many fruitful discussions both then and in
some follow-up work.
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Example of the table

Here, f(x) = x" 4+ x" 4+ x* + x* 4+ 1 with k irreducible factors.

Case | [n] [r], [s], [1] [K]

0.1 | n=0[8] r=s=t=0[2] k = 0[2]
0.2 | n=0[g] {r,s,t} = {0[4], O[4], 1[2]} k =0[2]
0.3 | n=0[8] r=s=t=1[2], r=s=t[g] k =0[2]
04 | n=0[8] | {r,s,t} ={0[4], a[8], a[8]}, a odd | k = 0[2]
0.5 | n=0[8] otherwise k =1[2]
1.1 = 1[8] any k=1[2]
21 | n=2[8] r=s=t=0[2] k = 0[2]
22 | n=2[g] otherwise k =1[2]
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Case 3.1: n=3 (mod 4);r=s=t=0 (mod 4)

Compute the discriminant

n
n(n—1)
D(f)=(=1)" = [[(F ()
i=1
(1) 1
=(-1)"2 H(naf’*l +4r'a "t 4 4s'asT 44l TY)
i=1

Since we need D(f) (mod 8), considering only terms containing one 4.
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Pentanomials

Expanding,
n(n—1) n(n—1)
D(f) = (1) n"(a1 - an)™ 1 + (—1)" 7 4n"1x
n n n
(al P an)n_l (al P an)n_l (al P an)n_l
(’/ TJFSIZTJ”/ZT
k=1 k k=1 k k=1 k
1) g n—1 LiGindY A | n—1
=(-1)" 2 n(ag--ap)" " H(-1) 2 4n""(ag---ap)" X
A
n n 1 n 1
(OO0 9P SRTO oS
k=1 "k k=1 "k k=1 "k

Case A.
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Pentanomials

Expanding,

D(f) = (—1)™ (a1 - )™t + (—1)"F Lan" 1 x

n n—1 n n—1 n n—1
a...a a...a a...a
(r, GRS QYGRS Gy )
k=1 =

n n
Qy Qy

n(n—1) n(n—

_ (_1) ( - 1 n"(al . Oé")n—l +(_1) ( - 1)4nn—1(a1 . an)n—lx

A
n n 1 n 1
(OO0 9P SRTO oS
k=1 "k k=1 "k k=1 "k
B
Case A. We know ag ---ap = —1 =7 (mod 8) by comparing coefficients.

For both n = 3,5 (mod 8), we find A=5 (mod 8).
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Case B.

n n

1 1 1
B = r’Zanir+sl 75+t/ —
k=1 "k k=1

Here, we notice that - are roots of the reverse of f; f(x) = x"f(1/x).
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Case B.

n n n

1 1 1
B = rlza”*’+5/za"*5+t/za

n—t
k=1 "k k=1 "k k=1 "k

Here, we notice that - are roots of the reverse of f; f(x) = x"f(1/x).

Sums of powers of roots = Newton's formulas.

S1i+ai1Sii—1+ @S2+ -+ ai—151,1 +iai =0.

Using parity arguments (n odd, r,s,t even imply n—r, n—s, n— t odd,
...), we find B=0.

D. Thomson (Carleton) Pentanomials WCNT - December 2014 11 /15



Putting it together

We have
@ D(f)=A+4n""1B with A=5 (mod 8) and B =0,
@ Thus D(f) =5 (mod 8),
© which is not a square,
Q@ and n=3 (mod 8) is odd.

Hence, f has an even number of irreducible factors and is always reducible.
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How did that work?

How did that work?
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How did that work?

Lots of cancellation

Recall the previous case: n =3 (mod 8), r,s,t =0 (mod 4). Hence, any
product of roots in the discriminant vanished whenever two roots were
picked from the x", x°, xt terms.

We can remove from the table:
© Cases 0.1,2.1,4.1,6.1 since the pentanomial is a square,
@ Cases 0.2,3.1,5.1,3.2,5.2 by the above.
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How did that work?

Remaining cases

Case | [n] [r]. [s], [1] [K]

0.2 | n=0[g] {r,s,t} ={0[4], O[4], 1[2]} k =0[2]
0.3 | n=0[8] r=s=t=1[2], r =s = t[g] k = 0[2]
04 | n=0[8] | {r,s,t} ={0[4], a[8], a[8]}, a odd | k =0][2]
0.5 | n=0[8] otherwise k =1[2]
1.1 | n=1[§] any k =1[2]
22 | n=2[8] otherwise (wrt 2.1) k =1[2]
3.3 | n=3[8] r, s and t = 0[8] or 3[8] k = 0[2]
3.4 = 3[8] otherwise k =1[2]
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How did that work?

And we're stuck.

Case 3.3: n=r =3 (mod 8), s,t =0 (mod 8).

The discriminant reduces to:

D(f) = Sﬁ (™" +1)
i=1

n

— Z Si,n—r-
i=1
= Z (aklak2 T aki)n_r

ki <kp<---<kj

But we're not really sure how to compute >_7 ; Sj p—;.
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How did that work?

And we're stuck.

Case 3.3: n=r =3 (mod 8), s,t =0 (mod 8).

The discriminant reduces to:

D(f) = Sﬁ (™" +1)
i=1

n

— Z Si,n—r-
i=1
= Z (aklak2 T aki)n_r

ki <kp<---<kj

But we're not really sure how to compute >.7 ; Sj p—,. Ideas?
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