

Enumerating Cubic Function Fields

Stefan Erickson
Dept. of Mathematics & Computer Science
Colorado College

December 17, 2014

Number / Function Fields

How many number / function fields are there?

Number / Function Fields

How many number / function fields are there?

Infinitely many!

Number / Function Fields

How many number / function fields are there?

Infinitely many!

How many number / function fields of degree $n > 1$ are there?

Number / Function Fields

How many number / function fields are there?

Infinitely many!

How many number / function fields of degree $n > 1$ are there?

Still infinitely many!

Number / Function Fields

How many number / function fields are there?

Infinitely many!

How many number / function fields of degree $n > 1$ are there?

Still infinitely many!

How many number / function fields of degree $n > 1$ with bounded discriminant are there?

Number / Function Fields

How many number / function fields are there?

Infinitely many!

How many number / function fields of degree $n > 1$ are there?

Still infinitely many!

How many number / function fields of degree $n > 1$ with bounded discriminant are there?

Finitely many!

Number / Function Fields

How many number / function fields are there?

Infinitely many!

How many number / function fields of degree $n > 1$ are there?

Still infinitely many!

How many number / function fields of degree $n > 1$ with bounded discriminant are there?

Finitely many!

A classical question is to ask for an estimate of how many fields there are up to a given bound.

Quadratic Number Fields

$\mathbb{Q}(\sqrt{D})$, D squarefree

Quadratic Number Fields

$$\mathbb{Q}(\sqrt{D}), \ D \text{ squarefree}$$

How many squarefree numbers are less than or equal to X ?

Quadratic Number Fields

$$\mathbb{Q}(\sqrt{D}), \ D \text{ squarefree}$$

How many squarefree numbers are less than or equal to X ?

For large X , $\approx \frac{3}{4}$ are not divisible by 4, $\approx \frac{8}{9}$ are not divisible by 9,

...

Quadratic Number Fields

$$\mathbb{Q}(\sqrt{D}), \ D \text{ squarefree}$$

How many squarefree numbers are less than or equal to X ?

For large X , $\approx \frac{3}{4}$ are not divisible by 4, $\approx \frac{8}{9}$ are not divisible by 9,
...

$$\begin{aligned}\#\{\text{squarefree integers } \leq X\} &\approx X \cdot \frac{3}{4} \cdot \frac{8}{9} \cdots \\ &\approx X \cdot \left(1 - \frac{1}{4}\right) \cdot \left(1 - \frac{1}{9}\right) \cdots \\ &\approx X \cdot \prod_{p \text{ prime}} \left(1 - \frac{1}{p^2}\right) \\ &\approx \frac{X}{\zeta(2)} \text{ or } \frac{6}{\pi^2} X\end{aligned}$$

Dirichlet Generating Function

$$\Phi(s) = \sum_{n \text{ squarefree}} \frac{1}{n^s}$$

Dirichlet Generating Function

$$\Phi(s) = \sum_{n \text{ squarefree}} \frac{1}{n^s}$$

Euler Expansion:

$$\begin{aligned}\Phi(s) &= \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{5^s} + \frac{1}{6^s} + \frac{1}{7^s} + \frac{1}{10^s} + \dots \\ &= \left(\frac{1}{1^s} + \frac{1}{2^s} \right) \cdot \left(\frac{1}{1^s} + \frac{1}{3^s} \right) \cdot \left(\frac{1}{1^s} + \frac{1}{5^s} \right) \dots \\ &= \prod_{p \text{ prime}} \left(1 + \frac{1}{p^s} \right) = \prod_{p \text{ prime}} \frac{\left(1 - \frac{1}{p^s} \right)^{-1}}{\left(1 - \frac{1}{p^{2s}} \right)^{-1}} = \frac{\zeta(s)}{\zeta(2s)}\end{aligned}$$

Dirichlet Generating Function

$$\Phi(s) = \sum_{n \text{ squarefree}} \frac{1}{n^s}$$

Euler Expansion:

$$\begin{aligned}\Phi(s) &= \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{5^s} + \frac{1}{6^s} + \frac{1}{7^s} + \frac{1}{10^s} + \dots \\ &= \left(\frac{1}{1^s} + \frac{1}{2^s} \right) \cdot \left(\frac{1}{1^s} + \frac{1}{3^s} \right) \cdot \left(\frac{1}{1^s} + \frac{1}{5^s} \right) \dots \\ &= \prod_{p \text{ prime}} \left(1 + \frac{1}{p^s} \right) = \prod_{p \text{ prime}} \frac{\left(1 - \frac{1}{p^s} \right)^{-1}}{\left(1 - \frac{1}{p^{2s}} \right)^{-1}} = \frac{\zeta(s)}{\zeta(2s)}\end{aligned}$$

Residue of $\Phi(s)$ at $s = 1$ is $\frac{1}{\zeta(2)} = \frac{6}{\pi^2}!$

Zeta Functions of Function Fields

- ▶ Rational Function Field: $k = \mathbb{F}_q(T)$
- ▶ Ring of Integers: $\mathcal{O}_k = \mathbb{F}_q[T]$
- ▶ Absolute Value: $|f| = \#\mathcal{O}_k/(f) = q^{\deg(f)}$

Zeta Functions of Function Fields

- ▶ Rational Function Field: $k = \mathbb{F}_q(T)$
- ▶ Ring of Integers: $\mathcal{O}_k = \mathbb{F}_q[T]$
- ▶ Absolute Value: $|f| = \#\mathcal{O}_k/(f) = q^{\deg(f)}$

$$\zeta_k(s) = \sum_{\substack{f \in \mathbb{F}_q[T] \\ f \text{ monic}}} \frac{1}{|f|^s}$$

Zeta Functions of Function Fields

- ▶ Rational Function Field: $k = \mathbb{F}_q(T)$
- ▶ Ring of Integers: $\mathcal{O}_k = \mathbb{F}_q[T]$
- ▶ Absolute Value: $|f| = \#\mathcal{O}_k/(f) = q^{\deg(f)}$

$$\zeta_k(s) = \sum_{\substack{f \in \mathbb{F}_q[T] \\ f \text{ monic}}} \frac{1}{|f|^s}$$

Exactly q^d monic polynomials of degree d .

Zeta Functions of Function Fields

- ▶ Rational Function Field: $k = \mathbb{F}_q(T)$
- ▶ Ring of Integers: $\mathcal{O}_k = \mathbb{F}_q[T]$
- ▶ Absolute Value: $|f| = \#\mathcal{O}_k/(f) = q^{\deg(f)}$

$$\zeta_k(s) = \sum_{\substack{f \in \mathbb{F}_q[T] \\ f \text{ monic}}} \frac{1}{|f|^s}$$

Exactly q^d monic polynomials of degree d .

$$\zeta_k(s) = \sum_{d=0}^{\infty} \sum_{\deg f=d} \frac{1}{|f|^s} = 1 + \frac{q}{q^s} + \frac{q^2}{q^{2s}} + \cdots = \frac{1}{1 - q^{1-s}}$$

Quadratic Function Fields

$$K = \mathbb{F}_q(T)(\sqrt{f}), \quad f \in \mathbb{F}_q[T] \text{ squarefree}$$

Quadratic Function Fields

$$K = \mathbb{F}_q(T)(\sqrt{f}), \quad f \in \mathbb{F}_q[T] \text{ squarefree}$$

How many squarefree polynomials have degree less than or equal to d ?

Quadratic Function Fields

$$K = \mathbb{F}_q(T)(\sqrt{f}), \quad f \in \mathbb{F}_q[T] \text{ squarefree}$$

How many squarefree polynomials have degree less than or equal to d ?

Same Dirichlet generating function applies to function fields.

$$\Phi(s) = \sum_{\substack{f \text{ monic,} \\ \text{squarefree}}} \frac{1}{|f|^s} = \frac{\zeta_k(s)}{\zeta_k(2s)}$$

Quadratic Function Fields

$$K = \mathbb{F}_q(T)(\sqrt{f}), \quad f \in \mathbb{F}_q[T] \text{ squarefree}$$

How many squarefree polynomials have degree less than or equal to d ?

Same Dirichlet generating function applies to function fields.

$$\Phi(s) = \sum_{\substack{f \text{ monic,} \\ \text{squarefree}}} \frac{1}{|f|^s} = \frac{\zeta_k(s)}{\zeta_k(2s)}$$

$$\#\{\text{squarefree monic polynomials, } \deg f \leq d\} \approx \frac{q^d}{\zeta_k(2)} = \frac{q-1}{q} q^d$$

Quadratic Function Fields

$$K = \mathbb{F}_q(T)(\sqrt{f}), \quad f \in \mathbb{F}_q[T] \text{ squarefree}$$

How many squarefree polynomials have degree less than or equal to d ?

Same Dirichlet generating function applies to function fields.

$$\Phi(s) = \sum_{\substack{f \text{ monic,} \\ \text{squarefree}}} \frac{1}{|f|^s} = \frac{\zeta_k(s)}{\zeta_k(2s)}$$

$$\#\{\text{squarefree monic polynomials, } \deg f \leq d\} \approx \frac{q^d}{\zeta_k(2)} = \frac{q-1}{q} q^d$$

In fact, this approximation is an equality for polynomials!

Cubic Fields

Let $N(X)$ be the number of cubic fields whose discriminant is bounded by X in absolute value.

Cubic Fields

Let $N(X)$ be the number of cubic fields whose discriminant is bounded by X in absolute value.

Cubic Number Fields (Davenport & Heilbronn, 1971)

$$N(X) = C X + O(X^{5/6})$$

Cubic Fields

Let $N(X)$ be the number of cubic fields whose discriminant is bounded by X in absolute value.

Cubic Number Fields (Davenport & Heilbronn, 1971)

$$N(X) = C X + O(X^{5/6})$$

Cubic Function Fields (Datskovsky & Wright, 1988)

$$N(q^{2n}) = C q^{2n} + O(q^{5n/3})$$

Cubic Fields with Given Quadratic Resolvent

For tabulating cubic fields, it is useful to fix a quadratic resolvent.

Cubic Fields with Given Quadratic Resolvent

For tabulating cubic fields, it is useful to fix a quadratic resolvent.

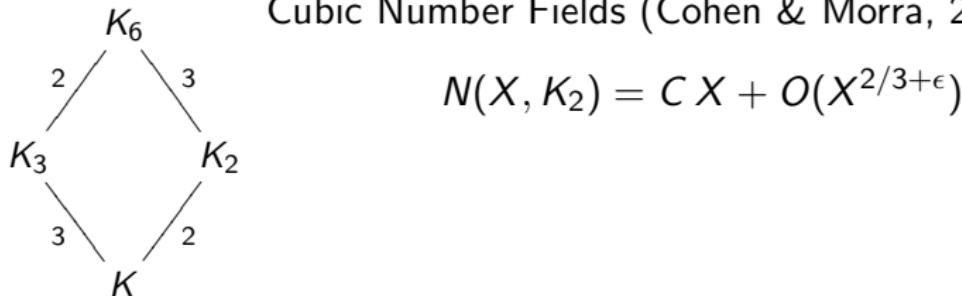
- ▶ K_2 is a fixed quadratic extension of base field K .
- ▶ $\mathcal{F}(K_2)$ is the set of cubic extensions K_3 of K with Galois closure K_6 containing the quadratic subextension K_2 .
- ▶ $N(X, K_2)$ is the number of non-isomorphic cubic fields $K_3 \in \mathcal{F}(K_2)$ with discriminant bounded by X in absolute value.

Cubic Fields with Given Quadratic Resolvent

For tabulating cubic fields, it is useful to fix a quadratic resolvent.

- ▶ K_2 is a fixed quadratic extension of base field K .
- ▶ $\mathcal{F}(K_2)$ is the set of cubic extensions K_3 of K with Galois closure K_6 containing the quadratic subextension K_2 .
- ▶ $N(X, K_2)$ is the number of non-isomorphic cubic fields $K_3 \in \mathcal{F}(K_2)$ with discriminant bounded by X in absolute value.

Cubic Number Fields (Cohen & Morra, 2010)

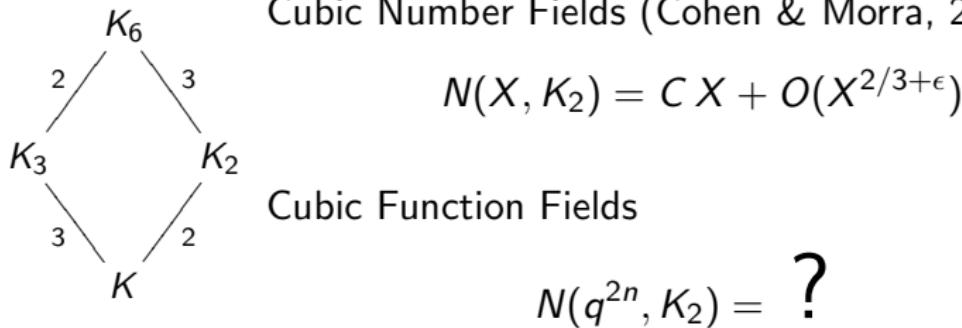


Cubic Fields with Given Quadratic Resolvent

For tabulating cubic fields, it is useful to fix a quadratic resolvent.

- ▶ K_2 is a fixed quadratic extension of base field K .
- ▶ $\mathcal{F}(K_2)$ is the set of cubic extensions K_3 of K with Galois closure K_6 containing the quadratic subextension K_2 .
- ▶ $N(X, K_2)$ is the number of non-isomorphic cubic fields $K_3 \in \mathcal{F}(K_2)$ with discriminant bounded by X in absolute value.

Cubic Number Fields (Cohen & Morra, 2010)



Cubic Function Fields

$$N(q^{2n}, K_2) = ?$$

Conductors

We want an estimate for

$$N(X, K_2) = \#\{K_3 \in \mathcal{F}(K_2) \mid \mathbf{N}(\Delta_{K_3/K}) \leq X\}$$

Conductors

We want an estimate for

$$N(X, K_2) = \#\{K_3 \in \mathcal{F}(K_2) \mid \mathbf{N}(\Delta_{K_3/K}) \leq X\}$$

Since

$$\Delta_{K_3/K} = \Delta_{K_2/K} \cdot \mathfrak{f}(K_3/K)^2,$$

equivalent to estimating

$$M(X, K_2) = \#\{K_3 \in \mathcal{F}(K_2) \mid \mathbf{N}(\mathfrak{f}(K_3/K)) \leq X\}$$

Conductors

We want an estimate for

$$N(X, K_2) = \#\{K_3 \in \mathcal{F}(K_2) \mid \mathbf{N}(\Delta_{K_3/K}) \leq X\}$$

Since

$$\Delta_{K_3/K} = \Delta_{K_2/K} \cdot \mathfrak{f}(K_3/K)^2,$$

equivalent to estimating

$$M(X, K_2) = \#\{K_3 \in \mathcal{F}(K_2) \mid \mathbf{N}(\mathfrak{f}(K_3/K)) \leq X\}$$

The conductor $\mathfrak{f}(K_3/K)$ is (roughly) a measure of the amount of ramification in K_3/K that doesn't come from K_2/K .

Fundamental Dirichlet Series

Our goal is to find the residue at $s = 1$ of the Dirichlet Series

$$\Phi(s, K_2) = \frac{1}{2} + \sum_{\substack{K_3/K \\ K_2 \text{ quad res}}} \frac{1}{|\mathbf{N}(\mathfrak{f}(K_3/K))|^s}$$

Fundamental Dirichlet Series

Our goal is to find the residue at $s = 1$ of the Dirichlet Series

$$\Phi(s, K_2) = \frac{1}{2} + \sum_{\substack{K_3/K \\ K_2 \text{ quad res}}} \frac{1}{|\mathbf{N}(\mathfrak{f}(K_3/K))|^s}$$

In order to do this, we need a classification of isomorphism classes of cubic function fields with quadratic resolvent K_2 .

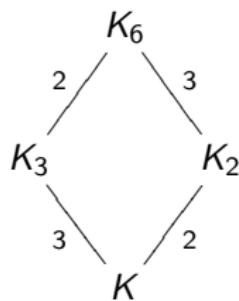
In the process, we will convert conductors of K_3 into ideals of K_2 .

K_6 is a Kummer Extension of K_2

Assume $q \equiv 1 \pmod{6}$ (so that \mathbb{F}_q contains the 3rd roots of unity).

K_6 is a Kummer Extension of K_2

Assume $q \equiv 1 \pmod{6}$ (so that \mathbb{F}_q contains the 3rd roots of unity).

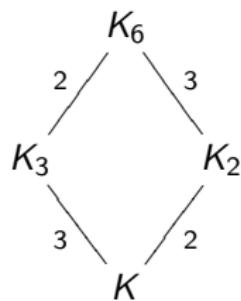


General Case:

► $K = \mathbb{F}_q(T)$ is a rational function field.

K_6 is a Kummer Extension of K_2

Assume $q \equiv 1 \pmod{6}$ (so that \mathbb{F}_q contains the 3rd roots of unity).

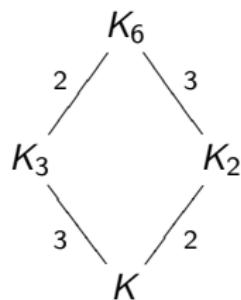


General Case:

- ▶ $K = \mathbb{F}_q(T)$ is a rational function field.
- ▶ K_3/K is a non-cyclic cubic extension.

K_6 is a Kummer Extension of K_2

Assume $q \equiv 1 \pmod{6}$ (so that \mathbb{F}_q contains the 3rd roots of unity).

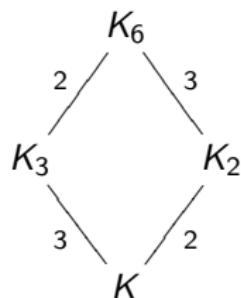


General Case:

- ▶ $K = \mathbb{F}_q(T)$ is a rational function field.
- ▶ K_3/K is a non-cyclic cubic extension.
- ▶ K_6 is the Galois closure of K_3/K .

K_6 is a Kummer Extension of K_2

Assume $q \equiv 1 \pmod{6}$ (so that \mathbb{F}_q contains the 3rd roots of unity).

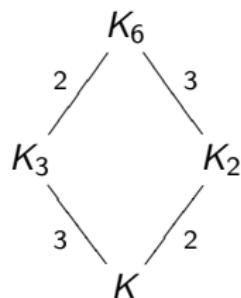


General Case:

- ▶ $K = \mathbb{F}_q(T)$ is a rational function field.
- ▶ K_3/K is a non-cyclic cubic extension.
- ▶ K_6 is the Galois closure of K_3/K .
- ▶ K_2 is the quadratic subextension of K_6/K .

K_6 is a Kummer Extension of K_2

Assume $q \equiv 1 \pmod{6}$ (so that \mathbb{F}_q contains the 3rd roots of unity).



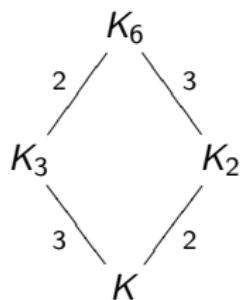
General Case:

- ▶ $K = \mathbb{F}_q(T)$ is a rational function field.
- ▶ K_3/K is a non-cyclic cubic extension.
- ▶ K_6 is the Galois closure of K_3/K .
- ▶ K_2 is the quadratic subextension of K_6/K .

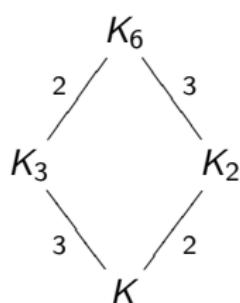
Kummer Theory: $K_6 = K_2(\sqrt[3]{\alpha})$ for some $\alpha \in K_2^\times \setminus (K_2^\times)^3$.

The Galois Group of K_6

$K_2(\sqrt[3]{\alpha})$ is not guaranteed to be Galois over K .



The Galois Group of K_6

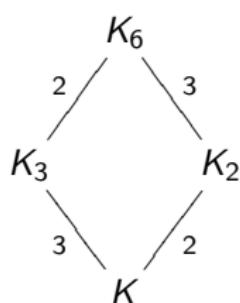


$K_2(\sqrt[3]{\alpha})$ is not guaranteed to be Galois over K .

Let $C = \langle \bar{\alpha} \rangle \subseteq K_2^\times / (K_2^\times)^3$.

► $C \subseteq \text{Im}(\text{Conorm}) \implies K_6/K$ cyclic.

The Galois Group of K_6

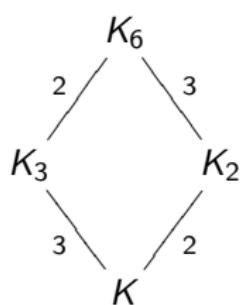


$K_2(\sqrt[3]{\alpha})$ is not guaranteed to be Galois over K .

Let $C = \langle \bar{\alpha} \rangle \subseteq K_2^\times / (K_2^\times)^3$.

- ▶ $C \subseteq \text{Im}(\text{Conorm}) \implies K_6/K$ cyclic.
- ▶ $C \subseteq \text{Ker}(\text{Norm}) \implies K_6/K$ dihedral.

The Galois Group of K_6

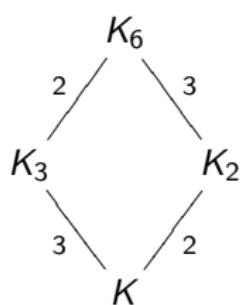


$K_2(\sqrt[3]{\alpha})$ is not guaranteed to be Galois over K .

Let $C = \langle \bar{\alpha} \rangle \subseteq K_2^\times / (K_2^\times)^3$.

- ▶ $C \subseteq \text{Im}(\text{Conorm}) \implies K_6/K$ cyclic.
- ▶ $C \subseteq \text{Ker}(\text{Norm}) \implies K_6/K$ dihedral.
- ▶ Otherwise, K_6/K is not Galois.

The Galois Group of K_6



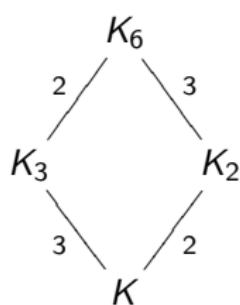
$K_2(\sqrt[3]{\alpha})$ is not guaranteed to be Galois over K .

Let $C = \langle \bar{\alpha} \rangle \subseteq K_2^\times / (K_2^\times)^3$.

- ▶ $C \subseteq \text{Im}(\text{Conorm}) \implies K_6/K$ cyclic.
- ▶ $C \subseteq \text{Ker}(\text{Norm}) \implies K_6/K$ dihedral.
- ▶ Otherwise, K_6/K is not Galois.

For dihedral, want $\alpha \in K_2^\times \setminus (K_2^\times)^3$ such that $\mathbf{N}_{K_2/K}(\alpha) = \gamma^3$.

The Galois Group of K_6



$K_2(\sqrt[3]{\alpha})$ is not guaranteed to be Galois over K .

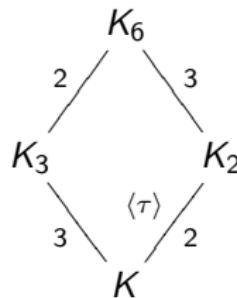
Let $C = \langle \bar{\alpha} \rangle \subseteq K_2^\times / (K_2^\times)^3$.

- ▶ $C \subseteq \text{Im}(\text{Conorm}) \implies K_6/K$ cyclic.
- ▶ $C \subseteq \text{Ker}(\text{Norm}) \implies K_6/K$ dihedral.
- ▶ Otherwise, K_6/K is not Galois.

For dihedral, want $\alpha \in K_2^\times \setminus (K_2^\times)^3$ such that $\mathbf{N}_{K_2/K}(\alpha) = \gamma^3$.

Equivalent to all (non-cubed) primes of K lying below (α) to split in K_2 .

Isomorphism Classes of Cubic Function Fields

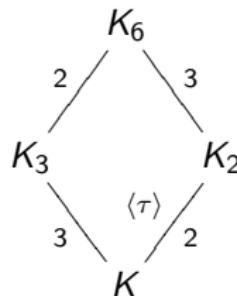


In K_2 ,

$$(\alpha) = \mathfrak{a}_0 \mathfrak{a}_1^2 \mathfrak{q}^3$$

where $\mathfrak{a}_0, \mathfrak{a}_1$ are coprime, squarefree ideals such that $\overline{\mathfrak{a}_0 \mathfrak{a}_1^2} \in \text{Cl}(K_2)^3$ and $\mathfrak{a}_1 = \tau(\mathfrak{a}_0)$.

Isomorphism Classes of Cubic Function Fields



In K_2 ,

$$(\alpha) = \mathfrak{a}_0 \mathfrak{a}_1^2 \mathfrak{q}^3$$

where $\mathfrak{a}_0, \mathfrak{a}_1$ are coprime, squarefree ideals such that $\overline{\mathfrak{a}_0 \mathfrak{a}_1^2} \in \text{Cl}(K_2)^3$ and $\mathfrak{a}_1 = \tau(\mathfrak{a}_0)$.

Every (non-cubed) prime p_i of K lying below α splits in K_2 :

$$p_i = \mathfrak{p}_i \tau(\mathfrak{p}_i), \quad \mathfrak{a}_0 = \mathfrak{p}_1 \cdots \mathfrak{p}_k, \quad \mathfrak{a}_1 = \tau(\mathfrak{p}_1) \cdots \tau(\mathfrak{p}_k)$$

Isomorphism Classes of Cubic Function Fields

$$K_6 = K_2(\sqrt[3]{\alpha}) = K_2(\sqrt[3]{\alpha^2})$$

$$(\alpha) = \mathfrak{a}_0 \mathfrak{a}_1^2 \mathfrak{q}^3$$

$$(\alpha^2) = \mathfrak{a}_0^2 \mathfrak{a}_1 (\mathfrak{q}')^3$$

Isomorphism Classes of Cubic Function Fields

$$K_6 = K_2(\sqrt[3]{\alpha}) = K_2(\sqrt[3]{\alpha^2})$$

$$(\alpha) = \mathfrak{a}_0 \mathfrak{a}_1^2 \mathfrak{q}^3$$

$$(\alpha^2) = \mathfrak{a}_0^2 \mathfrak{a}_1 (\mathfrak{q}')^3$$

Theorem

There exists a bijection between isomorphism classes of cubic extensions K_3/K with given quadratic resolvent K_2 and triples $(\mathfrak{a}_0, \mathfrak{a}_1, \bar{u})$ under the equivalence $(\mathfrak{a}_0, \mathfrak{a}_1, \bar{u}) \sim (\mathfrak{a}_1, \mathfrak{a}_0, 1/\bar{u})$, where $\mathfrak{a}_0, \mathfrak{a}_1$ are as above and \bar{u} is an element of the 3-Selmer group lying in the kernel of the norm map.

Isomorphism Classes of Cubic Function Fields

$$K_6 = K_2(\sqrt[3]{\alpha}) = K_2(\sqrt[3]{\alpha^2})$$

$$(\alpha) = \mathfrak{a}_0 \mathfrak{a}_1^2 \mathfrak{q}^3$$

$$(\alpha^2) = \mathfrak{a}_0^2 \mathfrak{a}_1 (\mathfrak{q}')^3$$

Theorem

There exists a bijection between isomorphism classes of cubic extensions K_3/K with given quadratic resolvent K_2 and triples $(\mathfrak{a}_0, \mathfrak{a}_1, \bar{u})$ under the equivalence $(\mathfrak{a}_0, \mathfrak{a}_1, \bar{u}) \sim (\mathfrak{a}_1, \mathfrak{a}_0, 1/\bar{u})$, where $\mathfrak{a}_0, \mathfrak{a}_1$ are as above and \bar{u} is an element of the 3-Selmer group lying in the kernel of the norm map. (Don't worry about this part.)

Fundamental Dirichlet Series

$$\Phi(s, K_2) = \frac{1}{2} + \sum_{\substack{K_3/K \\ K_2 \text{ quad res}}} \frac{1}{|\mathbf{N}(\mathfrak{f}(K_3/K))|^s}$$

Fundamental Dirichlet Series

$$\Phi(s, K_2) = \frac{1}{2} + \sum_{\substack{K_3/K \\ K_2 \text{ quad res}}} \frac{1}{|\mathbf{N}(\mathfrak{f}(K_3/K))|^s}$$

For the cubic function field corresponding to $(\alpha) = \mathfrak{a}_0\mathfrak{a}_1^2\mathfrak{q}^3$,
the conductor is

$$\mathfrak{f}(K_3/K) = \mathfrak{a}_\alpha := \mathfrak{a}_0\mathfrak{a}_1.$$

Fundamental Dirichlet Series

$$\Phi(s, K_2) = \frac{1}{2} + \sum_{\substack{K_3/K \\ K_2 \text{ quad res}}} \frac{1}{|\mathbf{N}(\mathfrak{f}(K_3/K))|^s}$$

For the cubic function field corresponding to $(\alpha) = \mathfrak{a}_0 \mathfrak{a}_1^2 \mathfrak{q}^3$,
the conductor is

$$\mathfrak{f}(K_3/K) = \mathfrak{a}_\alpha := \mathfrak{a}_0 \mathfrak{a}_1.$$

$$\Phi(s, K_2) = \frac{|S_3(K_2)[T]|}{2} \sum_{\mathfrak{a}_\alpha} \frac{1}{|\mathbf{N}(\mathfrak{a}_\alpha)|^s}$$

Fundamental Dirichlet Series

After a LOT of manipulation,

$$\Phi(s, K_2) = c_1 \prod_{p \in \mathcal{D}} \left(1 + \frac{2}{|\mathbf{N}p|^s} \right) + O(1)$$

where \mathcal{D} be the primes p of K that split in K_2 and c_1 is a constant depending on the unit group of K_2 .

Fundamental Dirichlet Series

After MORE simplifying,

$$\Phi(s, K_2) = c_1 \prod_{p \in \mathcal{D}} \left(1 + \frac{2}{|\mathbf{N}p|^s} \right) \cdot \frac{\zeta_{K_2}(s)}{\zeta_K(2s) \cdot \frac{\zeta_K(s)}{\zeta_K(2s)} \cdot L(s, \psi)} + O(1)$$

⋮

Fundamental Dirichlet Series

After MORE simplifying,

$$\Phi(s, K_2) = c_1 \prod_{p \in \mathcal{D}} \left(1 + \frac{2}{|\mathbf{N}p|^s} \right) \cdot \frac{\zeta_{K_2}(s)}{\zeta_K(2s) \cdot \frac{\zeta_K(s)}{\zeta_K(2s)} \cdot L(s, \psi)} + O(1)$$

⋮

$$\begin{aligned} \text{Res}_{s=1} \Phi(s, K_2) &= \frac{c_1}{\zeta_K(2)} \cdot \prod_{p \in \mathcal{D}} \left(1 - \frac{2}{|\mathbf{N}p|(|\mathbf{N}p| + 1)} \right) \cdot \\ &\quad \prod_{p \mid \Delta} \left(1 - \frac{1}{|\mathbf{N}p| + 1} \right) \cdot \text{Res}_{s=1} \zeta_{K_2}(s) \end{aligned}$$

Asymptotic

This residue become the constant term in front of the main term.

Let $N(q^{2n}, K_2)$ be the number of cubic function fields with given quadratic resolvent whose discriminant is bounded by q^{2n} in absolute value. Then

$$N(q^{2n}, K_2) = \text{Res}_{s=1} \Phi(s, K_2) \cdot q^{2n} + O(q^{4n/3+\epsilon})$$

Conclusions

- ▶ Have asymptotics for cubic function fields with given quadratic resolvent.

Conclusions

- ▶ Have asymptotics for cubic function fields with given quadratic resolvent.
- ▶ Need to translate results from ideals to divisors.

Conclusions

- ▶ Have asymptotics for cubic function fields with given quadratic resolvent.
- ▶ Need to translate results from ideals to divisors.
- ▶ Currently working on extending these results to dihedral extensions of degree 2ℓ where ℓ is an odd prime.

Conclusions

- ▶ Have asymptotics for cubic function fields with given quadratic resolvent.
- ▶ Need to translate results from ideals to divisors.
- ▶ Currently working on extending these results to dihedral extensions of degree 2ℓ where ℓ is an odd prime.
- ▶ In function fields, some zeta functions and infinite products are rational functions in q^s . Hoping to use special cases to investigate closed forms for these terms.

Conclusions

- ▶ Have asymptotics for cubic function fields with given quadratic resolvent.
- ▶ Need to translate results from ideals to divisors.
- ▶ Currently working on extending these results to dihedral extensions of degree 2ℓ where ℓ is an odd prime.
- ▶ In function fields, some zeta functions and infinite products are rational functions in q^s . Hoping to use special cases to investigate closed forms for these terms.
- ▶ Error bounds? Progress for number fields (Bhargava et. al., Tamaguchi & Thorne), less for function fields.