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Number / Function Fields

How many number / function fields are there?

Infinitely many!

How many number / function fields of degree n > 1 are there?

Still infinitely many!

How many number / function fields of degree n > 1 with bounded
discriminant are there?

Finitely many!

A classical question is to ask for an estimate of how many fields
there are up to a given bound.
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Quadratic Number Fields

Q(
√
D), D squarefree

How many squarefree numbers are less than or equal to X?

For large X , ≈ 3
4 are not divisible by 4, ≈ 8

9 are not divisible by 9,
. . .

#
{

squarefree integers ≤ X
}
≈ X · 3

4 ·
8
9 · · ·

≈ X ·
(
1− 1

4

)
·
(
1− 1

9

)
· · ·

≈ X ·
∏

p prime

(
1− 1

p2

)
≈ X

ζ(2)
or

6

π2
X
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Dirichlet Generating Function

Φ(s) =
∑

n squarefree

1

ns

Euler Expansion:

Φ(s) =
1

1s
+

1

2s
+

1

3s
+

1

5s
+

1

6s
+

1

7s
+

1

10s
+ . . .

=

(
1

1s
+

1

2s

)
·
(

1

1s
+

1

3s

)
·
(

1

1s
+

1

5s

)
· · ·

=
∏

p prime

(
1 + 1

ps

)
=

∏
p prime

(
1− 1

ps

)−1

(
1− 1

p2s

)−1
=

ζ(s)

ζ(2s)

Residue of Φ(s) at s = 1 is 1
ζ(2) = 6

π2 !
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Zeta Functions of Function Fields

I Rational Function Field: k = Fq(T )

I Ring of Integers: Ok = Fq[T ]

I Absolute Value:
∣∣f ∣∣ = #Ok/(f ) = qdeg(f )

ζk(s) =
∑

f ∈Fq [T ]
f monic

1∣∣f ∣∣s
Exactly qd monic polynomials of degree d .

ζk(s) =
∞∑
d=0

∑
deg f =d

1∣∣f ∣∣s = 1 +
q

qs
+

q2

q2s
+ · · · =

1

1− q1−s
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Quadratic Function Fields

K = Fq(T )(
√
f ), f ∈ Fq[T ] squarefree

How many squarefree polynomials have degree less than or equal
to d?

Same Dirichlet generating function applies to function fields.

Φ(s) =
∑

f monic,
squarefree

1∣∣f ∣∣s =
ζk(s)

ζk(2s)

#
{

squarefree monic polynomials, deg f ≤ d
}
≈ qd

ζk(2)
=

q − 1

q
qd

In fact, this approximation is an equality for polynomials!
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Cubic Fields

Let N(X ) be the number of cubic fields whose discriminant is
bounded by X in absolute value.

Cubic Number Fields (Davenport & Heilbronn, 1971)

N(X ) = C X + O(X 5/6)

Cubic Function Fields (Datskovsky & Wright, 1988)

N(q2n) = C q2n + O(q5n/3)
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Cubic Fields with Given Quadratic Resolvent

For tabulating cubic fields, it is useful to fix a quadratic resolvent.

I K2 is a fixed quadratic extension of base field K .

I F(K2) is the set of cubic extensions K3 of K with Galois
closure K6 containing the quadratic subextension K2.

I N(X ,K2) is the number of non-isomorphic cubic fields
K3 ∈ F(K2) with discriminant bounded by X in absolute
value.

K6

K3

2
������

3 777777 K2

3

666666

2������

K

Cubic Number Fields (Cohen & Morra, 2010)

N(X ,K2) = C X + O(X 2/3+ε)

Cubic Function Fields

N(q2n,K2) = ?
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Conductors

We want an estimate for

N(X ,K2) = #
{
K3 ∈ F(K2)

∣∣ N(∆K3/K ) ≤ X
}

Since
∆K3/K = ∆K2/K · f(K3/K )2,

equivalent to estimating

M(X ,K2) = #
{
K3 ∈ F(K2)

∣∣ N(f(K3/K )) ≤ X
}

The conductor f(K3/K ) is (roughly) a measure of the amount of
ramification in K3/K that doesn’t come from K2/K .
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Fundamental Dirichlet Series

Our goal is to find the residue at s = 1 of the Dirichlet Series

Φ(s,K2) =
1

2
+

∑
K3/K

K2 quad res

1∣∣N(f(K3/K ))
∣∣s

In order to do this, we need a classification of isomorphism classes
of cubic function fields with quadratic resolvent K2.

In the process, we will convert conductors of K3 into ideals of K2.
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K6 is a Kummer Extension of K2

Assume q ≡ 1 mod 6 (so that Fq contains the 3rd roots of unity).

K6

K3

2
������

3 777777 K2

3

666666

2������

K

General Case:

I K = Fq(T ) is a rational function field.

I K3/K is a non-cyclic cubic extension.

I K6 is the Galois closure of K3/K .

I K2 is the quadratic subextension of K6/K .

Kummer Theory: K6 = K2( 3
√
α) for some α ∈ K×2 \ (K×2 )3.
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The Galois Group of K6

K6

K3

2
������

3 777777 K2

3

666666

2������

K

K2( 3
√
α) is not guaranteed to be Galois over K .

Let C = 〈α〉 ⊆ K×2 /(K×2 )3.

I C ⊆ Im(Conorm) =⇒ K6/K cyclic.

I C ⊆ Ker(Norm) =⇒ K6/K dihedral.

I Otherwise, K6/K is not Galois.
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For dihedral, want α ∈ K×2 \ (K×2 )3 such that NK2/K (α) = γ3.

Equivalent to all (non-cubed) primes of K lying below (α) to split
in K2.
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Isomorphism Classes of Cubic Function Fields
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〈τ〉
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K

In K2,
(α) = a0a

2
1q

3

where a0, a1 are coprime, squarefree ideals

such that a0a2
1 ∈ Cl(K2)3 and a1 = τ(a0).

Every (non-cubed) prime pi of K lying below α splits in K2:

pi = piτ(pi ), a0 = p1 · · · pk , a1 = τ(p1) · · · τ(pk)
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Isomorphism Classes of Cubic Function Fields

K6 = K2( 3
√
α) = K2(

3
√
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(α) = a0a
2
1q
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(α2) = a2
0a1(q′)3

Theorem
There exists a bijection between isomorphism classes of cubic
extensions K3/K with given quadratic resolvent K2 and triples
(a0, a1, u) under the equivalence (a0, a1, u) ∼ (a1, a0, 1/u), where
a0, a1 are as above and u is an element of the 3-Selmer group
lying in the kernel of the norm map. (Don’t worry about this part.)
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Fundamental Dirichlet Series
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K2 quad res

1∣∣N(f(K3/K ))
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For the cubic function field corresponding to (α) = a0a
2
1q

3,
the conductor is

f(K3/K ) = aα := a0a1.
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Fundamental Dirichlet Series

After a LOT of manipulation,

Φ(s,K2) = c1

∏
p∈D

(
1 +

2∣∣Np
∣∣s
)

+ O(1)

where D be the primes p of K that split in K2 and c1 is a constant
depending on the unit group of K2.



Fundamental Dirichlet Series

After MORE simplifying,

Φ(s,K2) = c1

∏
p∈D
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1 +

2∣∣Np
∣∣s
)
· ζK2(s)

ζK (2s) · ζK (s)
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...
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Asymptotic

This residue become the constant term in front of the main term.

Let N(q2n,K2) be the number of cubic function fields with given
quadratic resolvent whose discriminant is bounded by q2n in
absolute value. Then

N(q2n,K2) = Ress=1Φ(s,K2) · q2n + O(q4n/3+ε)



Conclusions

I Have asymptotics for cubic function fields with given
quadratic resolvent.

I Need to translate results from ideals to divisors.

I Currently working on extending these results to dihedral
extensions of degree 2` where ` is an odd prime.

I In function fields, some zeta functions and infinite products
are rational functions in qs . Hoping to use special cases to
investigate closed forms for these terms.

I Error bounds? Progress for number fields (Bhargava et. al.,
Tamaguchi & Thorne), less for function fields.
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