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Number / Function Fields

How many number / function fields are there?

Infinitely many!

How many number / function fields of degree n > 1 are there?
Still infinitely many!

How many number / function fields of degree n > 1 with bounded
discriminant are there?

Finitely many!

A classical question is to ask for an estimate of how many fields
there are up to a given bound.
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Q(VD), D squarefree

How many squarefree numbers are less than or equal to X7

|

For large X, Z are not divisible by 4, are not divisible by 9,

%

# {squarefree integers < X}
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Dirichlet Generating Function

o= Y

n squarefree

Euler Expansion:

1 1 1 1 1 1 1

_11 11 11
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p prime p prime (1 — 52

Residue of ®(s) at s = 1 is =75y



Zeta Functions of Function Fields

» Rational Function Field: k = TFq(T)
» Ring of Integers: Oy = Fy[T]
» Absolute Value: ’f’ #Ok/(f) = gdee(H)



Zeta Functions of Function Fields

» Rational Function Field: k = TFq(T)
» Ring of Integers: Oy = Fy[T]
» Absolute Value: ’f’ #Ok/(f) = gdee(H)

G(s)= >

fEF,[T] ‘
f monic

‘ S



Zeta Functions of Function Fields

» Rational Function Field: k = TFq(T)
» Ring of Integers: Oy = Fy[T]
» Absolute Value: ’f’ #Ok/(f) = gdee(H)

G(s)= >

fEF,[T] ‘
f monic

‘ S

Exactly g9 monic polynomials of degree d.



Zeta Functions of Function Fields

» Rational Function Field: k = TFq(T)
» Ring of Integers: Oy = Fy[T]
» Absolute Value: ’f’ #Ok/(f) = gdee(H)

G(s)= >

fEF,[T] ‘
f monic

‘S
Exactly g9 monic polynomials of degree d.

> ¥

d=0 degf=d

q q
| f| qs q2s
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K =Fy(T)(VF), f € Fy[T] squarefree

How many squarefree polynomials have degree less than or equal
to d?

Same Dirichlet generating function applies to function fields.

. 1 B Ck(S)
(D(S) = . r%icv ‘f‘s = Ck(25)
squarefree

-1
# {squarefree monic polynomials, deg f < d} ~ CS(Q) . q?




Quadratic Function Fields

K =Fy(T)(VF), f € Fy[T] squarefree

How many squarefree polynomials have degree less than or equal
to d?

Same Dirichlet generating function applies to function fields.

1 Ck(S)
(D(S) = Z 5 —
f monic, ‘f‘ Ck(25)
squarefree
¢ q-1 4
# {squarefree monic polynomials,degf < d} = =—q
{ J Ck(2) q

In fact, this approximation is an equality for polynomials!
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Cubic Fields

Let N(X) be the number of cubic fields whose discriminant is
bounded by X in absolute value.

Cubic Number Fields (Davenport & Heilbronn, 1971)

N(X) = C X + O(X>/%)

Cubic Function Fields (Datskovsky & Wright, 1988)

N(q2n) — Cq2n + O(q5n/3)
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Cubic Fields with Given Quadratic Resolvent
For tabulating cubic fields, it is useful to fix a quadratic resolvent.

> K3 is a fixed quadratic extension of base field K.
» F(K>) is the set of cubic extensions K3 of K with Galois
closure Kg containing the quadratic subextension Kb.

» N(X, Kz) is the number of non-isomorphic cubic fields
K3 € F(K2) with discriminant bounded by X in absolute
value.

Cubic Number Fields (Cohen & Morra, 2010)

/ \ N(X, Kz) = C X 4+ O(X?/3%)
\ / Cubic Function Fields

N(g*", Ko) = 7
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Conductors

We want an estimate for
N(X, Kg) = #{K3 S JT"(KQ) ‘ N(AK3/K) < X}

Since
Ay ik = Dy i - F(Ka/K)?,

equivalent to estimating
M(X, Kz) = #{Ks € F(K2) | N(f(K3/K)) < X}

The conductor f(K3/K) is (roughly) a measure of the amount of
ramification in K3/K that doesn’t come from K/K.
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Fundamental Dirichlet Series

Our goal is to find the residue at s = 1 of the Dirichlet Series

1 1
O(s, Ko) = = + SR S—
2" A ING(Rs/K))]
K> quad res

In order to do this, we need a classification of isomorphism classes
of cubic function fields with quadratic resolvent Kj.

In the process, we will convert conductors of K3 into ideals of K.
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General Case:

Ke
7 y » K =F4(T) is a rational function field.
K K, " K3/K is a non-cyclic cubic extension.
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Ks is a Kummer Extension of K5

Assume g = 1 mod 6 (so that F, contains the 3'¢ roots of unity).

General Case:

/ \ » K =F4(T) is a rational function field.

» K3/K is a non-cyclic cubic extension.

Ks is the Galois closure of K3/K.
Kummer Theory: Ks = Ka(/) for some o € K;* \ (K5°)3.

v

v

K> is the quadratic subextension of Kg/K.
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The Galois Group of Kjg

Ko (/) is not guaranteed to be Galois over K.

/ \ Let C = (a) C Ky /(Ky)3.

\ / » C CIm(Conorm) = Ks/K cyclic.

>

» Otherwise, Kg/K is not Galois.

For dihedral, want o € K3\ (K3)? such that N, k() = °.

Equivalent to all (non-cubed) primes of K lying below («) to split
in Kz.
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Isomorphism Classes of Cubic Function Fields

In Kz,

/ \ (0) = aocde®

K2 where ag, ay are coprime, squarefree ideals

\ / such that aga? € CI(K2)? and a1 = 7(ap).

Every (non-cubed) prime p; of K lying below « splits in K>:

pi =piT(pi), o =p1--Pk, a1 =7(p1)---7(p«)
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Isomorphism Classes of Cubic Function Fields

Ko = Ka(Va) = Ko(Via?)

Theorem

There exists a bijection between isomorphism classes of cubic
extensions K3 /K with given quadratic resolvent K, and triples
(ap, a1, ) under the equivalence (ag, a1,1) ~ (a1, a0,1/a7), where
ap, ay are as above and U is an element of the 3-Selmer group
lying in the kernel of the norm map. (Don't worry about this part.)
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Fundamental Dirichlet Series

) 1
(s, Ko) = = IN(F (K KNS
(5 K2) 2+ Ks3/K |N(f(K3/K))‘S

K> quad res

For the cubic function field corresponding to (a) = aga2q?,
the conductor is

f(K3/K) = aq 1= agaz.




Fundamental Dirichlet Series

After a LOT of manipulation,

O(s,K2)=ca [ (1 + \Ni\> + 0(1)

peD

where D be the primes p of K that split in K, and ¢; is a constant
depending on the unit group of K>.



Fundamental Dirichlet Series

After MORE simplifying,

2 CK (S)
P(s,Kp) = ¢ <1+ 5)- e + 0(1)
i 1,,1;@ NP ) Ci(25) - S8 - L(s, )



Fundamental Dirichlet Series

After MORE simplifying,

2 ng(S)
P(s,Ky) = 1 = |- o(1
(s,K2) = c1 H < + ) (29) CiK((;s)) L. 9) +0(1)




Asymptotic

This residue become the constant term in front of the main term.

Let N(g?", K2) be the number of cubic function fields with given
quadratic resolvent whose discriminant is bounded by 2" in
absolute value. Then

N(q2n7 K2) = ReSs:ld)(s, K2) . q2n + O(q4n/3+6)
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Conclusions

» Have asymptotics for cubic function fields with given
quadratic resolvent.

» Need to translate results from ideals to divisors.

» Currently working on extending these results to dihedral
extensions of degree 2¢ where £ is an odd prime.

» In function fields, some zeta functions and infinite products
are rational functions in g°. Hoping to use special cases to
investigate closed forms for these terms.

» Error bounds? Progress for number fields (Bhargava et. al.,
Tamaguchi & Thorne), less for function fields.



