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History

Diophantus:

1 + aiaj = �,

{
1

16
,

33

16
,

17

4
,

105

16

}
Fermat: same property, {1, 3, 8, 120}

Bugeaud: 1 + aiaj = k-th power, {1, A,B} with 1 < A < B in Z.

1 +A = xk A = xk − 1
1 +B = yk =⇒ B = yk − 1
1 +AB = zk AB = zk − 1

Bugeaud (2004): (xk − 1)(yk − 1) = (zk − 1) has no solutions for k ≥ 75

Bennett (2007): same equation has no solutions for k ≥ 4

(xk − 1)(yk − 1) = (zk − 1)2 has no solutions for k ≥ 4

Zhang (2014): (axk − 1)(byk − 1) = (abzk − 1) has no solutions, k ≥ 4
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Main Theorem

Theorem (G-)

Let a, b, c, k ∈ Z+ with k ≥ 7. The equation

(a2cxk − 1)(b2cyk − 1) = (abczk − 1)2

has no solution in integers with x, y, z > 1 and a2xk 6= b2yk.
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Key Ideas

Suppose k, a, b, c, x, y, z ∈ Z+ as in the Theorem s.t.

(a2cxk − 1)(b2cyk − 1) = (abczk − 1)2.

a2cxk

a2cxk − 1
=
a2cxk(b2cyk − 1)

abczk − 1
≈ (a2cxk)(b2cyk)

(abczk)2

=⇒ k

√
a2cxk

a2cxk − 1
≈ xy

z2

For large k, this approximation is “too good”.

For small k, use continued fractions
k

√
a2c

a2cxk − 1
≈ y

z2
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Proof of the Main Theorem

Let k, a, b, c ∈ Z+ with k ≥ 7.

Suppose that x, y, z > 1, a2xk 6= b2yk,
and

(a2cxk − 1)︸ ︷︷ ︸
uv2

(b2cyk − 1)︸ ︷︷ ︸
uw2

= (abczk − 1)2︸ ︷︷ ︸
(uvw)2

.

Wlog v < w.

(a2cxk)(b2cyk) = (uvw)2 + u(v2 + w2) + 1

> (uvw)2 + 2uvw + 1

= (abczk)2

=⇒ xy > z2

Let α =
k

√
1 +

1

uv2
and β =

xy

z2
.
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Theorem (Bennett, 1997)

Let n and N are positive integers

with n ≥ 3 and µn =
∏
p|n

p prime

p1/(p−1).

If
(√

N +
√
N + 1

)2(n−2)
> (nµn)

n, then for any p, q ∈ Z+,

∣∣∣∣∣ n
√

1 +
1

N
− p

q

∣∣∣∣∣ > 1

8nµnNqλ

where λ = 1 +

log

((√
N +

√
N + 1

)2

nµn

)
log

((√
N +

√
N + 1

)2

/nµn

) .

For n = k, N = uv2, apply Bennett to α =
k

√
1 +

1

uv2
and β =

xy

z2
.
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|α− β| > 1

8kµkuv2z2λ

where

λ = 1 +

log

((√
uv2 +

√
uv2 + 1

)2
kµk

)
log

((√
uv2 +

√
uv2 + 1

)2
/kµk

)
= 2 +

2 log(kµk)

2 log
(√

uv2 +
√
uv2 + 1

)
− log(kµk)

Define ΛK(D) = 2 +
2 log(KµK)

2 log
(√

D − 1 +
√
D
)
− log(KµK)

and

Λ(K) = 2 +
6 log(K)

2(K + 1) log(2)− 3 log(K)
.

Then λ = Λk(a2cxk) < Λ(K)
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1

8kµkuv2z2λ
< |α− β| < 2αk

kuvw

=⇒ w < 24µkα
kvz2λ

with zk =
uvw + 1

abc
< αkuvw =⇒ wk−2λ < 24kµkα

k(k+2λ)u2λvk+2λ

Since xy ≥ z2 + 1,

uv2 + uw2 > a2b2c2(z2 + 1)k − a2b2c2z2k

> a2b2c2kz2(k−1) + a2b2c2
k(k − 1)

2
z2(k−2)︸ ︷︷ ︸

> abczk > uvw

uw2 > a2b2c2cz2(k−1) =⇒ w2 > kkuk−2v2(k−1)

(uv2)k−2λ−2 < 28µ2
kα

2(k+2λ)k−(k−2λ)
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(uv2)k−2λ−2 < 28µ2
kα

2(k+2λ)k−(k−2λ)

For k ≥ 10, λ < Λ(10) < 3.7, µk ≤
√
k, uv2 = a2cxk − 1 ≥ 210 − 1,

63 < (210 − 1)10−2·3.7−2 < 8 ⇒⇐

For k = 9, λ < Λ9(29) < 3.2, then 42 < 3 ⇒⇐

For k = 7 and 8, similar reasoning ⇒⇐, EXCEPT for (k, a2cxk) ∈ S, a
finite set.

For (k, a2cxk) ∈ S, use continued fractions for
α

x
=

k

√
a2c

a2cxk − 1
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Continued Fractions

Let α ∈ R,

α = [a0, a1, a2, . . .] = a0 +
1

a1 +
1

a2 +
1

. . .

A convergent of α is
pj
qj

= [a0, a1, . . . , aj ] for j ≥ 0 and gcd(pj , qj) = 1

Facts:

1 = q0 ≤ q1 < q2 < . . .
p2i
q2i

< α and
p2i+1

q2i+1
> α

If
a

b
satisfies

∣∣∣α− a

b

∣∣∣ < 1

2b2
then

a

b
=
pj
qj

for some j

1

q2j (aj+1 + 2)
<

∣∣∣∣α− pj
qj

∣∣∣∣
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For (k, a2cxk) ∈ S, using continued fractions for
α

x
=

k

√
a2c

a2cxk − 1
:

(a2cxk − 1)︸ ︷︷ ︸
uv2

(b2cyk − 1) = (abczk − 1)2

(uv2)(b2cyk)− a2cxk = (abczk)2 − 2abczk

uv2b2cyk > a2b2c2zk
(
zk − 2

abc

)

βk =
xkyk

z2
>
a2cxk

uv2

(
zk − 2

zk

)
≥ αk

(
2k − 2

2k

)
= αkCk

Then Cα < β < α.
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Since Cα < β < α,

(α− β)kCk−1αk−1 < αk − βk < 2αk

uvw + 1

α− β
x

<
2αC−k+1

xk(uvw)
<

2αC−k+1

kaczk∣∣∣α
x
− y

z2

∣∣∣ < 1

2z4
=⇒ y

z2
=
pJ
qJ

fome some J ≥ 0

Facts:
α

x
>
β

x
=⇒ J is even

α

x
< 1 =⇒ p0

q0
= 0 <

y

z2
=
pJ
qJ

=⇒ J 6= 0
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1

8kµuv2z2λ
<

∣∣∣∣αx − β

x

∣∣∣∣ < 2αC−k+1

xkaczk

qJ ≤ z2 ≤ Bound

For each (k, a2cxk) ∈ S, determine possible values of J

1

z4(aJ+1 + 2)
<
∣∣∣α
x
− y

z2

∣∣∣ < 2αC−k+1

xkaczk

aJ+1 ≥
xkaczk−4Ck−1

2α
− 2 ≥ bound

For each (k, a2cxk) ∈ S, for all J , aJ+1 < bound. ⇒⇐
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Theorem (G-)

Let a, b, c, k ∈ Z+ with k ≥ 7. The equation

(a2cxk − 1)(b2cyk − 1) = (abczk − 1)2

has no solution in integers with x, y, z > 1 and a2xk 6= b2yk.
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