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Outline of Talk

e Review paper (What is known)
e State open problem from paper
e Partially solve open problem

EXAMPLE FROM KIMBERLING’S ARTICLE

Gn(X) = —XGp 1 (X) + (X2 +2X)Gpr(X) + X + 1

GENERALIZATION
Gp(X) =(@X +b)G,—1(X) + (cX2 +dX+e)Gpo(X)+ fX+g

RESTRICTIONS
a+0, b=0, e=0

GOAL: Describe the limit
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CONVERGENCE IN TWO SENSES

Coefficient Convergence

with G,(X) = )" g x!
i=0

(m)
g,‘ — Fi+2’
Pointwise convergence

- , 1+ X
FirX= ——— —
; i+2 ]—X—X2

GENERAL THEOREM

Assumptions

Gn(X) = (@X+b)Gy 1 (X)+H(cX2+dX +€)Gyr(X)+[X+g, a#0,e=0,b=0

Theorem

Ga(x) = —8*IX

1 —(a+d)X — cX?




KIMBERLING’S OPEN PROBLEMS

e Isthere some type of convergence without the assumptionson g, e, b
e Does the result generalize to recursions of order m > 2 (The above example is of order 2)

APPROACH OF THIS PRESENTATION

e Focus on coefficient convergence; ignore pointwise convergence
e Main result: g, eventually deg(i)-polynomial in n.

e (Can generalize to higher order recursions

e Can tell you information about the deg(i) polynomial.

THEOREM ASSUMPTIONS: DEGREE 2

Gn(X) = p1(X)Gp-1(X) + p2(X)Gp—2(X)

With initial conditions Go(X) = 1, Gi(X)=1+x
With P1(X) = a + bX, P2 =c+dX +eX?, po=0

RESTRICTIONS: g=1, ¢c=0




Assumption Comparison | Kimberling This paper
po(X) Non zero zero
Constant in p;(X) zero Must be 1
Coef of X in p1(X) Not zero Don't care
Constant in p,(X) zero zero
Conclus!on Kimberling This Paper
Comparison

Coefficient To a constant To a polynomial
convergence value

Pointwise Yes No

convergence

Coefficient Recursive Patterns in
Sequence sequence difference triangle

THEOREM ASSUMPTIONS: GENERAL CASE

Gn(X) = )" PiX)Gpi(X)

i=1

With initial_conditions

1
Gi(X) = Z X/,
=0
With

i
) _ Dy j
pl(X) - Z CJ,‘ X ’
=0
RESTRICTIONS:
M _ 4

)

cg") =0,

0<i<m-1
| <i<m,
m>1

no constant polynomial




EXAMPLE:»c0=1-2x, p0=Xx-Xx>

n=\Gy(X) | Constant | Coef X | Coef X*> | Coef X* | Coef X*
1 1
2 1 1
3 1 0 -3
4 1 -1 -3 5
5 1 -2 -2 8 -7
6 1 -3 0 10 -15
7 1 -4 3 10 -25
8 1 -5 7 7 -35
9 1 -6 12 0 -42
10 1 -7 18 -12 -42
11 1 -8 25 -30 -30
12 1 -9 33 -55 0
THEOREM RESULTS
e 4 Results
o Diagonal
o Left

o Column Degree
o Triangular Shape
e CORROLLARY: ¢", is eventually a deg(i) polynomial in n

(c)
THEOREM RESULTS - & >
_ i _
e Diagonal i = & Dj=bDj_| +dDj;_
0
° LEftgiEt)zl’ nz0
e Column Degree Agl = (b +d) — deggl) =i
n i
i) _ (
Ag, = (Z ¢; )
e For General Case (order m): J=1
e Triangular Support gf;) #0—0<is<n<o

r>0,c>0




PROOF OF LEFT (Straightforward)

GoX)=1,G1(X) =1+ X,Gp(X) = 1 + bX)G—| + (cX + dXz)Gn_z

©
Henceé’n)zl’ nz0

PROOF OF TRIANGLE (Straightforward)

By induction
True for top and 2" row by initial conditions
True for n-th row by defining recursion

PROOF OF DIAGONAL (Straightforward)

Compare coefficients of degree n in defining recursion
Gn(X) = (a + bX)Gp1 (X) + (X + dXH)Gp-2(X)
Dy =bDy_1 +dDy—2

PROOF OF COLUMN DEGREE (Order 2)
GulX) = (@ +bX)G (1) 4 (X + dXDG,g,  a=1

(;) ) (i-2)

n—-2

(i— 1) g(f 1)

+bg +c +dg

KEY TRICK

Ag(” —}’:’g1 1 +cg 6 2)
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+dg —
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Alg? = AT 4 A1 gD 4 g1 g0

n—1

—b(b+a‘)’ Lydb + )~ 1
= (b+d)

GOOD EXAMPLE
Go(X) =1, GiX)=1+X

pIX)=1-2X,  paX)=X-X> poX) =0
Gn(X) = p1(X)Gp 1 (X) + p2(X)Gp_2(X)

Theorem says that the G,(X) converge. But to what?




NUMERICAL DATA — PATTERNS in ¢g'°’, (OEIS: A252840)

Coef | Coef Coef
Gn(X) Constant | X X? | CoefX®| X*
Go(X) 1
G1(X) 1 1
Ga(X) 1 | 0 | 3
Ga(X) 1 | 1| 3| 5
Gi(X) 1 | 2| 2| s 7
Gs(X) 1 | 3 o 10 | 15
Go(X) 1 | 4| 3 | 10| 25
Gi(X) 1 | 5 | 7 7 | 35
Go(X) 1 | 6 | 1 42
Go(X) 1 | 7 | 18 | ‘12 | a2
G1o(X) 1 | 8| 25 | 30 | -30
Gu(X) 1 | -9 | 33 | 55 [

CLOSED FORM FOR COEFFICIENTS AND G, (X)

Acknowledgement to Robert Israel (OEIS Editor) and David Thornton for helpful conversations
G,(X) = (1 +2X)(1 = X)" - 2X(-X)"
: 1
y = (D i (n = Gi= 1)

o« Sn =
e S0 no coefficient convergence: Coefficients blow up at infinity
e No pointwise convergence: limit function has discontinuities and diverges
e Main point: Although G,, does not exist, the defining recursion gives rise to interesting
patterns in coefficients
ILLUSTRATION OF MAIN THEOREM
i) Left most column is all ones
ii) Right most diagonal are odds with alternating signs
iii) Right most diagonal (odds) satisfies recursion: Di = =2D;—1 = Dj_»
iv) Coefficient triangle satisfies stronger condition: Aggﬂ) = _g}(:‘) - Aié’g) = (-1

Proof of (iv) below




IDEA OF PROOF

e Boundary conditions
o Left most column identically 1

o Diagonal are odds
0 _ _ (-1
e Must proveAgn—l = 8-

REDUCED TO PROVING

@ _ _ =D
Agrt—l =78
With

, 1 _
g = =D 5=y, ci=3i-1

Proof of identity in polynomials in two variables!

(TEASE FOR GRADUATE STUDENTS) METHODS OF PROOF

1) Proof: By straightforward manipulations

2) Proof: Clear

3) Proof: Verifiable on Mathematica or any equivalent algebraic software package
)

4) None of the above

OUTLINE OF PROOF

Write out identity to be proved

Make cancellations

What is left turns out to be quadratic identity in two variables

To prove a quadratic identity we only need 3 cleverly selected points

WHAT HAS TO BE PROVED

i+ 1 i+ 1 ]
gt — gl = g

. 1 _
g = =S =y, =31




WHAT CANCELS

e Minus sign: On both sides cancel
e Absolute Factorials: Factor of (i+1) on right side
e Falling factorials: What is common to (2 + 1);, (n)is (n)i-17?
e Falling factorials continued: (n).; is common
e Falling factorials continued again: So what is left
o (n+1) in first summand on left side
o n-(i-1) in second summand on left side
o 1lonrightside

WHAT IS LEFT TO PROVE AFTER CANCELLATIONS

(n+Dn+1-cipp)—(n—0G-D)n-cis1) =0+ 1)n-c)
Quadratic polynomial identity in n, i
Need three clever points to identify

® n=cu -1

® N=Cn

e n=g

CASE: n=c,,
Need to prove (n + D(n+ 1 =ciy1) = (n = (i — 1))(n = ciy1)
(ci+ Dlci+ 1 =cip1) = (c;i = (i = D)ci = cir1), ci=3i-1
(ci + 1)(=2) = (¢; — (i — D)(-3)
-2x3i=-3x2i

ANOTHER TEASE FOR GRADUATE STUDENTS

Other cases proven similarly.

IS EXAMPLE UNIQUE?

Acknowledgement to Bart Goddard for raising this question
. i () _ i . D _ _ (i-1)
e Ingeneralif A8: =(=1)' we do not necessarily have Agn” = —&n
(i)

e Forexample: Gn(X) = (1 + X)G,_1(X) + (X* = 2X)G,_» hasA'gy’ = (-1)".Agy # g},

(i-1)

e However there is a one parameter family of examples. We state without proof the following:

e Theorem: If e=1+b, d=-¢, and Gn(X) = (1 + bX)G,—1(X) + (dX + eXH)Gp-2(X)

. 1
° Then:/—\é’g) = —é’g )

e The example we gave above illustrates b=-2.
e We can actually replace “If” with “If and only if” in the Theorem statement.




