

COEFFICIENT CONVERGENCE OF RECURSIVELY DEFINED POLYNOMIALS

West Coast Number Theory Conference 2014

Russell Jay Hendel
Towson University, Md
RHendel@Towson.Edu

REFERENCE

Limits of Polynomial Sequences
Clark Kimberling
Fibonacci Quarterly, 50.4
2012, pp. 294 - 297

Outline of Talk

- Review paper (What is known)
- State open problem from paper
- Partially solve open problem

EXAMPLE FROM KIMBERLING'S ARTICLE

$$G_n(X) = -XG_{n-1}(X) + (X^2 + 2X)G_{n-2}(X) + X + 1$$

GENERALIZATION

$$G_n(X) = (aX + b)G_{n-1}(X) + (cX^2 + dX + e)G_{n-2}(X) + fX + g$$

RESTRICTIONS

$$a \neq 0, \quad b = 0, \quad e = 0$$

GOAL: Describe the limit

NUMERICAL VALUES

$G(X)$	Constant	Coef X	Coef X^2	Coef X^3	Coef X^4	Coef X^5	Coef X^6
$G_0(X)$	1						
$G_1(X)$	1	1					
$G_2(X)$	1	2					
$G_3(X)$	1	2	1	1			
$G_4(X)$	1	2	3	1	-1		
$G_5(X)$	1	2	3	1	2	2	
$G_6(X)$	1	2	3	5	4	-3	-3
$G_7(X)$	1	2	3	0	5	1	9
$G_8(X)$	1	2	3	5	8	13	-3

CONVERGENCE IN TWO SENSES

Coefficient Convergence

$$g_i^{(n)} \rightarrow F_{i+2}, \quad \text{with } G_n(X) = \sum_{i=0}^{\infty} g_i^{(n)} X^i$$

Pointwise convergence

$$\sum_{i=0}^{\infty} F_{i+2} X^i = \frac{1+X}{1-X-X^2}$$

GENERAL THEOREM

Assumptions

$$G_n(X) = (aX+b)G_{n-1}(X) + (cX^2+dX+e)G_{n-2}(X) + fX + g, \quad a \neq 0, e = 0, b = 0$$

Theorem

$$G_n(X) = \frac{g + fX}{1 - (a + d)X - cX^2}$$

KIMBERLING'S OPEN PROBLEMS

- Is there some type of convergence without the assumptions on a, e, b
- Does the result generalize to recursions of order $m > 2$ (The above example is of order 2)

APPROACH OF THIS PRESENTATION

- Focus on coefficient convergence; ignore pointwise convergence
- Main result: $g^{(i)}_n$ eventually $\deg(i)$ -polynomial in n .
- Can generalize to higher order recursions
- Can tell you information about the $\deg(i)$ polynomial.

THEOREM ASSUMPTIONS: DEGREE 2

$$G_n(X) = p_1(X)G_{n-1}(X) + p_2(X)G_{n-2}(X)$$

$$\text{With initial conditions } G_0(X) = 1, \quad G_1(X) = 1 + x$$

$$\text{With } p_1(X) = a + bX, \quad p_2 = c + dX + eX^2, \quad p_0 = 0$$

RESTRICTIONS: $a=1, c=0$

Assumption Comparison	Kimberling	This paper
$p_0(X)$	Non zero	zero
Constant in $p_1(X)$	zero	Must be 1
Coef of X in $p_1(X)$	Not zero	Don't care
Constant in $p_2(X)$	zero	zero

Conclusion Comparison	Kimberling	This Paper
Coefficient convergence	To a constant	To a polynomial value
Pointwise convergence	Yes	No
Coefficient Sequence	Recursive sequence	Patterns in difference triangle

THEOREM ASSUMPTIONS: GENERAL CASE

$$G_n(X) = \sum_{i=1}^m p_i(X)G_{n-i}(X)$$

With initial conditions

$$G_i(X) = \sum_{j=0}^i X^j, \quad 0 \leq i \leq m-1$$

With

$$p_i(X) = \sum_{j=0}^i c_j^{(i)} X^j, \quad 1 \leq i \leq m, \quad \text{no constant polynomial}$$

RESTRICTIONS:

$$c_0^{(1)} = 1, \quad c_0^{(m)} = 0, \quad m > 1$$

EXAMPLE: $p_1(X) = 1 - 2X$, $p_2(X) = X - X^2$

$n = \lfloor G_n(X) \rfloor$	Constant	Coef X	Coef X^2	Coef X^3	Coef X^4
1	1				
2	1	1			
3	1	0	-3		
4	1	-1	-3	5	
5	1	-2	-2	8	-7
6	1	-3	0	10	-15
7	1	-4	3	10	-25
8	1	-5	7	7	-35
9	1	-6	12	0	-42
10	1	-7	18	-12	-42
11	1	-8	25	-30	-30
12	1	-9	33	-55	0

THEOREM RESULTS

- 4 Results
 - *Diagonal*
 - *Left*
 - *Column Degree*
 - *Triangular Shape*
- **COROLLARY:** $g_n^{(i)}$ is eventually a $\deg(i)$ polynomial in n

THEOREM RESULTS – $g_r^{(c)}$, $r \geq 0, c \geq 0$

- **Diagonal** $D_i = g_i^{(i)}$, $D_i = bD_{i-1} + dD_{i-2}$
- **Left** $g_n^{(0)} = 1$, $n \geq 0$
- **Column Degree** $\Delta^i g_n^{(i)} = (b+d)^i \rightarrow \deg g_n^{(i)} = i$

$$\Delta^i g_n^{(i)} = \left(\sum_{j=1}^m c_j^{(1)} \right)^i$$
- For General Case (order m):
- **Triangular Support** $g_n^{(i)} \neq 0 \rightarrow 0 \leq i \leq n < \infty$

PROOF OF LEFT (Straightforward)

$$G_0(X) = 1, G_1(X) = 1 + X, G_n(X) = (1 + bX)G_{n-1} + (cX + dX^2)G_{n-2}$$

$$\text{Hence } g_n^{(0)} = 1, \quad n \geq 0$$

PROOF OF TRIANGLE (Straightforward)

By induction

True for top and 2nd row by initial conditions

True for n-th row by defining recursion

PROOF OF DIAGONAL (Straightforward)

Compare coefficients of degree n in defining recursion

$$G_n(X) = (a + bX)G_{n-1}(X) + (cX + dX^2)G_{n-2}(X)$$

$$D_n = bD_{n-1} + dD_{n-2}$$

PROOF OF COLUMN DEGREE (Order 2)

$$G_n(X) = (a + bX)G_{n-1}(X) + (cX + dX^2)G_{n-2}, \quad a = 1$$

$$g_n^{(i)} = g_{n-1}^{(i)} + bg_{n-1}^{(i-1)} + cg_{n-2}^{(i-1)} + dg_{n-2}^{(i-2)}$$

KEY TRICK

$$\Delta g_{n-1}^{(i)} = bg_{n-1}^{(i-1)} + cg_{n-2}^{(i-1)} + dg_{n-2}^{(i-2)} \longrightarrow$$

$$\begin{aligned} \Delta^i g_{n-1}^{(i)} &= b\Delta^{i-1}g_{n-1}^{(i-1)} + c\Delta^{i-1}g_{n-2}^{(i-1)} + d\Delta^{i-1}g_{n-2}^{(i-2)} \\ &= b(b+d)^{i-1} + d(b+d)^{i-1} \\ &= (b+d)^i \end{aligned}$$

GOOD EXAMPLE

$$G_0(X) = 1, \quad G_1(X) = 1 + X$$

$$p_1(X) = 1 - 2X, \quad p_2(X) = X - X^2, \quad p_0(X) = 0$$

$$G_n(X) = p_1(X)G_{n-1}(X) + p_2(X)G_{n-2}(X)$$

Theorem says that the $G_n(X)$ converge. But to what?

NUMERICAL DATA – PATTERNS in $g^{(c)}$, (OEIS: A252840)

$G_n(X)$	Constant	Coef X	Coef X^2	Coef X^3	Coef X^4
$G_0(X)$	1				
$G_1(X)$	1	1			
$G_2(X)$	1	0	-3		
$G_3(X)$	1	-1	-3	5	
$G_4(X)$	1	-2	-2	8	-7
$G_5(X)$	1	-3	0	10	-15
$G_6(X)$	1	-4	3	10	-25
$G_7(X)$	1	-5	7	7	-35
$G_8(X)$	1	-6	12	0	-42
$G_9(X)$	1	-7	18	-12	-42
$G_{10}(X)$	1	-8	25	-30	-30
$G_{11}(X)$	1	-9	33	-55	0

CLOSED FORM FOR COEFFICIENTS AND $G_n(X)$

Acknowledgement to Robert Israel (OEIS Editor) and David Thornton for helpful conversations

- $G_n(X) = (1 + 2X)(1 - X)^n - 2X(-X)^n$
- $\rightarrow g_n^{(i)} = (-1)^i \frac{1}{i!} (n)_{i-1} (n - (3i - 1))$
- So no coefficient convergence: Coefficients blow up at infinity
- No pointwise convergence: limit function has discontinuities and diverges
- Main point: Although G_{∞} does not exist, the defining recursion gives rise to interesting patterns in coefficients

ILLUSTRATION OF MAIN THEOREM

- Left most column is all ones
- Right most diagonal are odds with alternating signs
- Right most diagonal (odds) satisfies recursion: $D_i = -2D_{i-1} - D_{i-2}$
- Coefficient triangle satisfies stronger condition: $\Delta g_n^{(i+1)} = -g_n^{(i)} \rightarrow \Delta^i g_n^{(i)} = (-1)^i$
Proof of (iv) below

IDEA OF PROOF

- Boundary conditions
 - Left most column identically 1
 - Diagonal are odds
- Must prove $\Delta g_{n-1}^{(i)} = -g_{n-1}^{(i-1)}$

REDUCED TO PROVING

$$\Delta g_{n-1}^{(i)} = -g_{n-1}^{(i-1)}$$

With

$$g_n^{(i)} = -(-1)^i \frac{1}{i!} (n - c_i)(n)_{(i-1)}, \quad c_i = 3i - 1$$

Proof of identity in polynomials in two variables!

(TEASE FOR GRADUATE STUDENTS) METHODS OF PROOF

- 1) Proof: By straightforward manipulations
- 2) Proof: Clear
- 3) Proof: Verifiable on Mathematica or any equivalent algebraic software package
- 4) None of the above

OUTLINE OF PROOF

Write out identity to be proved

Make cancellations

What is left turns out to be quadratic identity in two variables

To prove a quadratic identity we only need 3 cleverly selected points

WHAT HAS TO BE PROVED

$$g_{n+1}^{(i+1)} - g_n^{(i+1)} = -g_n^{(i)}$$

$$g_n^{(i)} = -(-1)^i \frac{1}{i!} (n - c_i)(n)_{(i-1)}, \quad c_i = 3i - 1$$

WHAT CANCELS

- **Minus sign:** On both sides cancel
- **Absolute Factorials:** Factor of $(i+1)$ on right side
- **Falling factorials:** What is common to $(n+1)_i, (n)_i, (n)_{i-1}$?
- **Falling factorials continued:** $(n)_{i-1}$ is common
- **Falling factorials continued again:** So what is left
 - $(n+1)$ in first summand on left side
 - $n-(i-1)$ in second summand on left side
 - 1 on right side

WHAT IS LEFT TO PROVE AFTER CANCELLATIONS

$$(n+1)(n+1 - c_{i+1}) - (n - (i-1))(n - c_{i+1}) = (i+1)(n - c_i)$$

Quadratic polynomial identity in n, i

Need three clever points to identify

- $n = c_{i+1} - 1$
- $n = c_{i+1}$
- $n = c_i$

CASE: $n=c_m$

$$\text{Need to prove } (n+1)(n+1 - c_{i+1}) = (n - (i-1))(n - c_{i+1})$$

$$(c_i + 1)(c_i + 1 - c_{i+1}) = (c_i - (i-1))(c_i - c_{i+1}), \quad c_i = 3i - 1$$

$$(c_i + 1)(-2) = (c_i - (i-1))(-3)$$

$$-2 \times 3i = -3 \times 2i$$

ANOTHER TEASE FOR GRADUATE STUDENTS

Other cases proven similarly.

IS EXAMPLE UNIQUE?

Acknowledgement to Bart Goddard for raising this question

- In general if $\Delta^i g_n^{(i)} = (-1)^i$, we do not necessarily have $\Delta g_n^{(i)} = -g_n^{(i-1)}$
- For example: $G_n(X) = (1+X)G_{n-1}(X) + (X^2 - 2X)G_{n-2}$ has $\Delta^i g_n^{(i)} = (-1)^n, \Delta g_n^{(i)} \neq -g_n^{(i-1)}$
- However there is a one parameter family of examples. We state without proof the following:
- Theorem: If $e=1+b, d=-e$, and $G_n(X) = (1+bX)G_{n-1}(X) + (dX + eX^2)G_{n-2}(X)$
- Then: $\Delta g_n^{(i)} = -g_n^{(i-1)}$
- The example we gave above illustrates $b=-2$.
- We can actually replace “If” with “If and only if” in the Theorem statement.