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The set-up

Let p be an odd prime.

Let R(X ) ∈ Fpr [X ] be an additive polynomial of degree ph for
h ≥ 1.

Let
CR : Y p − Y = XR(X ).
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Things we will do to CR

1 Almost count the number of points of CR over certain field
extensions of Fpr

2 Exhibit many automorphisms (and in most cases all) of CR as
well as determine the field over which these automorphisms
are defined

3 Give the structure of this (sub)group of automorphisms

4 Compute the zeta function of CR
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Zeta function of a curve

For C a curve over a finite field Fps , we define

ZC ,Fps (T ) = exp

( ∞∑
n=1

#C (Fpns )T n

n

)
.

Then

ZC ,Fps (T ) =
LC ,Fps (T )

(1− T )(1− psT )
=

∏2g
i=1(1− αiT )

(1− T )(1− psT )
.
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But first some notation

Let

R(X ) =
h∑

i=0

aiX
pi
.

Then we can write an explicit polynomial associated to R:

E (X ) = (R(X ))ph
+

h∑
i=0

(aiX )ph−i
.

Its zero locus is

W = {c ∈ Fpr : E (c) = 0}

and its splitting field is Fq.
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The magical space W

Proposition

1 c ∈W if and only if there exists a polynomial B(X ) ∈ Fq[X ]
such that

B(X )p − B(X ) = cR(X ) + R(c)X .

2 Every such B(X ) is of the form

B(X ) = Bc(X ) +
Bc(c)

2
+ i

as i ranges over Fp and where Bc(X ) ∈ XFq[X ] is unique.
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Point counting

Proposition

Let Fps be an extension of Fq. The number of Fps -rational points
on CR is

#CR(Fps ) =

{
ps + 1 if s is odd,

ps + 1± (p − 1)ph+s/2 if s is even.
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Idea of the proof

Define the bilinear form

Q(x , y) =
1

2
TrFps /Fp

(xR(y) + yR(x)).

This is a non-degenerate bilinear form on Fps/W × Fps/W .

The zero locus of the associated quadratic form is a smooth
quadric whose cardinality we know.

Each of these zeroes gives p2h+1 points on CR .
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This is almost enough

From this easy point count we can get

Proposition

Let Fps be an extension of Fq. The L-polynomial of CR over Fps is

LCR ,Fps (T ) =

{
(1± psT 2)g if s is odd,

(1± ps/2T )2g if s is even.
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Almost count the number of points of CR over certain field
extensions of Fpr

2 Exhibit many automorphisms (and in most cases all) of CR as
well as determine the field over which these automorphisms
are defined

Give the structure of this (sub)group of automorphisms

Compute the zeta function of CR
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Many automorphisms of CR

Theorem (Stichtenoth, Lehr-Matignon)

Let R(X ) be monic. If R(X ) 6∈ {X ,X p}, then all automorphisms
of CR defined over Fpr fix the unique point at ∞ of CR .

We denote the subgroup of automorphisms that fix ∞ by
Aut0(CR).
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Many/all automorphisms of CR

Lemma

Every automorphism in Aut0(CR) is of the form

σa,b,c,d : CR → CR

(x , y) 7→ (ax + c , dy + b + Bc(ax)),

where c ∈W and b = Bc (c)
2 + i for some i ∈ Fp.
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What we want

Our goal now will be to find a large subgroup A of Aut0(CR) so
that CR/A

is easily computable and its L-polynomial can be computed,

and its L-polynomial is related to the L-polynomial of CR .

One thing to avoid is for ρ = σ1,1,0,1 (ρ(x , y) = (x , y + 1)) to be in
A. In that case CR/A ∼= P1.
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The structure of the automorphism group of CR

Theorem

The group Aut0(CR) has a unique Sylow p-subgroup, which
we denote by P. It consists of all automorphisms σ1,b,c,1.

The automorphisms σa,0,0,d form a cyclic subgroup H of
Aut0(CR), whose cardinality we know.

Aut0(CR) = P o H.
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Zooming in on P

Because we have such an explicit description of the elements of P,
we can deduce the following facts:

Theorem

P has center generated by ρ = σ1,1,0,1 (ρ(x , y) = (x , y + 1)).

P/Z (P) ∼= W .
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Important consequence of P/Z (P) ∼= W

In P, we have

[σ1,b1,c1,1, σ1,b2,c2,1] = ρ−ε(c1,c2),

where
ε(c1, c2) = Bc1(c2)− Bc2(c1).

Since ci ∈W , this gives a symplectic pairing on W .
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Maximal isotropic subspaces

Fact

Every maximal abelian subgroup A of P is the inverse image of a
maximal isotropic subspace of W . Such an A ∼= (Z/pZ)h+1, and
contains Z (P).

The subgroup A we seek is any subgroup A of A such that
A ∼= (Z/pZ)h and A ∩ Z (P) ∼= {1}.
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Consequences for the curve CR

Theorem

Any two subgroups A, A′ of A of order ph which trivially intersect
Z (P) are conjugate inside P.

This immediately implies

Proposition

For any such A, A′, CR/A ∼= CR/A′.
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Consequences for the curve CR

Theorem

For a fixed A and any subgroup A ∼= (Z/pZ)h ⊂ A intersecting
Z (P) trivially, there exist subgroups A1, . . . ,Ap−1 of A such that

A = Z (P) ∪ A1 ∪ . . . ∪ Ap−1 ∪ A,

Ai
∼= (Z/pZ)h, Ai ∩ Z (P) = {1}, Ai ∩ Aj = {1}.

Using a theorem of Kani and Rosen, from this decomposition we
get as an immediate consequence

Theorem

Jac(CR) ∼Fq Jac(CR/A)ph
.
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Reducing to a simpler problem

Because of facts about L-polynomials and isogenies, the upshot of
this last theorem is that

LCR
(T ) = LCR/A(T )ph

.
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The curve CR/A

Theorem

Let A ⊂ A. Then CR/A is isomorphic over Fq to the curve

Y p − Y = aAX 2,

where
aA =

ah

2

∏
c∈A\{0}

c ,

where A is the maximal isotropic subspace of W that is the image
of A under the quotient map P →W .
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The curve CR/A

A curve with equation

Y p − Y = aX 2

is simple enough that we can count its points explicitly and
compute the zeta function directly.
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The L-polynomial

Theorem

1 If p ≡ 1 (mod 4), then the L-polynomial of CR over Fps is
given by

LCR ,Fps (T ) =



(1− psT 2)g if s is odd,

(1− ps/2T )2g if s is even and aA is a
square in F∗ps ,

(1 + ps/2T )2g if s is even and aA is a non-
square in F∗ps .
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The L-polynomial

Theorem

2 If p ≡ 3 (mod 4), then the L-polynomial of CR over Fps is
given by

LCR ,Fps (T ) =



(1 + psT 2)g if s is odd,

(1− ps/2T )2g if s ≡ 0 (mod 4) and aA
is a square in F∗ps ,

(1 + ps/2T )2g if s ≡ 0 (mod 4) and aA
is a nonsquare in F∗ps ,

(1 + ps/2T )2g if s ≡ 2 (mod 4) and aA
is a square in F∗ps ,

(1− ps/2T )2g if s ≡ 2 (mod 4) and aA
is a nonsquare in F∗ps .
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For all of this and more, please visit my website,
math.stanford.edu/~cvincent.

Thank you!
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