Polynomial analogues of some results in number theory

Andreas Weingartner

Department of Mathematics Southern Utah University

West Coast Number Theory, December 18, 2015

Correspondence between \mathbb{Z} and $\mathbb{F}_q[T]$

 $\mathbb{F}_q[T] := \text{set of polynomials over } \mathbb{F}_q$, the finite field with q elements.

Correspondence between \mathbb{Z} and $\mathbb{F}_q[T]$

 $\mathbb{F}_q[T] := \text{set of polynomials over } \mathbb{F}_q$, the finite field with q elements.

$\mathbb Z$	$\mathbb{F}_q[T]$
{±1}	$\mathbb{F}_q^{ imes}$
positive integers	monic polynomials
prime numbers	monic irreducible polynomials
absolute value	$ f =q^{{ m deg}f}$
integers of size $\approx x$	monic polynomials of degree n where $x = q^n$

Prime number theorem

Hadamard, de la Vallée Poussin: The number of primes $p \le x$ is asymptotic to $\frac{x}{\log x}$ as $x \to \infty$.

Prime number theorem

Hadamard, de la Vallée Poussin: The number of primes $p \le x$ is asymptotic to $\frac{x}{\log x}$ as $x \to \infty$.

Gauss: The number of monic irreducible polynomials in $\mathbb{F}_q[T]$ of degree n is

$$\frac{q^n}{n} + O\left(\frac{q^{n/2}}{n}\right).$$

Twin primes

Twin prime conjecture: There are infinitely many prime pairs p, p + 2.

Twin primes

Twin prime conjecture: There are infinitely many prime pairs p, p + 2.

Hall (2006): Let q>3 and $C\in \mathbb{F}_q$ be constant. There are infinitely many twin prime pairs $P,P+C\in \mathbb{F}_q[T]$.

Twin primes

Twin prime conjecture: There are infinitely many prime pairs p, p + 2.

Hall (2006): Let q > 3 and $C \in \mathbb{F}_q$ be constant. There are infinitely many twin prime pairs $P, P + C \in \mathbb{F}_q[T]$.

Pollack (2008) finds asymptotic result for the number of twin prime pairs $P, P + C \in \mathbb{F}_q[T]$, assuming $n^2/q \to 0$, where $n = \deg(P)$.

Rough integers: no small prime factors

Let
$$\Phi(x, y) = \#\{n \le x : p | n \Rightarrow p > y\}.$$

Rough integers: no small prime factors

Let $\Phi(x, y) = \#\{n \le x : p | n \Rightarrow p > y\}.$

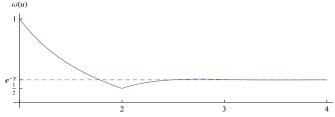
Tenenbaum: For $x \ge 2y \ge 5$,

$$\Phi(x,y) = e^{\gamma}(x\,\omega(u) - y) \prod_{p \le y} \left(1 - \frac{1}{p}\right) \left\{1 + O\left(\frac{e^{-u/3}}{\log y}\right)\right\},\,$$

where $u = \frac{\log x}{\log y}$ and Buchstab's function ω is given by

$$\omega(u) = 1/u \quad (1 \le u \le 2),$$

$$(u\omega(u))' = \omega(u-1) \quad (u > 2).$$



Rough polynomials: no divisors of small degree

Let r(n, m) be the proportion of polynomials of degree n over \mathbb{F}_q , all of whose non-constant divisors have degree > m.

Rough polynomials: no divisors of small degree

Let r(n, m) be the proportion of polynomials of degree n over \mathbb{F}_q , all of whose non-constant divisors have degree > m.

W. (2015): Let u = n/m. For $n > m \ge 1$ we have

$$r(n,m) = e^{\gamma} \omega(u) \prod_{\deg(P) < m} \left(1 - \frac{1}{|P|} \right) \left\{ 1 + O\left(\frac{(u/e)^{-u}}{m}\right) \right\},\,$$

where P runs over monic irreducibles and $|P| = q^{\deg(P)}$.

Practical numbers

Srinivasan (1948): A positive integer n is called practical if all smaller positive integers can be represented as sums of distinct divisors of n.

Practical numbers

Srinivasan (1948): A positive integer n is called practical if all smaller positive integers can be represented as sums of distinct divisors of n.

Examples:

- ▶ 12 is practical: 5 = 3 + 2, 7 = 4 + 3, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 4, 11 = 6 + 3 + 2.
- ▶ 10 is not practical: 9 > 5 + 2 + 1.

Practical numbers

Srinivasan (1948): A positive integer n is called practical if all smaller positive integers can be represented as sums of distinct divisors of n.

Examples:

- ▶ 12 is practical: 5 = 3 + 2, 7 = 4 + 3, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 4, 11 = 6 + 3 + 2.
- ▶ 10 is not practical: 9 > 5 + 2 + 1.

The sequence of practical numbers:

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40,...

Practical numbers: 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28,...

Prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,...

Practical numbers: 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, ...

Prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...

[Goldbach's Conjecture] (Melfi, 1996):

Every even positive integer is the sum of two practical numbers.

Practical numbers: 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, ...

Prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...

[Goldbach's Conjecture] (Melfi, 1996):

Every even positive integer is the sum of two practical numbers.

[Legendre's Conjecture] (Hausman & Shaprio, 1984):

There is a practical number between x^2 and $(x + 1)^2$ for every x > 0.

Practical numbers: 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, ...

Prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...

[Goldbach's Conjecture] (Melfi, 1996):

Every even positive integer is the sum of two practical numbers.

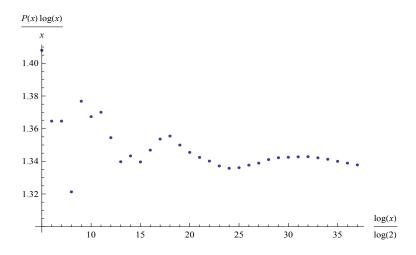
[Legendre's Conjecture] (Hausman & Shaprio, 1984):

There is a practical number between x^2 and $(x + 1)^2$ for every x > 0.

[Prime Number Theorem] (Margenstern's Conjecture, 1991):

The number of practical numbers below x is asymptotic to $\frac{cx}{\log x}$.

Define $P(x) := \#\{n \le x : n \text{ is practical}\}\$



Let $P(x) = \#\{n \le x : n \text{ practical}\}\$

Let $P(x) = \#\{n \le x : n \text{ practical}\}\$ Erdős and Loxton (1979): P(x) = o(x)

Let $P(x) = \#\{n \le x : n \text{ practical}\}\$

Erdős and Loxton (1979): P(x) = o(x)

Hausman and Shapiro (1983): $P(x) \ll \frac{x}{(\log x)^{\beta}}$, $\beta = 0.0979...$

Let
$$P(x) = \#\{n \le x : n \text{ practical}\}\$$

Erdős and Loxton (1979):
$$P(x) = o(x)$$

Hausman and Shapiro (1983):
$$P(x) \ll \frac{x}{(\log x)^{\beta}}$$
, $\beta = 0.0979...$

Margenstern (1984):
$$P(x) \gg \frac{x}{\exp(\alpha(\log\log x)^2)}$$
, $\alpha = 0.7213...$

Let
$$P(x) = \#\{n \le x : n \text{ practical}\}\$$

Erdős and Loxton (1979):
$$P(x) = o(x)$$

Hausman and Shapiro (1983):
$$P(x) \ll \frac{x}{(\log x)^{\beta}}$$
, $\beta = 0.0979...$

Margenstern (1984):
$$P(x) \gg \frac{x}{\exp(\alpha(\log\log x)^2)}$$
, $\alpha = 0.7213...$

Tenenbaum (1986):

$$\frac{x}{\log x (\log_2 x)^{4.201}} \ll P(x) \ll \frac{x \log_2 x \log_3 x}{\log x}$$

Let $P(x) = \#\{n \le x : n \text{ practical}\}\$

Erdős and Loxton (1979): P(x) = o(x)

Hausman and Shapiro (1983):
$$P(x) \ll \frac{x}{(\log x)^{\beta}}$$
, $\beta = 0.0979...$

Margenstern (1984):
$$P(x) \gg \frac{x}{\exp(\alpha(\log\log x)^2)}$$
, $\alpha = 0.7213...$

Tenenbaum (1986):

$$\frac{x}{\log x (\log_2 x)^{4.201}} \ll P(x) \ll \frac{x \log_2 x \log_3 x}{\log x}$$

Saias (1997):
$$P(x) \simeq \frac{x}{\log x}$$

Let
$$P(x) = \#\{n \le x : n \text{ practical}\}\$$

Erdős and Loxton (1979):
$$P(x) = o(x)$$

Hausman and Shapiro (1983):
$$P(x) \ll \frac{x}{(\log x)^{\beta}}$$
, $\beta = 0.0979...$

Margenstern (1984):
$$P(x) \gg \frac{x}{\exp(\alpha(\log\log x)^2)}$$
, $\alpha = 0.7213...$

Tenenbaum (1986):

$$\frac{x}{\log x (\log_2 x)^{4.201}} \ll P(x) \ll \frac{x \log_2 x \log_3 x}{\log x}$$

Saias (1997):
$$P(x) \approx \frac{x}{\log x}$$

W. (2015):
$$P(x) = \frac{cx}{\log x} \left(1 + O\left(\frac{\log \log x}{\log x}\right) \right)$$
 for some $c > 0$.

$$D(x) := \# \{ n \le x : [y, 2y) \text{ contains a divisor of } n \text{ for all } 1 \le y \le n. \}$$

$$D(x) := \# \{ n \le x : [y, 2y) \text{ contains a divisor of } n \text{ for all } 1 \le y \le n. \}$$

Tenenbaum (1986): For $x \ge 2$,

$$\frac{x}{\log x \, (\log \log x)^{4.201}} \ll D(x) \ll \frac{x \log \log x}{\log x}.$$

$$D(x) := \# \{ n \le x : [y, 2y) \text{ contains a divisor of } n \text{ for all } 1 \le y \le n. \}$$

Tenenbaum (1986): For $x \ge 2$,

$$\frac{x}{\log x \, (\log \log x)^{4.201}} \ll D(x) \ll \frac{x \log \log x}{\log x}.$$

Saias (1997): For
$$x \ge 2$$
, $D(x) \approx \frac{x}{\log x}$.

$$D(x) := \# \{ n \le x : [y, 2y) \text{ contains a divisor of } n \text{ for all } 1 \le y \le n. \}$$

Tenenbaum (1986): For $x \ge 2$,

$$\frac{x}{\log x \, (\log \log x)^{4.201}} \ll D(x) \ll \frac{x \log \log x}{\log x}.$$

Saias (1997): For
$$x \ge 2$$
, $D(x) \approx \frac{x}{\log x}$.

W. (2015): For $x \ge 2$,

$$D(x) = \frac{c_2 x}{\log x} \left\{ 1 + O\left(\frac{1}{\log x}\right) \right\},\,$$

for some $c_2 > 0$.

Ex.: $T(T^2+T+1)(T^4+T+1) \in \mathbb{F}_2[T]$ has divisors of deg $1, \ldots, 7$.

Ex.: $T(T^2+T+1)(T^4+T+1) \in \mathbb{F}_2[T]$ has divisors of deg $1,\ldots,7$.

Ex.: $T(T^3 + T + 1)(T^3 + T^2 + 1) \in \mathbb{F}_2[T]$ has no divisor of degree 2.

Ex.: $T(T^2+T+1)(T^4+T+1) \in \mathbb{F}_2[T]$ has divisors of deg $1,\ldots,7$.

Ex.: $T(T^3 + T + 1)(T^3 + T^2 + 1) \in \mathbb{F}_2[T]$ has no divisor of degree 2.

W. (2015): The proportion of polynomials of degree n over \mathbb{F}_q , which have a divisor of every degree below n, is given by

$$\frac{c_q}{n}\left(1+O\left(\frac{1}{n}\right)\right).$$

Ex.: $T(T^2+T+1)(T^4+T+1) \in \mathbb{F}_2[T]$ has divisors of deg $1,\ldots,7$.

Ex.: $T(T^3 + T + 1)(T^3 + T^2 + 1) \in \mathbb{F}_2[T]$ has no divisor of degree 2.

W. (2015): The proportion of polynomials of degree n over \mathbb{F}_q , which have a divisor of every degree below n, is given by

$$\frac{c_q}{n}\left(1+O\left(\frac{1}{n}\right)\right).$$

The factor c_a depends only on q and satisfies

$$0 < c_q = C + O\left(q^{-\beta}\right),\,$$

where $C=(1-e^{-\gamma})^{-1}=2.280291...$, γ denotes Euler's constant and $\beta=0.4109...$

Ex.: $T(T^2+T+1)(T^4+T+1) \in \mathbb{F}_2[T]$ has divisors of deg $1,\ldots,7$.

Ex.: $T(T^3 + T + 1)(T^3 + T^2 + 1) \in \mathbb{F}_2[T]$ has no divisor of degree 2.

W. (2015): The proportion of polynomials of degree n over \mathbb{F}_q , which have a divisor of every degree below n, is given by

$$\frac{c_q}{n}\left(1+O\left(\frac{1}{n}\right)\right).$$

The factor c_q depends only on q and satisfies

$$0 < c_q = C + O\left(q^{-\beta}\right),\,$$

where $C = (1 - e^{-\gamma})^{-1} = 2.280291...$, γ denotes Euler's constant and $\beta = 0.4109...$

Corollary: The proportion in question is $\frac{C}{n}\left(1+O\left(\frac{1}{n}+\frac{1}{q^{\beta}}\right)\right)$.

Let $F = P_1 P_2 \cdots P_k$, $\deg(P_1) \leq \ldots \leq \deg(P_k)$. Then F has a divisor of every degree below n if and only if

$$\deg(P_j) \le 1 + \sum_{1 \le i \le j} \deg(P_i) \qquad (1 \le j \le k).$$

Let $F = P_1 P_2 \cdots P_k$, $\deg(P_1) \leq \ldots \leq \deg(P_k)$. Then F has a divisor of every degree below n if and only if

$$\deg(P_j) \le 1 + \sum_{1 \le i \le j} \deg(P_i) \qquad (1 \le j \le k).$$

▶ Count all monic polynomials of degree n over \mathbb{F}_q (there are q^n of them) according to their largest divisor which has itself a divisor of every degree:

$$q^n = \sum_{G \text{ has divisor of every degree}} r(n - \deg(G), \deg(G) + 1)$$

Let $F = P_1 P_2 \cdots P_k$, $\deg(P_1) \leq \ldots \leq \deg(P_k)$. Then F has a divisor of every degree below n if and only if

$$\deg(P_j) \le 1 + \sum_{1 \le i < j} \deg(P_i) \qquad (1 \le j \le k).$$

▶ Count all monic polynomials of degree n over \mathbb{F}_q (there are q^n of them) according to their largest divisor which has itself a divisor of every degree:

$$q^n = \sum_{G \text{ has divisor of every degree}} r (n - \deg(G), \deg(G) + 1)$$

▶ Approximate $r(\cdot, \cdot)$ in terms of Buchstab's function $\omega(\cdot)$.

Let $F = P_1 P_2 \cdots P_k$, $\deg(P_1) \leq \ldots \leq \deg(P_k)$. Then F has a divisor of every degree below n if and only if

$$\deg(P_j) \le 1 + \sum_{1 \le i \le j} \deg(P_i) \qquad (1 \le j \le k).$$

▶ Count all monic polynomials of degree n over \mathbb{F}_q (there are q^n of them) according to their largest divisor which has itself a divisor of every degree:

$$q^n = \sum_{G \text{ has divisor of every degree}} r (n - \deg(G), \deg(G) + 1)$$

- Approximate $r(\cdot, \cdot)$ in terms of Buchstab's function $\omega(\cdot)$.
- ▶ Abel Summation \rightarrow Integral Equation \rightarrow Laplace Transform \rightarrow Inversion of Laplace Transform

Another analogy: integers and permutations

 S_n =set of permutations of $\{1, 2, 3, \dots, n\}$.

Another analogy: integers and permutations

 S_n =set of permutations of $\{1, 2, 3, \dots, n\}$.

integers $\approx x$	S_n
prime factors	cycles
$P(m \approx x \text{ is prime }) \sim \frac{1}{\log x}$	$P(\sigma \in S_n \text{ is a cycle }) = \frac{1}{n}$

Rough permutations: no cycles of small length

Let p(n, m) be the proportion of $\sigma \in S_n$, all of whose cycles have length > m.

Rough permutations: no cycles of small length

Let p(n, m) be the proportion of $\sigma \in S_n$, all of whose cycles have length > m.

Manstavičius, Petuchovas (2015); W. (2015):

Let u = n/m. For $n > m \ge 1$ we have

$$p(n,m) = e^{\gamma - H_m} \omega(u) \left(1 + O\left(\frac{(u/e)^{-u}}{m}\right) \right).$$

where H_m is the m-th harmonic number.

Permutations which fix sets of every size

Example: The permutation (1)(23)(4567) fixes the sets $\{1\}, \{2,3\}, \{1,2,3\}, \{4,5,6,7\}, \{1,4,5,6,7\}, \{2,3,4,5,6,7\}, \{1,2,3,4,5,6,7\}.$

Permutations which fix sets of every size

Example: The permutation (1)(23)(4567) fixes the sets $\{1\}, \{2,3\}, \{1,2,3\}, \{4,5,6,7\}, \{1,4,5,6,7\}, \{2,3,4,5,6,7\}, \{1,2,3,4,5,6,7\}.$

Example: The permutation (1)(234)(567) does not fix any set with two elements.

Permutations which fix sets of every size

Example: The permutation (1)(23)(4567) fixes the sets $\{1\}, \{2,3\}, \{1,2,3\}, \{4,5,6,7\}, \{1,4,5,6,7\}, \{2,3,4,5,6,7\}, \{1,2,3,4,5,6,7\}.$

Example: The permutation (1)(234)(567) does not fix any set with two elements.

W. (2015): The proportion of permutations $\sigma \in S_n$, with the property that for every positive integer $m \le n$ there exists a set $M \subseteq \{1, 2, 3, \dots, n\}$ with cardinality m such that $\sigma(M) = M$, is given by

$$\frac{C}{n}\left(1+O\left(\frac{1}{n}\right)\right),\,$$

where $C = (1 - e^{-\gamma})^{-1} = 2.280291...$

Romanoff (1934): Given an integer $a \ge 2$, a positive proportion of integers can be written in the form $p + a^k$, where p is prime.

Romanoff (1934): Given an integer $a \ge 2$, a positive proportion of integers can be written in the form $p + a^k$, where p is prime.

Pintz (2006): If a = 2, this proportion is at least 0.09368.

Romanoff (1934): Given an integer $a \ge 2$, a positive proportion of integers can be written in the form $p + a^k$, where p is prime.

Pintz (2006): If a = 2, this proportion is at least 0.09368.

For $g \in \mathbb{F}_q[x]$, let R(n, g, q) be the proportion of monic polynomials f of degree n, which can be written as $f = h + g^k$, where h is a monic irreducible polynomial of degree n and k is a nonnegative integer.

Romanoff (1934): Given an integer $a \ge 2$, a positive proportion of integers can be written in the form $p + a^k$, where p is prime.

Pintz (2006): If a = 2, this proportion is at least 0.09368.

For $g \in \mathbb{F}_q[x]$, let R(n, g, q) be the proportion of monic polynomials f of degree n, which can be written as $f = h + g^k$, where h is a monic irreducible polynomial of degree n and k is a nonnegative integer.

Shparlinski, W. (2015): Let $\delta = \deg(g) \ge 1$. We have

$$R(n, g, q) = \frac{1}{\delta} \left(1 + O\left(\frac{\delta}{n} + \frac{\log 2\delta}{\delta}\right) \right),$$

Romanoff (1934): Given an integer $a \ge 2$, a positive proportion of integers can be written in the form $p + a^k$, where p is prime.

Pintz (2006): If a = 2, this proportion is at least 0.09368.

For $g \in \mathbb{F}_q[x]$, let R(n, g, q) be the proportion of monic polynomials f of degree n, which can be written as $f = h + g^k$, where h is a monic irreducible polynomial of degree n and k is a nonnegative integer.

Shparlinski, W. (2015): Let $\delta = \deg(g) \ge 1$. We have

$$R(n,g,q) = \frac{1}{\delta} \left(1 + O\left(\frac{\delta}{n} + \frac{\log 2\delta}{\delta}\right) \right),$$

and

$$\frac{0.01}{\delta} < r(n, g, q) \le \frac{2}{\delta}.$$

Romanoff's Theorem: main ingredient

Romanoff (1934): Let $a \ge 2$. We have

$$\sum_{\substack{n \ge 1 \\ \gcd(n,a)=1}} \frac{\mu^2(n)}{n \operatorname{ord}_n(a)} \ll 1.$$

Romanoff's Theorem: main ingredient

Romanoff (1934): Let $a \ge 2$. We have

$$\sum_{\substack{n\geq 1\\ \operatorname{cd}(n,a)=1}} \frac{\mu^2(n)}{n \operatorname{ord}_n(a)} \ll 1.$$

Shparlinski, W. (2015): Let $\delta = \deg(g) \ge 1$. We have

$$\sum_{\gcd(f,e)=1} \frac{\mu^2(f)}{|f| \operatorname{ord}_f(g)} \le 1 + e^{\gamma} \min \left\{ 5\sqrt{\delta/q}, \ \frac{\log 6\delta}{\log q} \right\}.$$

Romanoff's Theorem: main ingredient

Romanoff (1934): Let $a \ge 2$. We have

$$\sum_{\substack{n\geq 1\\\gcd(n,a)=1}}\frac{\mu^2(n)}{n\operatorname{ord}_n(a)}\ll 1.$$

Shparlinski, W. (2015): Let $\delta = \deg(g) \ge 1$. We have

$$\sum_{\gcd(f,g)=1} \frac{\mu^2(f)}{|f| \operatorname{ord}_f(g)} \le 1 + e^{\gamma} \min \left\{ 5\sqrt{\delta/q}, \ \frac{\log 6\delta}{\log q} \right\}.$$

Thank you!