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Motivation

Definition. An element o € Fyn is normal over [F,, if and only if
ged(@” — Laz" P+ a%2" 24 o+l Tz +al ) =1

This essentially comes by decomposing the trace form T in the discriminant
n—1
of (a,ad,...;a7 ).

Definition. An element o € Fyn is k-normal (over F,) if

deg (ng(xn Loz '+ a9 24+ T+ qunil)) = k.

D. Thomson (ACI at West Point) Linear algebra over finite fields WCNT 2015 2/ 15



Towards a Frobenius module

Let R be a commutative ring with 1 (because every ring has 1g), let V'
be an R-module and let T: V' — V be an R-module homomorphism on V.

Let f € R[xz]; define the action of f on a € V by foa = f(T)(«). Now,
we basically turn any extension of R into an R[z|-module.

We're most interested when R =IF, and T' = o, the Frobenius
g-automorphism.
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Finite fields and normal bases
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Finite fields and normal bases

F;» as a Frobenius module

Let R=TF, and let T'= 04: Fyn — Fyn be the Frobenius g-automorphism,
oq(a) = 4.
o Let f(z) = Z?:_ol a;z' € Fylz] and let o € F,. Then

n—1
foa= Zaiaql = F(a),
i=0
where F(z) = ?:_01 a;z7" is the linearized g-associate of f.

e We know o € Fn if and only if (z" — 1) oa = a?" —a = 0.

Remarks. Let F' be a g-polynomial.
@ Fis linear; that is F(axz +y) = aF(x) + F(y) for a € IF,.
@ The roots of F' form a vector space over [y, closed under o,.
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Finite fields and normal bases

Normal bases

Definition. Let o € Fyn and let
n—1
N ={a,a,...;07 }.

If N is linearly independent, then

@ N is a normal basis,
@ a € N is a normal element of Fyn over F;, and

@ N is generated by any of its elements.

Proposition. The element a € Fy» is normal over Fy if and only if it is not
annihilated by any proper factor of 2™ — 1.
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Finite fields and normal bases

Enter k-normality

Remark. Let my, o € Fylx] be the minimal polynomial of «.
® My, o divides 2" — 1,

o if deg(my,,a) = n — k, the elements {o, a9, ..., a? ") are linearly
independent.
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Finite fields and normal bases

Enter k-normality

Remark. Let my, o € Fylx] be the minimal polynomial of «.
® My, o divides 2" — 1,

o if deg(my,,a) = n — k, the elements {o, a9, ..., a? ") are linearly
independent.

o deg(ged(z™ — 1, a2 1 4+ +ad" ")) = k.

So the elements we were originally interested in are precisely cyclic vectors
of o, for subspaces of Fyn.

So let's describe all cyclic o,-stable subspaces of Fyn.
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Finite fields and normal bases

Decomposing [F»

Remark. Describing normal elements in terms of decompositions has been
studied previously; see, for example, Semaev (1989), Blake-Gao-Mullen
(1995), Hachenberger (1996), Scheerhorn (1997) and Kyureghyan (2006).

We follow the formula as prescribed by Steel (1997):
@ Break Fy» into primary o4-stable factors (primary decomposition of
the Frobenius-module),
@ Shatter the factors into irreducible cyclic subspaces, if necessary.

© Glue the irreducible cyclic subspaces together.
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Finite fields and normal bases

Orbits; primary decomposition

Definition. The orbit of v under T' is the span of {,T o «r, ...}, denoted
Orbr(a). Moreover, « is a cyclic vector of Orby.

Theorem. Let V' be a vector space over a field K and let T be a linear
transformation of V' with mpy = fi* f52 - f& € K|x], then

o
V= OI‘bT<1)1) b---D OTbT(Us)a

where mp,, = f{1, 1 <i<s.
(2] OrbT(vi) N OrbT(vj) = () for i #7.
© Orby(v;) @ Orbr(v;) = Orby(v; + vj).
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Finite fields and normal bases

Primary subspaces of [F»

Corollary. Let V. =F4, K =F,; and T'= 0,. Then
mry(x)=a"—1= f{*--- f&, and

Fyn = Orbp(vi) & - - - @ Orbr(vs),
where each v; is a (n — deg(fi)e;)-normal element.

But we're not done yet: If Orby(v;) is not irreducible (e.g., if char(F,)|n),
we will miss cyclic vectors of smaller dimensional subspaces.
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Shatter-and-glue

Theorem. Let W be a o4-invariant subspace with mq, w = f¢, f
irreducible. Let W; = ker f* and let U; = W; \ W;_1. Then

Q Moy u; = f# for all u; € U;.
© Orby,, (u;) is irreducible of dimension i deg(f).

© If u =) u; where u; € Uj, then Orbg, (u) has dimension kdeg(f),
where k is the largest index such that uy # 0.
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Finite fields and normal bases

Corollaries

Theorem. Let 2™ —1 = fi*--- f&s, where f; are irreducible (and the
factorization is over Fy[z]).

@ Any finite field Fyn = @ V;, where V; = Orb,, (v;) with m,_,, = f{".
© Furthermore, V; = @ V; ;, where V; ; = Orb,, (v; ;) and
v; j € ker(f7) \ker(ffl). Moreover, each V; ; is irreducible.

@ Foranya € Fyn, a = Zij a; ; with a; ; € V; ;. Then a is normal
over [, if and only if a; ¢, # 0 for all 4.

@ Moreover, k-normal elements are cyclic vectors of co-dimension k
subspaces; i.e., take @ =) «; j where the sum is over all
decompositions of n — k into sums of the form j deg(f;).
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Examples
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Example: V splits into 2 factors

Example. Suppose p is a primitive root (mod n). Then 2™ — 1 has
irreducible factorization (z — 1)(z" ' +---+ 2+ 1) and

Fyn = Orb(v € ker(z — 1)) @ Orb(w € ker(z™ ! + - + 2 +1)).

There are exactly  cyclic vectors of the first factor and exactly
cyclic vectors of the second.

Hence, there are
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Example: V splits into 2 factors

Example. Suppose p is a primitive root (mod n). Then 2™ — 1 has
irreducible factorization (z — 1)(z" ' +---+ 2+ 1) and

Fyn = Orb(v € ker(z — 1)) @ Orb(w € ker(z™ ™! + - + 2 +1)).

There are exactly ¢ — 1 cyclic vectors of the first factor and exactly
¢" ' — 1 cyclic vectors of the second.

Hence, there are
Q@ (¢—1) (n—1)-normal elements,
@ (¢! — 1) 1-normal elements and

© (¢—1)(¢"* —1) 0-normal elements.
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Example: V splits into 2 factors

Example. Suppose p is a primitive root (mod n). Then 2™ — 1 has
irreducible factorization (z — 1)(z" ' +---+ 2+ 1) and

Fyn = Orb(v € ker(z — 1)) @ Orb(w € ker(z™ ! + - + 2 +1)).

There are exactly ¢ — 1 cyclic vectors of the first factor and exactly

¢" ' — 1 cyclic vectors of the second.

Hence, there are
Q@ (¢—1) (n—1)-normal elements,
@ (¢! — 1) 1-normal elements and
© (¢—1)(¢"* —1) 0-normal elements.

Corollary. An element « is normal if and only if & = 8 + +, where 5 € F,
Tr(vy) =0 and 738 = 0.
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Example: degree a power of the characteristic

Example. Let ¢ = 2,n = 64, then mg, F . (x) = (x — 1)%. Let
U; = ker(z — 1)% \ ker(x — 1)*~!, then

U =Fy\ {0}
Us =Fy \ Fo
Us = ker(z® + 22 + 2+ 1)\ Fy

Usy = Foea \ ker(z" 1 4 - + 2 4 1).

Hence, the number of k-normal elements is 264~*~1 k£ =0,1,...,63.
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Example. Let ¢ = 2,n = 64, then mg, F . (x) = (x — 1)%. Let
U; = ker(z — 1)% \ ker(x — 1)*~!, then

U =Fy\ {0}
Us =Fy \ Fo
Us = ker(z® + 22 + 2+ 1)\ Fy

Usy = Foea \ ker(z" 1 4 - + 2 4 1).

Hence, the number of k-normal elements is 264~*~1 k£ =0,1,...,63.

Corollary. An element a € F,n is normal if and only if Tr(a) # 0.

D. Thomson (ACI at West Point) Linear algebra over finite fields WCNT 2015 13 /15



Another example: Cyclic codes

Definition. A linear code C' of length n and dimension k is a k-dimensional
subspace of Fy» over Fy.

Let (ao,...,an—1) € Fy, and let E be the cyclic left-shift operator; hence,
E(ao, ceey an_l) = (al, ce ,an_l).

Certainly, E™ — E' = 0; that is, every a € IF'(’; is annihilated by =™ — 1.

Definition. If E(C) = C, then C'is a cyclic code.
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Classifying all quasi-cyclic codes

Definition. A quasi-cyclic code C' is a code such that z¥ o C' = C' for some
k coprime to n.

In fact, by repeating the above process on k-normals, we have a
correspondence between k-normal elements and quasi-cyclic codes of
dimension n — k.

Other codes of interest:
e Negacyclic: E, (o) = —a, so every « is annihilated by z™ 4 1.

e Consta-cyclic: Ey(a) = ba, so every « is annihilated by ™ — b".
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For the problem session: Completely normal elements

Completely normal

Definition. An element o € Fyn is completely normal if it is normal over
every intermediate extension I a4, where d|n.

Theorem. An element o € Fyn is completely normal if and only if it is
annihilated by 2™/ — 1 and by no smaller factor when the factorization is
over [F a for all d|n.

Question. Characterize completely normal elements in a similar fashion as
normality:

@ Seems easy if " — 1 splits over F,,.
e Simple characterization for n = p®, p = char(F,).

e Constructions for n = r¢, r any prime, plus a product construction,
gives existence.

@ We (me and Colin and you) should be able to give characterizations.
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For the problem session: Completely normal elements

Bonus

Let « be k-normal and 8 be f-normal. There are many other properties we
may want to know about, for example:

@ Discuss the normality of a3 (if & 0-normal in Fy» and 8 0-normal in
Fym with ged(n, m) = 1, then a5 normal in Fynm ).

o Bis “dual’ to a if Tr(ad' ') = (i, §). If ais k-normal with dual 3,
what is 37

@ When is Tr(«) k-normal of the subfield?

@ Primitive, k-normal elements. Character sum arguments for primitive
1-normality in [HMPT 2013], but room to improve.

And the big question: Express a = Zij a;j and = Zij a;j. What can
we say about a3?7 Can we compute o5 (more) efficiently?
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