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History

∼250 A.D. Diophantus lived in Alexandria.

‘Here lies Diophantus,’ the wonder behold.
Through art algebraic, the stone tells how old:

‘God gave him his boyhood one-sixth of his life,
One twelfth more as youth while whiskers grew rife;

And then yet one-seventh ere marriage begun;
In five years there came a bouncing new son.

Alas, the dear child of master and sage
After attaining half the measure of his father’s

life chill fate took him.
After consoling his fate by the science of numbers for four years,

he ended his life.’
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, 1 + CiCj = � ∀i 6= j ,
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(
9
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)2

.

Fermat: {1, 3, 8, 120} has this property.

Bugeaud: {1,A,B} with A, B ∈ Z+, 1 < A < B,

1 + CiCj = k-th power, for k ≥ 2.

1 + A = xk

1 + B = yk

1 + AB = zk
⇐⇒

A = xk − 1
B = yk − 1
AB = zk − 1,

x , y , z ∈ Z+ is a solution to (X k − 1)(Y k − 1) = Z k − 1.

(X k − 1)(Y k − 1) = (Z k − 1)2 with X 6= ±Y .
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Theorem I

Let a, b, c , k ∈ Z+ with k ≥ 7. Then the equation

(a2cX k − 1)(b2cY k − 1) = (abcZ k − 1)2

has no solutions in integers X , Y , Z > 1 with a2X k 6= b2Y k .

Diophantine Approximations

Bennett (1998)
Standard results of continued fractions



Idea of Proof of Theorem I

Suppose k , a, b, c , x , y , z ∈ Z+ as in the theorem

s.t.

(a2cxk − 1)(b2cyk − 1) = (abczk − 1)2.

Consider
k

√
a2cxk

a2cxk − 1
.

a2cxk

a2cxk − 1
=

a2cxk(b2cyk − 1)

(abczk − 1)2
≈ (a2cxk)(b2cyk)

(abczk)2
,

=⇒ k

√
a2cxk

a2cxk − 1
≈ xy

z2
.

For large k , this approximation is “too good.”

For small k , use continued fractions.
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Theorem II

Let L, M, N ∈ Z+ with N > 1. Then the equation

NX 2 + 2L3M = Y N ,

has no solutions with X , Y ∈ Z+ and gcd(NX ,Y ) = 1.

Lehmer pairs and Lehmer numbers
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Lehmer Pairs and Lehmer Numbers

A Lehmer pair (γ, δ) is a pair of algebraic integers s.t.

γδ, (γ + δ)2 ∈ Z− {0},
gcd(γδ, (γ + δ)2) = 1, and
γ

δ
is not a root of unity

For a Lehmer pair (γ, δ) and r ∈ Z+, the r -th Lehmer number is

Lr (γ, δ) =


γr−δr

γ−δ if r is odd,

γr−δr

γ2−δ2
if r is even.
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Key Results:

r -defective Lehmer pair (γ, δ) =⇒ r ≤ 30.

all r -defective Lehmer pairs are known for 6 < r ≤ 30,
EXCEPT for when r = 8, 10, 12.
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Theorem III

Let p be an odd prime and let N, α, β, γ ∈ Z with
N > 1, α ≥ 1, and β, γ ≥ 0. Then the equation

X 2N + 22α52βp2γ = Z 5

has no solutions with X , Z ∈ Z+ and gcd(X ,Z ) = 1.

Modular Approach: Bennett-Skinner, 2004
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Modular Approach (Fermat’s Last Theorem)

Suppose x , y , z ∈ Z+ s.t. xp + yp = zp, p ≥ 5

↓ Frey

Y 2 = X (X − xp) (X − yp) of conductor N = 2 rad2(xyz)

↓ Wiles &Taylor

f a newform of wt 2 and level N

↓ Ribet’s Level-Lowering

f̄ a newform of wt 2 and level 2 ⇒⇐
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Theorem (Bennett & Skinner)

Let x7 + cy7 = z2 with c, x, y , z ∈ Z, xy 6= ±1,

x, cy , and z nonzero pairwise relatively prime,

∀ primes q, vq(c) < 7 and v2(cy7) ≥ 6,

z ≡ 1 (mod 4),

Then ∃ newform f of wt 2 and level

N7 =


2 rad(c), if v2(c) = 0,
rad(c)/2, if v2(c) = 6,
rad(c), otherwise.

x2n + 22α52βp2γ = z5
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Extension of Theorem III

X 2N + 22α52βp2γ = Z 5

Theorem (G- & Grundman)

The equation
X 2N + 4Y 2 = Z 5

has no solution with N, X , Y , Z ∈ Z+, N > 1, and gcd(X ,Z ) = 1.
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The adventure continues!


