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History

~250 A.D. Diophantus lived in Alexandria.

‘Here lies Diophantus,’ the wonder behold.
Through art algebraic, the stone tells how old:
‘God gave him his boyhood one-sixth of his life,

One twelfth more as youth while whiskers grew rife;
And then yet one-seventh ere marriage begun;
In five years there came a bouncing new son.
Alas, the dear child of master and sage
After attaining half the measure of his father’s
life chill fate took him.
After consoling his fate by the science of numbers for four years,
he ended his life.’



Diophantus:



Dioohantue. J L 33 17 105
iophantus: 616 216 [’



1 33 17 105},1+C,-Cj:DVi7éj,

Dlophantus: {E, E, T, 1_6



1 33 17 105 .
— 2 Rl LG =0vi 4],
16’16’4’16}' GG 7

Le 117 9\°
164 \8)

Diophantus: {



1 33 17 105 .
— 2 Rl LG =0vi 4],
16’16’4’16}' GG 7

Le 117 9\°
164 \8)

Diophantus: {

Fermat:



1 33 17 105 .
= > 2 F .Ci=0V '
16’16’4’16}'1+CCJ 7

Le 117 9\°
164 \8)

Diophantus: {

Fermat: {1,3,8,120}



1 33 17 105 .
= 22 Ci=0Vi4]
16’16’4’16}'1+CCJ i

L 117 9\°
164 \8)

Fermat: {1,3,8,120} has this property.

Diophantus: {



1 33 17 105 .,
E71_67?a1_6}11+CiCj—DVI7éJ,

Le 117 9)?
164 \8)°

Fermat: {1,3,8,120} has this property.

Diophantus: {

Bugeaud:



1 33 17 105 .
= 22 Ci=0Vi4]
16’16’4’16}'1+CCJ i

L 117 9\°
164 \8)

Fermat: {1,3,8,120} has this property.

Diophantus: {

Bugeaud: {1, A, B}



1 33 17 105 .,
E71_67?a1_6}11+CiCj—DVI7éJ,

Le 117 9)?
164 \8)°

Fermat: {1,3,8,120} has this property.

Diophantus: {

Bugeaud: {1,A, B} with A, B€Z"T, 1< A< B,



History

_ (1 33 17 105 _ .
Diophantus: {16’16’4’16}' 1+ GG =0Vi#j,

Ly 1179V
164 \8/) °
Fermat: {1,3,8,120} has this property.

Bugeaud: {1,A, B} with A, BeZ*, 1< A< B,
1+ G C; = k-th power, for k > 2.



History

_ (1 33 17 105 _ .
Diophantus: {16’16’4’16}' 1+ GG =0Vi#j,

Ly 1179V
164 \8/) °
Fermat: {1,3,8,120} has this property.

Bugeaud: {1,A, B} with A, BeZ*, 1< A< B,
1+ G C; = k-th power, for k > 2.
1+A=xk



History

_ (1 33 17 105 _ .
Diophantus: {16’16’4’16}' 1+ GG =0Vi#j,

Ly L1709 ?
164 \8/) °
Fermat: {1,3,8,120} has this property.
Bugeaud: {1,A, B} with A, B€Z*+ 1< A< B,

1+ G C; = k-th power, for k > 2.

1+A=xk
1+ B=yk



History

_ (1 33 17 105 _ .
Diophantus: {16’16’4’16}' 1+ GG =0Vi#j,

Ly 1179V
164 \8/) °
Fermat: {1,3,8,120} has this property.

Bugeaud: {1,A, B} with A, BeZ*, 1< A< B,
1+ G C; = k-th power, for k > 2.

1+A=xk
1+ B=yk
1+ AB = zk



History

_ (1 33 17 105 _ .
Diophantus: {16’16’4’16}' 1+ GG =0Vi#j,

Ly 1179V
164 \8/) °
Fermat: {1,3,8,120} has this property.

Bugeaud: {1,A, B} with A, BeZ*, 1< A< B,
1+ G C; = k-th power, for k > 2.

1+A=xk A=xk—-1
1+B=yk «— B=yk-1
1+ AB = zk AB =zK -1,



History

_ (1 33 17 105 _ .
Diophantus: {16’16’4’16}' 1+ GG =0Vi#j,

Ly 1179V
164 \8/) °
Fermat: {1,3,8,120} has this property.

Bugeaud: {1,A, B} with A, BeZ*, 1< A< B,
1+ G C; = k-th power, for k > 2.

1+A=xk A=xk—-1
1+B=yk «— B=yk-1
1+ AB = zk AB =zK -1,

X, y,z€ZL"



History

_ (1 33 17 105 _ .
Diophantus: {16’16’4’16}' 1+ GG =0Vi#j,

Ly 1179V
164 \8/)°

Fermat: {1,3,8,120} has this property.

Bugeaud: {1,A, B} with A, BeZ*, 1< A< B,
1+ G C; = k-th power, for k > 2.

1+A=xk A=xk—-1
1+B=yk «— B=yk-1
1+ AB = zk AB =zK -1,

X, y, z € ZT is a solution to (X* —1)(Yk —1) = Zk — 1.



History

_ (1 33 17 105 _ .
Diophantus: {16’16’4’16}' 1+ GG =0Vi#j,

Ly 1179V
164 \8/)°

Fermat: {1,3,8,120} has this property.

Bugeaud: {1,A, B} with A, BeZ*, 1< A< B,
1+ G C; = k-th power, for k > 2.

1+A=xk A=xk—-1
1+B=yk «— B=yk-1
1+ AB = zk AB =zK -1,

X, y, z € ZT is a solution to (X* —1)(Yk —1) = Zk — 1.
(XK —1)(YF—1) = (ZF - 1)? with X # Y.



Let a, b, ¢, k € Zt with k > 7. Then the equation

(a®cXk —1)(b2cY* — 1) = (abcZk — 1)?

has no solutions in integers X, Y, Z > 1 with a?Xk £ p2 Yk,

@ Diophantine Approximations

e Bennett (1998)
e Standard results of continued fractions
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Suppose k,a,b,c,x,y,z € ZT as in the theorem s.t.

(a2cx’ — 1)(bPcy* — 1) = (abcz* — 1)2.

. o alcxk
Consider - T
a‘exk —1

a®cxk FPoxf(bPey* —1)  (aPex¥)(bPey¥)

2cxk -1 (abezk—1)2 = (abczK)2
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For large k, this approximation is “too good.”

For small k, use continued fractions.
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A Lehmer pair (v,0) is a pair of algebraic integers s.t.

e 4, (v +6)% € Z— {0},
e gcd(y6, (v +6)?) =1, and
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Lehmer Pairs and Lehmer Numbers

A Lehmer pair (v, ) is a pair of algebraic integers s.t.
e 76, (v +0)? € Z— {0},
e gcd(v6, (v +6)?) =1, and

o ! is not a root of unity

5

For a Lehmer pair (v,0) and r € Z™", the r-th Lehmer number is

=" if ris odd,

L(v,0) =

,yr_(sr

W if r is even.
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A Lehmer pair (v, 0) is r-defective if for each prime p,

p“—r(’Yv 5) = pl(’yz - 62)2L1(7= 5) e Lr—l('y, 5)

Key Results:

o r-defective Lehmer pair (v,0) = r < 30.
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A Lehmer pair (v, 0) is r-defective if for each prime p,

plL(7,8) = p|(v* — 6%)2L1(7,6) - Lr—1(7, 0).

Key Results:

e r-defective Lehmer pair (v,0) = r < 30.

@ all r-defective Lehmer pairs are known for 6 < r < 30,
EXCEPT for when r = 8,10, 12.



Let p be an odd prime and let N, «, 3, v € Z with
N>1 a>1,and 3, v > 0. Then the equation

X2N + 22a52,3p2'y — 25

has no solutions with X, Z € Z* and ged(X,Z) = 1.




Let p be an odd prime and let N, «, 8, v € Z with
N>1 a>1,and 3, v > 0. Then the equation

X2N + 22a52,3p2’y — Z5

has no solutions with X, Z € Z* and ged(X,Z) = 1.

@ Modular Approach: Bennett-Skinner, 2004
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Modular Approach (Fermat's Last Theorem)

Suppose x, y, z€Z" st. xP+yP=2zP, p>5
i Frey
Y2 = X (X — xP) (X — yP) of conductor N = 2 rada(xyz)
\l, Wiles &Taylor
f a newform of wt 2 and level N

i Ribet's Level-Lowering

f a newform of wt 2 and level 2 =<



Theorem (Bennett & Skinner)
Let x” + cy7 = 22 with ¢, x, y,z €L, xy #+1,
@ X, cy, and z nonzero pairwise relatively prime,
e V primes q, v4(c) < 7 and va(cy”) > 6,
e z=1 (mod 4),
Then 3 newform f of wt 2 and level
2rad(c), ifwa(c)=0,

N7 = < rad(c)/2, if va(c) =6,
rad(c), otherwise.
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Let x” + cy7 = 22 with ¢, x, y,z €L, xy #+1,
@ X, cy, and z nonzero pairwise relatively prime,
e V primes q, v4(c) < 7 and va(cy”) > 6,
e z=1 (mod 4),
Then 3 newform f of wt 2 and level
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X2n + 22a52ﬁp2'y — z5
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X2N + 22a52,3p2'y — Z5

The equation

XN 4 ay? =7

has no solution with N, X, Y, Z € Z*, N > 1, and ged(X, Z) = 1.




The adventure continues!



