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Tabulating Class Groups

Tabulating Class Groups

Let:

Q(
√

∆) be the imaginary quadratic field of negative (fundamental)
discriminant ∆ ≡ 0, 1 (mod 4)

Cl∆ be the ideal class group of the maximal order O∆

h∆ = |Cl∆| the class number

Goal: for all Q(
√

∆) with |∆| ≤ M as large as possible compute

h∆

structure of Cl∆ ∼= C (m1)× C (m2)× · · · × C (mr ), where mi+1 |mi

Want unconditional results as numerical evidence supporting conjectures
(e.g. Cohen-Lenstra). No Riemann Hypotheses allowed!
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Tabulating Class Groups

Previous Tabulations (Highlights)

Gauß (1801): tables of all ∆ with given small h∆

Buell (1999): |∆| < 2.2× 109

counting reduced positive definite binary quadratic forms

Ramachandran, J., Williams (2006): |∆| < 2× 1011 :

compute class groups using generic algorithm dependent on ERH,
verify using Eichler-Selberg trace formula for cusp forms

Mosunov, J. (2014): |∆| < 240(≈ 1.1× 1012) :

compute h∆ unconditionally using class number formulas (power
series arithmetic), resolve group structures.
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Tabulation Using Class Number Formulas

Class Numbers and Sum of Three Squares

r3(n) : number of integer solutions to n = x2
1 + x2

2 + x2
3 (n ∈ Z>0)

Easy (classical) identity:

θ3
3(q) =

∞∑
n=0

r3(n)qn

where θ3(n) = 1 + 2
∑∞

n=1 q
n2
.

Well-known that h−n | r3(n).
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Tabulation Using Class Number Formulas

h∆ Via Polynomial Arithmetic (Mosunov, J. 2014)

Idea: compute h∆ for all |∆| < M by

computing θ3
3(q) mod qM+1 (as power series in q).

Advantages:

class numbers are unconditionally correct (no verification requried)

problem reduces to multiplication of degree M polynomials
(out-of-core FFT, FLINT implementation)

compute structure of Cl∆ by considering only primes with p2 | h∆

Problem:

r3(n) = 0 for n ≡ 7 (mod 8), so use RJW method for ∆ ≡ 1 (mod 8)
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Tabulation Using Class Number Formulas

Results

Cl∆ for all ∆ with ∆ < 240 ≈ 1012 — 334211458670 fields in total

Run-time (2.67 GHz Xeon cores, 8 GB RAM each)

∆ 6= 1 (mod 8) : 258 days (≈ 4 days on 64 cores)

∆ ≡ 1 (mod 8) : 1658 days (≈ 2 days on 1008 cores)

Smallest |∆| with:

non-cyclic 5, 7, 11-Sylow subgroups: ∆ = −656450533751,
Cl∆ ∼= C (4 · 5 · 7 · 11)× C (2 · 5 · 7 · 11)

non-cyclic 5, 7, 17-Sylow subgroups: ∆ = −658234953151,
Cl∆ ∼= C (2 · 5 · 7 · 17)× C (5 · 7 · 17)

17-rank 3 : ∆ = −824746962451, Cl∆ ∼= C (170)× C (34)× C (34)
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Tabulation Using Class Number Formulas

Probability that l | h∆
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Tabulation Using Class Number Formulas

Probability that l-rank is 2
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Further Work

Further work

Improving the ∆ ≡ 1 (mod 8) case:

Identity of Humbert gives one possible solution, but involves costly
inversion of power series

Investigate relationships of h∆ with representations numbers of
ternary forms other than x2

1 + x2
2 + x2

3 ?

Class number formulas for ∆ > 0?

Other types of number fields? Cubic? Cyclotomic?
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