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The objects of the investigation: Lucas Sequences

m Lucas sequence and its companion:
U:=U(a,b) = {Un}n>0, Uy =0, Uy =1and
Uny2 = aUpiq +bU, forall n>0, be {1} (1)

m We put V(a, b) = {Vh} >0 for the Lucas companion of U:
Vo =2, V; = a, same recurrence;
m Characteristic equation is x> — ax — b = 0 with roots

at+va®+4b a—va*+4b
(0,8) = —, .

2
ik m The Binet formulas for U, and V,, are
? ol — Bn
_\1 Uy=——, Vp=a"+ 3" for all n>0.
I‘jm:l o — B
';:’ m Assume A = & + 4b > 0 and that o/ 3 is not a root of

h unity (that is, (a,b) & {(0,=1), (£1,-1), (2,-1)}). ¥



Diophantine equations involving binary sequences |

m If a= b =1, we get the Fibonacci, resp., Lucas
sequences.

: 1 m In this case, Cohn and, independently, Wyler (both in 1964)
| proved that U, = O iff n = 0,1,2,12. Cohn slightly
generalized this result.

m McDaniel and Ribenboim (1992) showed (using divisibility
methods) that if U, = [0,200 , then n < 12.

m Mignotte and Pethd (1993) using linear forms in logarithms
showed that if b= —1,n > 4, then U, = wl is impossible

e if we {1,2,3,6}, and these equations have solutions for

T n=4onlyif a= 338, and then, Uy = (2 - 13 - 239)2.
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Diophantine equations involving binary sequences |l

i m Nakamula and Pethd (1998) used the same method to

& investigate when U, = wl for b= 1, w € {1,2,3,6}. They

' showed that n < 2, except when (a, n, w) =

fia (1,12,1),(1,3,2),(1,4,3),(1,6,2),(2,4,3),2,7,1),(4,4,2).

g m Regarding the companion V, they showed that if V, = w(,

A when w € {1,2,3,6},thenn<1,whenb=1and ais

even; and when b = —1, then n < 1, except when
(a,n,w)=(1,2,3),(1,3,1),(1,6,2),(2,2,6),(3, 3, 36).
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Diophantine equations involving binary sequences llI

m Stewart (1982) found an effective finiteness result for
shifted perfect powers in binary recurrence sequences: if
the equation Uy = x" + ¢ has a solution in integers x, n, ¢
and k, with n > 2 and |x| > 1, then, under some
conditions, max{|x|, n} is bounded above effectively in
terms of ¢ and the recurrence.

m Recall the celebrated result of Y. Bugeaud, M. Mignotte, S.
Siksek (2006): The only powers in {Fj}, are
F():O,F1 = F2 = 1,F5:8,F12 = 144;
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Diophantine equations involving binary sequences IV

m Making Stewart’s result more precise, Bugeaud, Luca,
Mignotte, Siksek (2008) showed that F, +1 = yP, p > 2,
then (n,£1,y,p) = (0,1,1,p), (4,1,2,2), (6,1,3,2),
(1,-1,0,p), (38,-1,1,p), (5,—1,2,2).

m More recently, Bennett, Dahmen, Mignotte, Siksek (2014)
proved a diophantine eq. result that can potentially be
applied to the equations Uy = wx" + cand V, = wx" + ¢,
as well as, Fx & Fp; = ax”.
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Diophantine equations involving binary sequences V

m In 2012/2013 Komatsu Luca, Tachiya:

Assume that m and n are
coprime, so, F, and F, are coprime, thus F,.1/Fp is
defined modulo F,,. They showed that the congruence
class Fn.1/Fn (mod Fp,) has multiplicative order s modulo
Fmand s ¢ {1,2,4}, then

~ ‘1 m < 5008°. (2)
E S5

]



Comments the KLT result |

m It is possible that this order is s = 1. It happens precisely
when Fp.1 = F, (mod Fp), 8O F|Friy — Fn = Frq,
which holds when m|n — 1, thatis, n=1 (mod m).

| = ltis also possible that s = 2, since in this case, F7,, = F3
| (mod Fp,), so
Fm|F§+1 _Fr?:(FnH — Fn)(Fn1 + Fn) = Fp—1Fpy2.

m Let m > 12. By Primitive Divisor Theorem
(Bilu-Hanrot-Voutier, 2001) (actually, Carmichael’s
Theorem from (“On the numerical factors of the arithmetic
forms o + 8™, Ann. Math. (2) 15 (1913), 30—70) would be
sufficient, Fp, has a primitive prime factor p, that is, p | Fpm,
butpt Fp, for1 <Z< m.

m Thus, eitherp | Fp_1orp| Fpio. When m| n—1, we
recover the s = 1 case, and so, it must be that n = -2
(mod m). A\




Comments on the KLT result Il

m ltis also possible to have s = 4. In this case F? , = F}?

n+1
(mod Fp). Thus
Fm | Frio — Fo = (Fagt — Fo)(Fogt + Fo)(Fay + F)
= Fn_1Fni2Fonia.
m Again, if m > 12, F, has a primitive prime divisor p, and
so, pln—1, n+ 2, or 2n+ 1. The first two cases imply

s=1,2,and so p | 2n+ 1, which can only happen if mis
oddand n=(m—1)/2 (mod m).
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Our Goal

m Bilu, Komatsu, Luca, Pizzaro-Madariaga, P.S. (2015): We
look at the relation

Un ‘ ﬁ—f—k . Urslv (3)

with positive integers k, m, n, s, where U is the general
Lucas sequence.
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The result

m This year, the quintet (actually, a quartet) got together in
Johannesburg, South Africa and looked at the general
divisibility relation (3) Um | Uy, x — Uj; and proved the

following result.

Theorem

Let a be a non-zero integer, b € {+1}, and k a positive integer.
Assume that (a,b) ¢ {(£1,—1), (£2,—1)}. Given a positive
integer m, let s be the smallest positive integer such that the
divisibility Up | U5, — U5 holds. Then either s € {1,2,4}, or

m < 20000(sk)?.




Proof that we (almost) all got together




Proof method — sketch 1

m Recall the Binet formulas for U, and V;:

n_ pn
Un:a p , h=a"+ 3" for all n>0.
a—p
e m We assume that m > 10000k. Since U, 4m = Un
(mod Up) (n >0, m > 2), we may assume that n < 4m.
We split Uy, into various factors, as follows:

g—&—k - Uﬁ = H¢d(Un+k7 Un),
d|s

;\1 where ®4(X, Y) is the homogenization of the cyclotomic
polynomial ®4(X). i)
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Proof method — sketch 2

m We put s :=1em[2,s], S :={p:p|6s} and

D = (Unm)s;
A = ged(Un/D, [ ®a(Unik Un);
d<6, d#5
E = ged(Un/D, [ ®a(Unik, Un).
d|S1
d=>5 or d>6
Clearly,
Um | ADE.

m We proceed on bounding A, D, E. =)
NPS




Proof method — sketch 3

m If k is even then
(Dd(UI'H—k(_a: _B)a Un(—Oé, _/3)) = :l:q)d(UfH-k(aa B)a Un(Oéa 6))7

while if k is odd, then

¢d(Un+k(—Oé7—B),Un(—Oé,—IB)) = iq)d(un-l-k(a?ﬁ)a_Un(a?B)
= ﬂ:¢d*(Un+k(Oé,,3),Un(Oé,,3))

where
d if4|dordo=1,
d*=¢d/2 if2||dandd= -1,
2d if2{dandj = —1.
* 5,




Proof method — sketch 4

m Note that o(d*) = ¢(d), Pg-(X) = £4(0X), dg(X 1) =
+X~¢(Dd,(X), the sign in last identity being “+” for d > 1
s and the sign in the middle identity being “+"if § = 1 or
‘ min{d, d*} > 1.
m Note that the sets {d < 6, d # 5} and
{d | sy, d=50rd > 6} are closed under the operation
d— d*.
m Hence, D, A, E do not change if we replace a by —a, so
we assume that a > 0.

i m Recall: for any prime number p we put f, for the index of
ol \1 appearance in the Lucas sequence {Un} >0, which is the
B minimal positive integer k such that p | U. i



Bounding D

m First, for a > 1, if S is any finite set of primes and mis a
positive integer, then

Um)s < a?mlem[Uy, : p € S].
[’}

(this follows from Bilu-Hanrot-Voutier’'s paper from J. Reine
Angew. Math. 2001 “Existence of primitive divisors of
Lucas and Lehmer numbers, with an appendix by M.
Mignotte”)

m Thus, since f, < p+1,

D< azmH Up+1 < ma2+2p‘65(p+1) < a63+3+log m/ log a’
p|6s

where we used the fact that >, (o + 1) < t + 1, which i |s
easily proved by induction on the number of distinct primel==5
factors of t.




m Note that

E| H (Unik — CUn), ()
¢:¢o1=1

el {1, +i, 4w, +w?}
‘ where w := €2™//3 s a primitive root of unity of order 3.
<« mLetK =Q(e*/s a), which is a number field of degree
| d < 2¢(s1) = 2¢(s). Assume that there are ¢ roots of unity
¢ participating in the product appearing in the right—hand
side of (5), say (y,...,(s. Write

Ei=gcd(E,Upik — ¢iUp) forall i=1,...,¢, (6)

Rt where &; are ideals in Ok. Then relations (5) and (6) tell us
ik that
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m We need to bound the norm [N q(€/)| of &; for
i=1,...,¢ Firstof all, Up € &;. Thus, using Binet formula
and 8 = (—b)a~", we get

o™= (=b)"a™™ (mod &) < o™ = (—=b)™ (mod &)).
(8)

m Further, by Binet and (8) (with ¢ := (}),
a®'(af = ) = (=)™ (@ — (-b)*() =0 (mod &). (9)

m Using a slightly sharper estimate of ¢, we obtained that
ok — ¢ and &; are coprime, and so, o — ¢ is invertible
modulo &;. Now congruence (9) shows that

a2n+k = (_b)nC <L_.(:T)k<> (mod 5:)

ak
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m We do go through quite a few cases, depending upon the
value of (—b)" and use the following workhorse lemma.
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Lemma (Workhorse Lemma)

Let a, b and k be as in the statement of Theorem 1, and
assume in addition thata > 1. Let v > 1 be an infteger and ¢ a
primitive vth root of unity. Assume that the numbers

o and

(11)

are multiplicatively dependent. Then we have one of the
following options:

(i) (=b)k =—1,v=4;

(i) (a,b,k) e {(1,1,1), (2,1,1)} and v € {1,2};
(i) (—=b)k =1, v e {1,2};
(iv) (a,b,k) = (4,—1,1) and v € {4,6}.




Bounding E & A

m The bound we found for E is

E< a22k¢(s)\/ﬁ < a22ks\/ﬁ‘

In the above, we used that ¢(s) < s.

m A somewhat similar, but slightly more delicate argument
shows that

A< am/2+k+2+132k\/ﬁ

B ls
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Putting these bounds together

m Using o2 < U, <", n>1, then

QM2 < U, < DAE < o/85+3+logm/log a+m/2+k+2+(132k+22ks)\/ﬁ.

m Since s > 3, we have 132 + 22s < 66s. Since also
1/loga < 3, we get

m/2 < (6s+ 7 + 3log m + k) + 66sk+/m.

m Since m > 10000, one checks that
6s + 7 + 3logm + k < ks\/m. Hence,

kol m < 134ks/m, (12)
:‘1 :" which leads to the desired inequality m < 20000(sk)?.



Further Comments

m One may wonder if one can strengthen our main result in
such a way as to include also the instances s € {1,2,4}
maybe at the cost of eliminating finitely many exceptions in
the pairs (a, k).

m The fact that this is not so follows from the formulae:

(1) Unyk — Un = Upjky2 V2 for all n > 0 when b = 1 and 2| k;
(i) Upyk + Un = Upgkj2 Vi foralln > 0 when b=1and 4 | k
orwhen b= —1and k is even;

(iii) U2, 4 U3 = Uznik Uk forall n > 0 when b= 1 and k is odd,
which can be easily proved using the Binet formulas. Thus,
taking m = n+ k/2 (for k even) and m = 2n + k for k odd
and b = 1, we get that divisibility Un, | U5, , — U; always
holds with some s € {1,2,4}.

m Note the “near-miss” Uspio | 4(US, , — US) for all n > 0 i
(a,b, k) =(4,—1,1). \/4
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