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The objects of the investigation: Lucas Sequences

Lucas sequence and its companion:
U := U(a,b) = {Un}n≥0, U0 = 0, U1 = 1 and

Un+2 = aUn+1 + bUn for all n ≥ 0, b ∈ {±1}. (1)

We put V(a,b) = {Vn}n≥0 for the Lucas companion of U:
V0 = 2, V1 = a, same recurrence;
Characteristic equation is x2 − ax − b = 0 with roots

(α, β) =

(
a +
√

a2 + 4b
2

,
a−
√

a2 + 4b
2

)
.

The Binet formulas for Un and Vn are

Un =
αn − βn

α− β
, Vn = αn + βn for all n ≥ 0.

Assume ∆ = a2 + 4b > 0 and that α/β is not a root of
unity (that is, (a,b) 6∈ {(0,±1), (±1,−1), (2,−1)}).



Diophantine equations involving binary sequences I

If a = b = 1, we get the Fibonacci, resp., Lucas
sequences.
In this case, Cohn and, independently, Wyler (both in 1964)
proved that Un = � iff n = 0,1,2,12. Cohn slightly
generalized this result.
McDaniel and Ribenboim (1992) showed (using divisibility
methods) that if Un = �,2� , then n ≤ 12.
Mignotte and Pethö (1993) using linear forms in logarithms
showed that if b = −1,n > 4, then Un = w� is impossible
if w ∈ {1,2,3,6}, and these equations have solutions for
n = 4 only if a = 338, and then, U4 = (2 · 13 · 239)2.



Diophantine equations involving binary sequences II

Nakamula and Pethö (1998) used the same method to
investigate when Un = w� for b = 1, w ∈ {1,2,3,6}. They
showed that n ≤ 2, except when (a,n,w) =
(1,12,1), (1,3,2), (1,4,3), (1,6,2), (2,4,3),2,7,1), (4,4,2).
Regarding the companion V, they showed that if Vn = w�,
when w ∈ {1,2,3,6}, then n ≤ 1, when b = 1 and a is
even; and when b = −1, then n ≤ 1, except when
(a,n,w) = (1,2,3), (1,3,1), (1,6,2), (2,2,6), (3,3,36).



Diophantine equations involving binary sequences III

Stewart (1982) found an effective finiteness result for
shifted perfect powers in binary recurrence sequences: if
the equation Uk = xn + c has a solution in integers x ,n, c
and k , with n ≥ 2 and |x | > 1, then, under some
conditions, max{|x |,n} is bounded above effectively in
terms of c and the recurrence.
Recall the celebrated result of Y. Bugeaud, M. Mignotte, S.
Siksek (2006): The only powers in {Fn}n are
F0 = 0,F1 = F2 = 1,F6 = 8,F12 = 144;



Diophantine equations involving binary sequences IV

Making Stewart’s result more precise, Bugeaud, Luca,
Mignotte, Siksek (2008) showed that Fn ± 1 = yp, p ≥ 2,
then (n,±1, y ,p) = (0,1,1,p), (4,1,2,2), (6,1,3,2),
(1,−1,0,p), (3,−1,1,p), (5,−1,2,2).
More recently, Bennett, Dahmen, Mignotte, Siksek (2014)
proved a diophantine eq. result that can potentially be
applied to the equations Uk = w xn + c and Vk = w xn + c,
as well as, Fk ± F2j = axn.



Diophantine equations involving binary sequences V

In 2012/2013 Komatsu, Luca, Tachiya:

Assume that m and n are
coprime, so, Fn and Fm are coprime, thus Fn+1/Fn is
defined modulo Fm. They showed that the congruence
class Fn+1/Fn (mod Fm) has multiplicative order s modulo
Fm and s 6∈ {1,2,4}, then

m < 500s2. (2)



Comments the KLT result I

It is possible that this order is s = 1. It happens precisely
when Fn+1 ≡ Fn (mod Fm), so Fm|Fn+1 − Fn = Fn−1,
which holds when m|n − 1, that is, n ≡ 1 (mod m).
It is also possible that s = 2, since in this case, F 2

n+1 ≡ F 2
n

(mod Fm), so
Fm|F 2

n+1 − F 2
n = (Fn+1 − Fn)(Fn+1 + Fn) = Fn−1Fn+2.

Let m > 12. By Primitive Divisor Theorem
(Bilu-Hanrot-Voutier, 2001) (actually, Carmichael’s
Theorem from (“On the numerical factors of the arithmetic
forms αn ± βn”, Ann. Math. (2) 15 (1913), 30–70) would be
sufficient, Fm has a primitive prime factor p, that is, p | Fm,
but p - F`, for 1 ≤ ` < m.
Thus, either p | Fn−1 or p | Fn+2. When m | n − 1, we
recover the s = 1 case, and so, it must be that n ≡ −2
(mod m).



Comments on the KLT result II

It is also possible to have s = 4. In this case F 4
n+1 ≡ F 4

n
(mod Fm). Thus

Fm | F 4
n+2 − F 4

n = (Fn+1 − Fn)(Fn+1 + Fn)(F 2
n+1 + F 2

n )

= Fn−1Fn+2F2n+1.

Again, if m > 12, Fm has a primitive prime divisor p, and
so, p|n − 1, n + 2, or 2n + 1. The first two cases imply
s = 1,2, and so p | 2n + 1, which can only happen if m is
odd and n ≡ (m − 1)/2 (mod m).



Our Goal

Bilu, Komatsu, Luca, Pizzaro-Madariaga, P.S. (2015): We
look at the relation

Um | Us
n+k − Us

n , (3)

with positive integers k , m, n, s, where U is the general
Lucas sequence.



The result

This year, the quintet (actually, a quartet) got together in
Johannesburg, South Africa and looked at the general
divisibility relation (3) Um | Us

n+k − Us
n and proved the

following result.

Theorem

Let a be a non-zero integer, b ∈ {±1}, and k a positive integer.
Assume that (a,b) /∈ {(±1,−1), (±2,−1)}. Given a positive
integer m, let s be the smallest positive integer such that the
divisibility Um | Us

n+k − Us
n holds. Then either s ∈ {1,2,4}, or

m < 20000(sk)2. (4)



Proof that we (almost) all got together



Proof method – sketch 1

Recall the Binet formulas for Un and Vn:

Un =
αn − βn

α− β
, Vn = αn + βn for all n ≥ 0.

We assume that m ≥ 10000k . Since Un+4m ≡ Un
(mod Um) (n ≥ 0, m ≥ 2), we may assume that n ≤ 4m.
We split Um into various factors, as follows:

Us
n+k − Us

n =
∏
d |s

Φd (Un+k ,Un),

where Φd (X ,Y ) is the homogenization of the cyclotomic
polynomial Φd (X ).



Proof method – sketch 2

We put s1 := lcm[2, s], S := {p : p | 6s} and

D := (Um)S ;

A := gcd(Um/D,
∏

d≤6, d 6=5

Φd (Un+k ,Un);

E := gcd(Um/D,
∏
d |s1

d=5 or d>6

Φd (Un+k ,Un).

Clearly,
Um | ADE .

We proceed on bounding A,D,E .



Proof method – sketch 3

If k is even then

Φd (Un+k (−α,−β),Un(−α,−β)) = ±Φd (Un+k (α, β),Un(α, β)),

while if k is odd, then

Φd (Un+k (−α,−β),Un(−α,−β)) = ±Φd (Un+k (α, β),−Un(α, β))

= ±Φd∗(Un+k (α, β),Un(α, β)),

where

d∗ =


d if 4 | d or δ = 1,
d/2 if 2 ‖d and δ = −1,
2d if 2 - d and δ = −1.



Proof method – sketch 4

Note that ϕ(d∗) = ϕ(d),Φd∗(X ) = ±Φd (δX ),Φd (X−1) =
±X−ϕ(d)Φd (X ), the sign in last identity being “+” for d > 1
and the sign in the middle identity being “+" if δ = 1 or
min{d ,d∗} > 1.
Note that the sets {d ≤ 6, d 6= 5} and
{d | s1, d = 5 or d > 6} are closed under the operation
d 7→ d∗.
Hence, D, A, E do not change if we replace a by −a, so
we assume that a > 0.
Recall: for any prime number p we put fp for the index of
appearance in the Lucas sequence {Un}n≥0, which is the
minimal positive integer k such that p | Uk .



Bounding D

First, for a ≥ 1, if S is any finite set of primes and m is a
positive integer, then

(Um)S ≤ α2m lcm[Ufp : p ∈ S].

(this follows from Bilu-Hanrot-Voutier’s paper from J. Reine
Angew. Math. 2001 “Existence of primitive divisors of
Lucas and Lehmer numbers, with an appendix by M.
Mignotte”)
Thus, since fp ≤ p + 1,

D ≤ α2m
∏
p|6s

Up+1 < mα2+
∑

p|6s(p+1) ≤ α6s+3+log m/ logα,

where we used the fact that
∑

p|t (p + 1) ≤ t + 1, which is
easily proved by induction on the number of distinct prime
factors of t .



Note that

E |
∏

ζ:ζs1=1
ζ 6∈{±1,±i,±ω,±ω2}

(Un+k − ζUn), (5)

where ω := e2πi/3 is a primitive root of unity of order 3.
Let K = Q(e2πi/s1 , α), which is a number field of degree
d ≤ 2φ(s1) = 2φ(s). Assume that there are ` roots of unity
ζ participating in the product appearing in the right–hand
side of (5), say ζ1, . . . , ζ`. Write

Ei = gcd(E ,Un+k − ζiUn) for all i = 1, . . . , `, (6)

where Ei are ideals in OK . Then relations (5) and (6) tell us
that

EOK |
∏̀
i=1

Ei . (7)



We need to bound the norm |NK/Q(Ei)| of Ei for
i = 1, . . . , `. First of all, Um ∈ Ei . Thus, using Binet formula
and β = (−b)α−1, we get

αm ≡ (−b)mα−m (mod Ei)⇐⇒ α2m ≡ (−b)m (mod Ei).
(8)

Further, by Binet and (8) (with ζ := ζi ),

α2n(αk − ζ)− (−b)n+k (α−k − (−b)kζ) ≡ 0 (mod Ei). (9)

Using a slightly sharper estimate of Φv , we obtained that
αk − ζ and Ei are coprime, and so, αk − ζ is invertible
modulo Ei . Now congruence (9) shows that

α2n+k ≡ (−b)nζ

(
αk − (−b)kζ

αk − ζ

)
(mod Ei). (10)



We do go through quite a few cases, depending upon the
value of (−b)n and use the following workhorse lemma.



Lemma (Workhorse Lemma)

Let a, b and k be as in the statement of Theorem 1, and
assume in addition that a ≥ 1. Let v ≥ 1 be an integer and ζ a
primitive vth root of unity. Assume that the numbers

α and
αk − (−b)k ζ̄

αk − ζ
(11)

are multiplicatively dependent. Then we have one of the
following options:
(i) (−b)k = −1, v = 4;
(ii) (a,b, k) ∈ {(1,1,1), (2,1,1)} and v ∈ {1,2};
(iii) (−b)k = 1, v ∈ {1,2};
(iv) (a,b, k) = (4,−1,1) and v ∈ {4,6}.



Bounding E & A

The bound we found for E is

E ≤ α22kφ(s)
√

m < α22ks
√

m.

In the above, we used that φ(s) ≤ s.
A somewhat similar, but slightly more delicate argument
shows that

A ≤ αm/2+k+2+132k
√

m.



Putting these bounds together

Using αn−2 ≤ Un ≤ αn, n ≥ 1, then

αm−2 ≤ Um ≤ DAE ≤ α6s+3+log m/ logα+m/2+k+2+(132k+22ks)
√

m.

Since s ≥ 3, we have 132 + 22s ≤ 66s. Since also
1/ logα < 3, we get

m/2 ≤ (6s + 7 + 3 log m + k) + 66sk
√

m.

Since m ≥ 10000, one checks that
6s + 7 + 3 log m + k < ks

√
m. Hence,

m ≤ 134ks
√

m, (12)

which leads to the desired inequality m < 20000(sk)2.



Further Comments

One may wonder if one can strengthen our main result in
such a way as to include also the instances s ∈ {1,2,4}
maybe at the cost of eliminating finitely many exceptions in
the pairs (a, k).
The fact that this is not so follows from the formulae:

(i) Un+k − Un = Un+k/2Vk/2 for all n ≥ 0 when b = 1 and 2‖k ;
(ii) Un+k + Un = Un+k/2Vk/2 for all n ≥ 0 when b = 1 and 4 | k

or when b = −1 and k is even;
(iii) U2

n+k + U2
n = U2n+k Uk for all n ≥ 0 when b = 1 and k is odd,

which can be easily proved using the Binet formulas. Thus,
taking m = n + k/2 (for k even) and m = 2n + k for k odd
and b = 1, we get that divisibility Um | Us

n+k − Us
n always

holds with some s ∈ {1,2,4}.
Note the “near-miss” U4n+2 | 4(U6

n+1 − U6
n ) for all n ≥ 0 if

(a,b, k) = (4,−1,1).



Thank you for your attention!
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