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K a global field

X a scheme over K

Kv the completion of K with respect to a place v of K

Question: Can we describe X (K )? Is X (K ) 6= ∅?

Attempt to answer: Describe X (Kv ), for each place v of K .



Introduction

K a global field

X a scheme over K

Kv the completion of K with respect to a place v of K

Question: If
∏

v X (Kv ) 6= ∅, is X (K ) nonempty?
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K a global field

X a scheme over K

Kv the completion of K with respect to a place v of K

G sheaf of abelian groups on SpecK and π ∈ H1(X ,G )

X (K )π =
{

(xv ) : ([π](xv )) = (c), for some c ∈ H1(K ,G )
}

.

We say that (xv ) is unobstructed by π.

X (K ) ⊂
⋂

π∈H1(X ,G)

X (K )π.
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K/k a function field in 1 variable

t a separating element of K/k and δ = d/dt : K → K

X an affine variety over K and F ∈ K [X ]

Natural questions:

I What is going on? Can we unify the multiplicative and

additive versions?

I What happens if X is not affine?
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Projective curves

Voloch (2012):

Theorem

If X is a smooth projective curve of genus g ≥ 2 over K and

δ ∈ DerK has nontrivial Kodaira-Spencer class in X , then X (K ) is

described by differential descent obstructions.

Idea:

I (Buium, Voloch) X 1 is affine.

I We have an open immersion X → X 1.
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Projective curves

R. (2016):

Theorem

If X is a smooth projective curve of genus g ≥ 2 over K, then

X (K )− X (K δ) is described by differential descent obstructions.

Idea:

I If X hyperelliptic, charK 6= 2 and X is given by an equation

y2 = f (x) with coefficients in K δ, then look at the torsors

π1 : δz =
δ(x)

2y
and π2 : δz = x

δ(x)

2y
.
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Further questions

I What happens when X has genus 1?

I What about higher dimensional projective varieties X?



Thank you!
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