

Differential obstructions to rational points on projective curves

Alessandro Rezende de Macedo

University of Texas at Austin

amacedo@math.utexas.edu

Talk at the 47th West Coast Number Theory Conference

December, 2016

Introduction

K a field

Introduction

K a field

X a scheme over K

Introduction

K a field

X a scheme over K

Question: Can we describe $X(K)$? Is $X(K) \neq \emptyset$?

Introduction

K a **global** field

X a scheme over K

Question: Can we describe $X(K)$? Is $X(K) \neq \emptyset$?

Introduction

K a **global** field

X a scheme over K

K_v the completion of K with respect to a place v of K

Question: Can we describe $X(K)$? Is $X(K) \neq \emptyset$?

Introduction

K a **global** field

X a scheme over K

K_v the completion of K with respect to a place v of K

Question: Can we describe $X(K)$? Is $X(K) \neq \emptyset$?

Attempt to answer: Describe $X(K_v)$, for each place v of K .

Introduction

K a **global** field

X a scheme over K

K_v the completion of K with respect to a place v of K

Question: If $\prod_v X(K_v) \neq \emptyset$, is $X(K)$ nonempty?

Descent obstructions

K a global field

X a scheme over K

K_v the completion of K with respect to a place v of K

Descent obstructions

K a global field

X a scheme over K

K_v the completion of K with respect to a place v of K

G sheaf of abelian groups on $\text{Spec } K$ and $\pi \in H^1(X, G)$

Descent obstructions

K a global field

X a scheme over K

K_v the completion of K with respect to a place v of K

G sheaf of abelian groups on $\text{Spec } K$ and $\pi \in H^1(X, G)$

$$X(K) \longrightarrow \prod_v X(K_v)$$

Descent obstructions

K a global field

X a scheme over K

K_v the completion of K with respect to a place v of K

G sheaf of abelian groups on $\text{Spec } K$ and $\pi \in H^1(X, G)$

$$\begin{array}{ccc} X(K) & \longrightarrow & \prod_v X(K_v) \\ \downarrow & & \downarrow \\ H^1(K, G) & \longrightarrow & \prod_v H^1(K_v, G) \end{array}$$

Descent obstructions

K a global field

X a scheme over K

K_v the completion of K with respect to a place v of K

G sheaf of abelian groups on $\text{Spec } K$ and $\pi \in H^1(X, G)$

$$\begin{array}{ccc} X(K) & \longrightarrow & \prod_v X(K_v) & \supset X(K)^\pi \\ \downarrow & & \downarrow & \\ H^1(K, G) & \longrightarrow & \prod_v H^1(K_v, G) \end{array}$$

Descent obstructions

K a global field

X a scheme over K

K_v the completion of K with respect to a place v of K

G sheaf of abelian groups on $\text{Spec } K$ and $\pi \in H^1(X, G)$

$X(K)^\pi = \{(x_v) : ([\pi](x_v)) = (c), \text{ for some } c \in H^1(K, G)\}.$

Descent obstructions

K a global field

X a scheme over K

K_v the completion of K with respect to a place v of K

G sheaf of abelian groups on $\text{Spec } K$ and $\pi \in H^1(X, G)$

$X(K)^\pi = \{(x_v) : ([\pi](x_v)) = (c), \text{ for some } c \in H^1(K, G)\}.$

We say that (x_v) is *unobstructed* by π .

Descent obstructions

K a global field

X a scheme over K

K_v the completion of K with respect to a place v of K

G sheaf of abelian groups on $\text{Spec } K$ and $\pi \in H^1(X, G)$

$$X(K)^\pi = \{(x_v) : ([\pi](x_v)) = (c), \text{ for some } c \in H^1(K, G)\}.$$

We say that (x_v) is *unobstructed* by π .

$$X(K) \subset \bigcap_{\pi \in H^1(X, G)} X(K)^\pi.$$

Differential descent obstructions

K/k a function field in 1 variable

Differential descent obstructions

K/k a function field in 1 variable

t a separating element of K/k and $\delta = d/dt : K \rightarrow K$

Differential descent obstructions

K/k a function field in 1 variable

t a separating element of K/k and $\delta = d/dt : K \rightarrow K$

X an affine variety over K and $F \in K[X]$

Differential descent obstructions

K/k a function field in 1 variable

t a separating element of K/k and $\delta = d/dt : K \rightarrow K$

X an affine variety over K and $F \in K[X]$

Voloch, 2012:

- ▶ $\{\delta z = 0\}$ behaves like a group scheme G over K

Differential descent obstructions

K/k a function field in 1 variable

t a separating element of K/k and $\delta = d/dt : K \rightarrow K$

X an affine variety over K and $F \in K[X]$

Voloch, 2012:

- ▶ $\{\delta z = 0\}$ behaves like a group scheme G over K
- ▶ $\{\delta z = F\}$ behaves like an X -torsor π under G

Differential descent obstructions

K/k a function field in 1 variable

t a separating element of K/k and $\delta = d/dt : K \rightarrow K$

X an affine variety over K and $F \in K[X]$

Voloch, 2012:

- ▶ $\{\delta z = 0\}$ behaves like a group scheme G over K
- ▶ $\{\delta z = F\}$ behaves like an X -torsor π under G
- ▶ $K/\delta(K)$ behaves like $H^1(K, G)$

Differential descent obstructions

K/k a function field in 1 variable

t a separating element of K/k and $\delta = d/dt : K \rightarrow K$

X an affine variety over K and $F \in K[X]$

Voloch, 2012:

- ▶ $\{\delta z = 0\}$ behaves like a group scheme G over K
- ▶ $\{\delta z = F\}$ behaves like an X -torsor π under G
- ▶ $K/\delta(K)$ behaves like $H^1(K, G)$
- ▶ Say that (x_v) is unobstructed by $\delta z = F$ if there exist $c \in K$ and $(z_v) \in \prod_v K_v$ such that $\delta z_v = F(x_v) + c$.

Differential descent obstructions

K/k a function field in 1 variable

t a separating element of K/k and $\delta = d/dt : K \rightarrow K$

X an affine variety over K and $F \in K[X]$

Voloch, 2012:

Theorem

$$X(K) = \bigcap_{\pi} X(K)^{\pi},$$

where the intersection runs over all torsors π given by $\delta z = F$, for $F \in K[X]$.

Differential descent obstructions

K/k a function field in 1 variable

t a separating element of K/k and $\delta = d/dt : K \rightarrow K$

X an affine variety over K and $F \in K[X]$

R., 2015:

- ▶ $\{\mathrm{dlog} z = 0\}$ behaves like a group scheme G over K

Differential descent obstructions

K/k a function field in 1 variable

t a separating element of K/k and $\delta = d/dt : K \rightarrow K$

X an affine variety over K and $F \in K[X]$

R., 2015:

- ▶ $\{\mathrm{dlog} z = 0\}$ behaves like a group scheme G over K
- ▶ $\{\mathrm{dlog} z = F\}$ behaves like an X -torsor π under G

Differential descent obstructions

K/k a function field in 1 variable

t a separating element of K/k and $\delta = d/dt : K \rightarrow K$

X an affine variety over K and $F \in K[X]$

R., 2015:

- ▶ $\{\mathrm{dlog} z = 0\}$ behaves like a group scheme G over K
- ▶ $\{\mathrm{dlog} z = F\}$ behaves like an X -torsor π under G
- ▶ $K/\mathrm{dlog}(K^\times)$ behaves like $H^1(K, G)$

Differential descent obstructions

K/k a function field in 1 variable

t a separating element of K/k and $\delta = d/dt : K \rightarrow K$

X an affine variety over K and $F \in K[X]$

R., 2015:

- ▶ $\{\mathrm{dlog} z = 0\}$ behaves like a group scheme G over K
- ▶ $\{\mathrm{dlog} z = F\}$ behaves like an X -torsor π under G
- ▶ $K/\mathrm{dlog}(K^\times)$ behaves like $H^1(K, G)$
- ▶ Say that (x_v) is unobstructed by $\mathrm{dlog} z = F$ if there exist $c \in K$ and $(z_v) \in \prod_v K_v^\times$ such that $\mathrm{dlog} z_v = F(x_v) + c$.

Differential descent obstructions

K/k a function field in 1 variable

t a separating element of K/k and $\delta = d/dt : K \rightarrow K$

X an affine variety over K and $F \in K[X]$

R., 2015:

Theorem

$$X(K) = \bigcap_{\pi} X(K)^{\pi},$$

where the intersection ranges over all torsors π given by

$d\log z = F$, for $F \in K[X]$.

Differential descent obstructions

K/k a function field in 1 variable

t a separating element of K/k and $\delta = d/dt : K \rightarrow K$

X an affine variety over K and $F \in K[X]$

Natural questions:

- ▶ What is going on? Can we unify the multiplicative and additive versions?

Differential descent obstructions

K/k a function field in 1 variable

t a separating element of K/k and $\delta = d/dt : K \rightarrow K$

X an affine variety over K and $F \in K[X]$

Natural questions:

- ▶ What is going on? Can we unify the multiplicative and additive versions?
- ▶ What happens if X is not affine?

The category of differential schemes

K a field with a derivation δ

The category of differential schemes

K a field with a derivation δ

X a scheme over K with a derivation $D \in \text{Der}(\mathcal{O}_X)$ extending δ

The category of differential schemes

K a field with a derivation δ

X a scheme over K with a derivation $D \in \text{Der}(\mathcal{O}_X)$ extending δ

$\{(X_i, D_i) \rightarrow (X, D)\}$ is a differential fppf cover if $\{X_i \rightarrow X\}$ is fppf

The category of differential schemes

K a field with a derivation δ

X a scheme over K with a derivation $D \in \text{Der}(\mathcal{O}_X)$ extending δ

$\{(X_i, D_i) \rightarrow (X, D)\}$ is a differential fppf cover if $\{X_i \rightarrow X\}$ is fppf

We can now talk about the *differential fppf site* on X , denoted X_{diff} .

The category of differential schemes

K a field with a derivation δ

X a scheme over K with a derivation $D \in \text{Der}(\mathcal{O}_X)$ extending δ

$\{(X_i, D_i) \rightarrow (X, D)\}$ is a differential fppf cover if $\{X_i \rightarrow X\}$ is fppf

We can now talk about the *differential fppf site* on X , denoted X_{dfp} .

Some sheaves on X_{dfp} :

The category of differential schemes

K a field with a derivation δ

X a scheme over K with a derivation $D \in \text{Der}(\mathcal{O}_X)$ extending δ

$\{(X_i, D_i) \rightarrow (X, D)\}$ is a differential fppf cover if $\{X_i \rightarrow X\}$ is fppf

We can now talk about the *differential fppf site* on X , denoted X_{dfl} .

Some sheaves on X_{dfl} :

- ▶ $\mathbf{G}_a, \mathbf{G}_m$

The category of differential schemes

K a field with a derivation δ

X a scheme over K with a derivation $D \in \text{Der}(\mathcal{O}_X)$ extending δ

$\{(X_i, D_i) \rightarrow (X, D)\}$ is a differential fppf cover if $\{X_i \rightarrow X\}$ is fppf

We can now talk about the *differential fppf site* on X , denoted X_{dfl} .

Some sheaves on X_{dfl} :

- ▶ $\mathbf{G}_a, \mathbf{G}_m$
- ▶ $\mathbf{G}_a^\delta = \ker(\mathbf{G}_a \xrightarrow{\text{der}} \mathbf{G}_a)$

The category of differential schemes

K a field with a derivation δ

X a scheme over K with a derivation $D \in \text{Der}(\mathcal{O}_X)$ extending δ

$\{(X_i, D_i) \rightarrow (X, D)\}$ is a differential fppf cover if $\{X_i \rightarrow X\}$ is fppf

We can now talk about the *differential fppf site* on X , denoted X_{dfl} .

Some sheaves on X_{dfl} :

- ▶ $\mathbf{G}_a, \mathbf{G}_m$
- ▶ $\mathbf{G}_a^\delta = \ker(\mathbf{G}_a^\delta \xrightarrow{\text{der}} \mathbf{G}_a^\delta)$
- ▶ $\mathbf{G}_m^\delta = \ker(\mathbf{G}_m \xrightarrow{\text{dlog}} \mathbf{G}_a)$

The category of differential schemes

K a field with a derivation δ

X a scheme over K with a derivation $D \in \text{Der}(\mathcal{O}_X)$ extending δ

$\{(X_i, D_i) \rightarrow (X, D)\}$ is a differential fppf cover if $\{X_i \rightarrow X\}$ is fppf

We can now talk about the *differential fppf site* on X , denoted X_{diff} .

Some exact sequences:

$$\blacktriangleright 0 \rightarrow \mathbf{G}_a^\delta \rightarrow \mathbf{G}_a \xrightarrow{\text{der}} \mathbf{G}_a \rightarrow 0$$

The category of differential schemes

K a field with a derivation δ

X a scheme over K with a derivation $D \in \text{Der}(\mathcal{O}_X)$ extending δ

$\{(X_i, D_i) \rightarrow (X, D)\}$ is a differential fppf cover if $\{X_i \rightarrow X\}$ is fppf

We can now talk about the *differential fppf site* on X , denoted X_{diff} .

Some exact sequences:

- ▶ $0 \rightarrow \mathbf{G}_a^\delta \rightarrow \mathbf{G}_a \xrightarrow{\text{der}} \mathbf{G}_a \rightarrow 0$
- ▶ $0 \rightarrow \mathbf{G}_m^\delta \rightarrow \mathbf{G}_m \xrightarrow{\text{dlog}} \mathbf{G}_a \rightarrow 0$

The category of differential schemes

K a field with a derivation δ

X a scheme over K with a derivation $D \in \text{Der}(\mathcal{O}_X)$ extending δ

$\{(X_i, D_i) \rightarrow (X, D)\}$ is a differential fppf cover if $\{X_i \rightarrow X\}$ is fppf

We can now talk about the *differential fppf site* on X , denoted X_{diff} .

Some exact sequences:

$$\blacktriangleright 0 \rightarrow \mathbf{G}_a^\delta \rightarrow \mathbf{G}_a \xrightarrow{\text{der}} \mathbf{G}_a \rightarrow 0$$

$$K[X] \xrightarrow{D} K[X] \rightarrow H^1(X, \mathbf{G}_a^\delta) \rightarrow H^1(X, \mathbf{G}_a) \xrightarrow{D^*} H^1(X, \mathbf{G}_a)$$

The category of differential schemes

K a field with a derivation δ

X a scheme over K with a derivation $D \in \text{Der}(\mathcal{O}_X)$ extending δ

$\{(X_i, D_i) \rightarrow (X, D)\}$ is a differential fppf cover if $\{X_i \rightarrow X\}$ is fppf

We can now talk about the *differential fppf site* on X , denoted X_{diff} .

Some exact sequences:

$$\blacktriangleright 0 \rightarrow \mathbf{G}_a^\delta \rightarrow \mathbf{G}_a \xrightarrow{\text{der}} \mathbf{G}_a \rightarrow 0$$

$$0 \rightarrow K[X]/D(K[X]) \rightarrow H^1(X, \mathbf{G}_a^\delta) \rightarrow H^1(X, \mathbf{G}_a)^D \rightarrow 0$$

The category of differential schemes

K a field with a derivation δ

X a scheme over K with a derivation $D \in \text{Der}(\mathcal{O}_X)$ extending δ

$\{(X_i, D_i) \rightarrow (X, D)\}$ is a differential fppf cover if $\{X_i \rightarrow X\}$ is fppf

We can now talk about the *differential fppf site* on X , denoted X_{diff} .

Some exact sequences:

$$\blacktriangleright 0 \rightarrow \mathbf{G}_a^\delta \rightarrow \mathbf{G}_a \xrightarrow{\text{der}} \mathbf{G}_a \rightarrow 0$$

$$0 \rightarrow K[X]/D(K[X]) \rightarrow H^1(X, \mathbf{G}_a^\delta) \rightarrow H^1(X, \mathbf{G}_a)^D \rightarrow 0$$

The category of differential schemes

K a field with a derivation δ

X a scheme over K with a derivation $D \in \text{Der}(\mathcal{O}_X)$ extending δ

$\{(X_i, D_i) \rightarrow (X, D)\}$ is a differential fppf cover if $\{X_i \rightarrow X\}$ is fppf

We can now talk about the *differential fppf site* on X , denoted X_{diff} .

Some exact sequences:

$$\blacktriangleright 0 \rightarrow \mathbf{G}_a^\delta \rightarrow \mathbf{G}_a \xrightarrow{\text{der}} \mathbf{G}_a \rightarrow 0$$

$$\pi : D(z) = F, \text{ for some } F \in K[X].$$

The category of differential schemes

K a field with a derivation δ

X a scheme over K with a derivation $D \in \text{Der}(\mathcal{O}_X)$ extending δ

$\{(X_i, D_i) \rightarrow (X, D)\}$ is a differential fppf cover if $\{X_i \rightarrow X\}$ is fppf

We can now talk about the *differential fppf site* on X , denoted X_{diff} .

Some exact sequences:

$$\blacktriangleright 0 \rightarrow \mathbf{G}_m^\delta \rightarrow \mathbf{G}_m \xrightarrow{\text{dlog}} \mathbf{G}_a \rightarrow 0$$

$$K[X]^\times \xrightarrow{\text{dlog}} K[X] \rightarrow H^1(X, \mathbf{G}_m^\delta) \rightarrow \text{Pic } X \xrightarrow{\text{dlog}^*} H^1(X, \mathbf{G}_a)$$

The category of differential schemes

K a field with a derivation δ

X a scheme over K with a derivation $D \in \text{Der}(\mathcal{O}_X)$ extending δ

$\{(X_i, D_i) \rightarrow (X, D)\}$ is a differential fppf cover if $\{X_i \rightarrow X\}$ is fppf

We can now talk about the *differential fppf site* on X , denoted X_{diff} .

Some exact sequences:

$$\blacktriangleright 0 \rightarrow \mathbf{G}_m^\delta \rightarrow \mathbf{G}_m \xrightarrow{\text{dlog}} \mathbf{G}_a \rightarrow 0$$

$$0 \rightarrow K[X]/\text{dlog}(K[X]^\times) \rightarrow H^1(X, \mathbf{G}_m^\delta) \rightarrow (\text{Pic } X)^D \rightarrow 0$$

The category of differential schemes

K a field with a derivation δ

X a scheme over K with a derivation $D \in \text{Der}(\mathcal{O}_X)$ extending δ

$\{(X_i, D_i) \rightarrow (X, D)\}$ is a differential fppf cover if $\{X_i \rightarrow X\}$ is fppf

We can now talk about the *differential fppf site* on X , denoted X_{diff} .

Some exact sequences:

$$\blacktriangleright 0 \rightarrow \mathbf{G}_m^\delta \rightarrow \mathbf{G}_m \xrightarrow{\text{dlog}} \mathbf{G}_a \rightarrow 0$$

$$0 \rightarrow K[X]/\text{dlog}(K[X]^\times) \rightarrow H^1(X, \mathbf{G}_m^\delta) \rightarrow (\text{Pic } X)^D \rightarrow 0$$

The category of differential schemes

K a field with a derivation δ

X a scheme over K with a derivation $D \in \text{Der}(\mathcal{O}_X)$ extending δ

$\{(X_i, D_i) \rightarrow (X, D)\}$ is a differential fppf cover if $\{X_i \rightarrow X\}$ is fppf

We can now talk about the *differential fppf site* on X , denoted X_{diff} .

Some exact sequences:

$$\blacktriangleright 0 \rightarrow \mathbf{G}_m^\delta \rightarrow \mathbf{G}_m \xrightarrow{\text{dlog}} \mathbf{G}_a \rightarrow 0$$

$$\pi : \text{dlog}(z) = F, \text{ for some } F \in K[X].$$

Projective curves

Projective curves

Voloch (2012):

Theorem

If X is a smooth projective curve of genus $g \geq 2$ over K and $\delta \in \text{Der } K$ has nontrivial Kodaira-Spencer class in X , then $X(K)$ is described by differential descent obstructions.

Projective curves

Voloch (2012):

Theorem

If X is a smooth projective curve of genus $g \geq 2$ over K and $\delta \in \text{Der } K$ has nontrivial Kodaira-Spencer class in X , then $X(K)$ is described by differential descent obstructions.

Idea:

- ▶ (Buium, Voloch) X^1 is affine.
- ▶ We have an open immersion $X \rightarrow X^1$.

Projective curves

R. (2016):

Theorem

If X is a smooth projective curve of genus $g \geq 2$ over K , then

$X(K) - X(K^\delta)$ is described by differential descent obstructions.

Projective curves

R. (2016):

Theorem

If X is a smooth projective curve of genus $g \geq 2$ over K , then

$X(K) - X(K^\delta)$ is described by differential descent obstructions.

Idea:

- If X not hyperelliptic, then

$$X \rightarrow X^1 \rightarrow \text{Spec } \mathcal{O}_{X^1} \rightarrow \text{Spec } S(H^0(X, \Omega_{X/K})) = \mathbf{A}^g$$

Projective curves

R. (2016):

Theorem

If X is a smooth projective curve of genus $g \geq 2$ over K , then

$X(K) - X(K^\delta)$ is described by differential descent obstructions.

Idea:

- ▶ If X hyperelliptic, $\text{char}K \neq 2$ and X is given by an equation $y^2 = f(x)$ with coefficients in K^δ , then look at the torsors

$$\pi_1 : \delta z = \frac{\delta(x)}{2y} \quad \text{and} \quad \pi_2 : \delta z = x \frac{\delta(x)}{2y}.$$

Further questions

Further questions

- ▶ What happens when X has genus 1?

Further questions

- ▶ What happens when X has genus 1?
- ▶ What about higher dimensional projective varieties X ?

Thank you!