

A talk about “Euclidean algorithms and stuff.”

Amy Feaver

December 17, 2016

Multiquadratic Fields

An n -quadratic field, $n \geq 1$ is any degree 2^n field of the form

$$\mathbb{Q}(\sqrt{a_1}, \dots, \sqrt{a_n})$$

where a_i , $1 \leq i \leq n$ are squarefree integers .

Multiquadratic Fields

An n -quadratic field, $n \geq 1$ is any degree 2^n field of the form

$$\mathbb{Q}(\sqrt{a_1}, \dots, \sqrt{a_n})$$

where a_i , $1 \leq i \leq n$ are squarefree integers .

The set $\{a_1, \dots, a_n\}$ is called a *radicand list* for the field.

A number field K is called *norm-Euclidean* if its ring of integers \mathcal{O}_K is Euclidean with respect to the absolute value of the field norm $N_{K/\mathbb{Q}}$.

Norm-Euclidean Fields

A number field K is called *norm-Euclidean* if its ring of integers \mathcal{O}_K is Euclidean with respect to the absolute value of the field norm $N_{K/\mathbb{Q}}$.

That is, K is norm-Euclidean if for any $a, b \in \mathcal{O}_K$, $b \neq 0$ there exist $q, r \in \mathcal{O}_K$ such that $a = qb + r$ and $|N_{K/\mathbb{Q}}(r)| < |N_{K/\mathbb{Q}}(b)|$.

Euclidean Quadratic Fields

(Dirichlet 1842, Wantzel 1848, Davenport 1948 et.al.)

The norm-Euclidean quadratic fields have been fully classified.

They are the fields $\mathbb{Q}(\sqrt{a})$ where a is in the set

$\{-11, -7, -3, -2, -1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73\}$.

(Clark, 1994) The field $K := \mathbb{Q}(\sqrt{69})$ is not norm-Euclidean, but is Euclidean under the multiplicative function f given by

$$f\left(10 + 3\frac{1 + \sqrt{69}}{2}\right) = 26$$

and $f(p) = |N(p)|$ for any other prime $p \in \mathcal{O}_K$.

Euclidean Biquadratic Fields

Theorem (Lemmermeyer)

There are exactly 13 norm-Euclidean imaginary biquadratic fields; they are given by $\mathbb{Q}(\sqrt{a_1}, \sqrt{a_2})$ where

$$a_1 = -1, a_2 = 2, 3, 5, 7;$$

$$a_1 = -2, a_2 = -3, 5;$$

$$a_1 = -3, a_2 = 2, 5, -7, -11, 17, -19;$$

$$a_1 = -7, a_2 = 5.$$

This question still remains unanswered for real biquadratic fields, and all n -quadratic fields with $n > 2$.

This question still remains unanswered for real biquadratic fields, and all n -quadratic fields with $n > 2$.

Strategy: begin with the fact that
norm-Euclidean \Rightarrow PID \Leftrightarrow class number 1

This question still remains unanswered for real biquadratic fields, and all n -quadratic fields with $n > 2$.

Strategy: begin with the fact that
norm-Euclidean \Rightarrow PID \Leftrightarrow class number 1

We will look at the imaginary multiquadratic fields first

Theorem (Lemmermeyer)

Let K/k be a V_4 extension of number fields. Then Kuroda's class number formula holds:

$$h(K) = 2^{d-\kappa-2-\nu} q(K) h_1 h_2 h_3 / h_k^2.$$

- d is the number of infinite places ramified in K/k
- κ is the \mathbb{Z} -rank of the unit group of \mathcal{O}_k
- $\nu \in \{0, 1\}$
- h_k is the class number of k
- h_1, h_2, h_3 are the class numbers of the intermediate fields $k \subset k_1, k_2, k_3 \subset K$

Class Number of Triquadratic Fields

(To appear in the Journal of Number Theory)

Theorem (Feaver)

There are 17 imaginary triquadratic fields with class number 1. These are the fields with radicand lists $\{a_1, a_2, a_3\}$ given in the following table:

$\{a_1, a_2, a_3\}$	$\{a_1, a_2, a_3\}$	$\{a_1, a_2, a_3\}$	$\{a_1, a_2, a_3\}$
$\{-1, 2, 3\}$	$\{-1, 3, 5\}$	$\{-1, 7, 19\}$	$\{-3, -7, -15\}$
$\{-1, 2, 5\}$	$\{-1, 3, 7\}$	$\{-1, 7, 91\}$	$\{-3, -11, -6\}$
$\{-1, 2, 11\}$	$\{-1, 3, 11\}$	$\{-2, -3, -7\}$	$\{-3, -11, -19\}$
$\{-1, 5, 7\}$	$\{-1, 3, 19\}$	$\{-2, -3, 5\}$	$\{-3, -11, 17\}$
		$\{-2, -7, 5\}$	

And, when $n \geq 4$, there are no imaginary n -quadratic fields of class number 1.

Theorem (Lemmermeyer)

$$\begin{array}{ccc} K & & \mathfrak{B}^n \\ \downarrow n & & \downarrow \\ k & & \mathfrak{p} \end{array}$$

If K is norm-Euclidean, then for any $\alpha \in \mathcal{O}_k \setminus \mathfrak{p}$, there exists $b \in \mathcal{O}_k$ such that

- $b \equiv \alpha^n \pmod{\mathfrak{p}}$,
- $b = N_{K/k}\delta$ for some $\delta \in \mathcal{O}_K$ and
- $|N_{k/\mathbb{Q}}b| < |N_{k/\mathbb{Q}}\mathfrak{p}|$.

Norm-Euclideanity of Triquadratic Fields

$K = \mathbb{Q}(\sqrt{-1}, \sqrt{-2}, \sqrt{-11})$ is not norm-Euclidean.

Norm-Euclideanity of Triquadratic Fields

$K = \mathbb{Q}(\sqrt{-1}, \sqrt{-2}, \sqrt{-11})$ is not norm-Euclidean.

Let $k = \mathbb{Q}(\sqrt{-11})$ and $\mathfrak{p} = (2)$. The ideal \mathfrak{p} ramifies completely in K/k .

Norm-Euclideanity of Triquadratic Fields

$K = \mathbb{Q}(\sqrt{-1}, \sqrt{-2}, \sqrt{-11})$ is not norm-Euclidean.

Let $k = \mathbb{Q}(\sqrt{-11})$ and $\mathfrak{p} = (2)$. The ideal \mathfrak{p} ramifies completely in K/k .

Let $\alpha = \frac{1+\sqrt{-11}}{2}$;

$$b \equiv \alpha^4 = \frac{7 - 5\sqrt{-11}}{2} \equiv \frac{-1 - \sqrt{-11}}{2} \pmod{2}.$$

Norm-Euclideanity of Triquadratic Fields

$|N_{k/\mathbb{Q}}\mathfrak{p}| = 4$ so the only choice for b with $|N_{k/\mathbb{Q}}b| < |N_{k/\mathbb{Q}}\mathfrak{p}|$ is $b = \frac{-1-\sqrt{-11}}{2}$; which gives $N_{k/\mathbb{Q}}b = 3$.

Norm-Euclideanity of Triquadratic Fields

$|N_{k/\mathbb{Q}}\mathfrak{p}| = 4$ so the only choice for b with $|N_{k/\mathbb{Q}}b| < |N_{k/\mathbb{Q}}\mathfrak{p}|$ is $b = \frac{-1-\sqrt{-11}}{2}$; which gives $N_{k/\mathbb{Q}}b = 3$.

(3) does not split completely in \mathcal{O}_K so there is no element $\delta \in \mathcal{O}_K$ such that $N_{K/\mathbb{Q}}(\delta) = \pm 3$

Norm-Euclideanity of Triquadratic Fields

$|N_{k/\mathbb{Q}}\mathfrak{p}| = 4$ so the only choice for b with $|N_{k/\mathbb{Q}}b| < |N_{k/\mathbb{Q}}\mathfrak{p}|$ is $b = \frac{-1-\sqrt{-11}}{2}$; which gives $N_{k/\mathbb{Q}}b = 3$.

(3) does not split completely in \mathcal{O}_K so there is no element $\delta \in \mathcal{O}_K$ such that $N_{K/\mathbb{Q}}(\delta) = \pm 3$

Applying the theorem, $K = \mathbb{Q}(\sqrt{-1}, \sqrt{-2}, \sqrt{-11})$ is not norm-Euclidean.

Theorem (Feaver)

Let K/k be a finite, abelian, normal extension of number fields of relative degree n . Let $\mathfrak{p} \subset \mathcal{O}_k$ be a non-zero prime ideal and let e denote the ramification index of \mathfrak{p} in \mathcal{O}_K . If K is norm-Euclidean, then for any $\alpha, \beta \in \mathcal{O}_k \setminus \mathfrak{p}$ with $\beta \equiv \alpha^n \pmod{\mathfrak{p}}$, there exists $b \in \mathcal{O}_k$ such that

$$b = N_{K/k} \delta \text{ for some } \delta \in \mathcal{O}_K,$$

$$b \equiv \beta \pmod{\mathfrak{p}} \text{ and}$$

$$|N_{k/\mathbb{Q}} b| < |N_{k/\mathbb{Q}} \mathfrak{p}|^{n/e}.$$

Euclidean algorithms and stuff

A field which is not norm-Euclidean:

$$K = \mathbb{Q}(\sqrt{-1}, \sqrt{-7}, \sqrt{-91}),$$

$$k = \mathbb{Q}(\sqrt{-91})$$

$$\mathfrak{p} = 2$$

$$\alpha = \frac{1}{2}(1 + \sqrt{-91})$$

$$b \bmod \mathfrak{p} = \frac{1}{2}(\pm 1 \pm \sqrt{-91})$$

Euclidean algorithms and stuff

Not norm-Euclidean:

$\{-1, 7, 19\}$, $\{-1, 7, 91\}$, $\{-1, 2, 11\}$, $\{-1, 3, 11\}$, $\{-1, 3, 19\}$

The End!