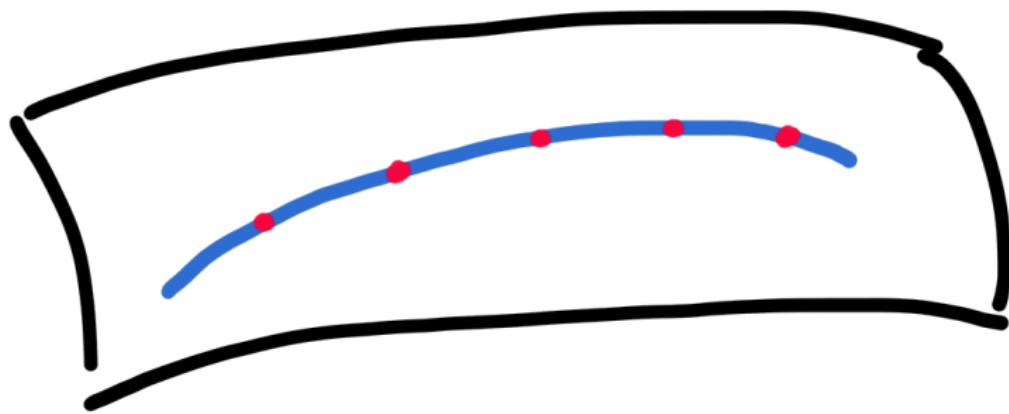


Ekedahl-Oort Stratifications of Unitary Shimura varieties

Amy Wooding

Tutte Institute

Dec 19, 2016



Unitary Shimura varieties

Let K be a quadratic imaginary extension of \mathbb{Q} in which p is unramified. A unitary Shimura variety \mathcal{M} in characteristic $p > 0$ of signature (m_1, m_2) is a moduli space of abelian varieties where:

- $A/\bar{\mathbb{F}}_p$ is an abelian variety of dimension $m_1 + m_2 = g$,
- $\mathcal{O}_K \hookrightarrow \text{End}(A)$
- λ is a prime-to- p polarization of A ,
- η is a C^p level structure,

Furthermore, under the decomposition of $\text{Lie}(A)$ as an $\mathcal{O}_K \otimes \bar{\mathbb{F}}_p = (\bar{\mathbb{F}}_p)_1 \oplus (\bar{\mathbb{F}}_p)_2$ -module, $\text{Lie}(A) = L_1 \oplus L_2$, $\text{rank}(L_i) = m_i$.

Ekedahl-Oort (E-O) Stratification

There exists a poset ${}^J W \subseteq S_g \times S_g$ depending on (m_1, m_2) such that

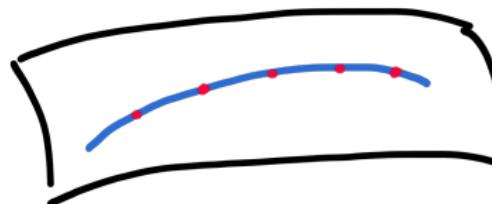
$${}^J W \longleftrightarrow \left\{ \begin{array}{l} p\text{-torsion group schemes with} \\ \text{extra structure up-to-isomorphism} \end{array} \right\}$$

The extra structure is induced by the polarization and endomorphism structure coming from the moduli problem.

Then for $w \in {}^J W$, the subscheme coming from

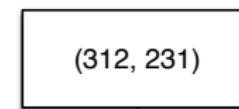
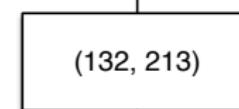
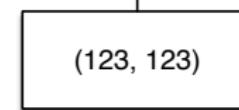
$$V^w = \{ \underline{A} \in \mathcal{M}(\bar{\mathbb{F}}_p) \mid \text{E-O}(\underline{A}) = w \}$$

is the E-O stratum of w .

GU(2, 1) p split in K 

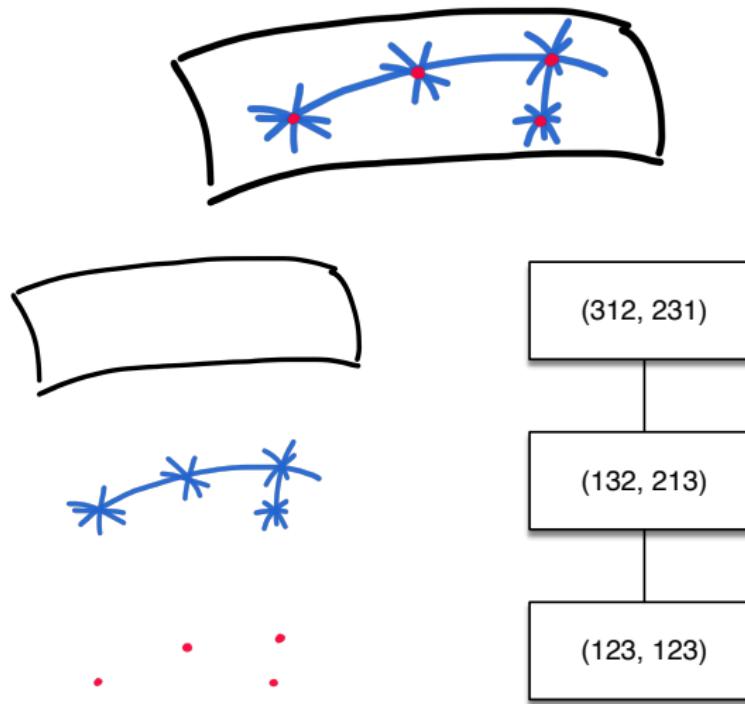
$$312 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$231 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

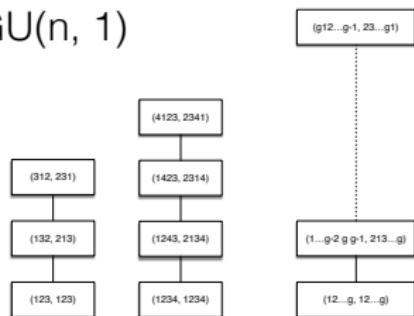


...

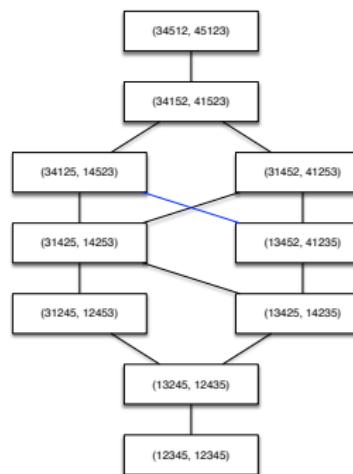
$\mathrm{GU}(2, 1)$ p inert in K



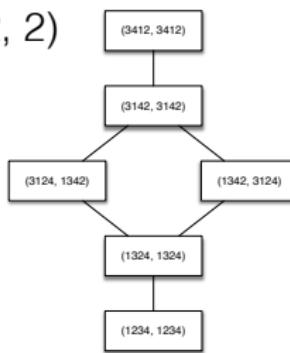
GU(n, 1)



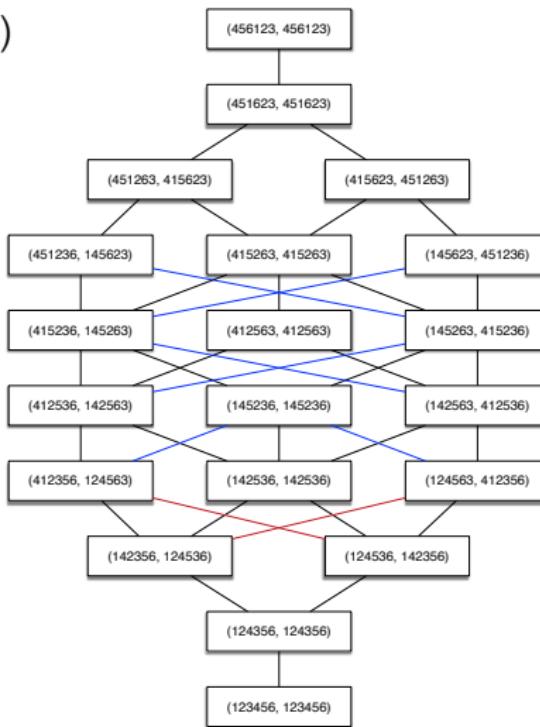
GU(3, 2)



GU(2, 2)



GU(3, 3)



Theorem (W.)

- *The number of E-O strata for $\mathrm{GU}(m_1, m_2)$ is $\binom{g}{m_i}$.*
- *The number of strata of a given dimension is given by a partition function.*
- *There is a vertical line of symmetry of the diagram of E-O strata when $m_1 = m_2$.*
- *There exist unique $0, 1, m_1 m_2 - 1$ and $m_1 m_2$ -dimensional E-O strata, the core, almost-core, non-ordinary and μ -ordinary strata.*

p is split

p is inert

μ -ordinary

p is split

p is inert

non-ordinary

=

almost-core

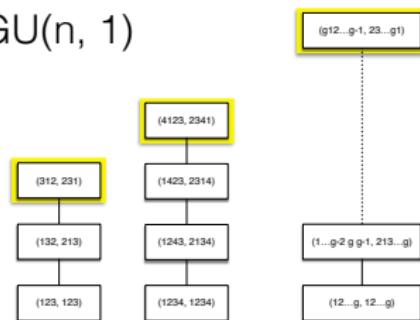
p is split

p is inert

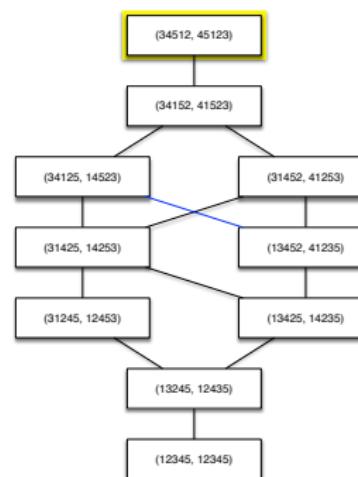
core

μ -ordinary

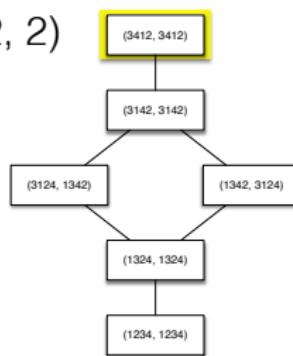
GU(n, 1)



GU(3, 2)

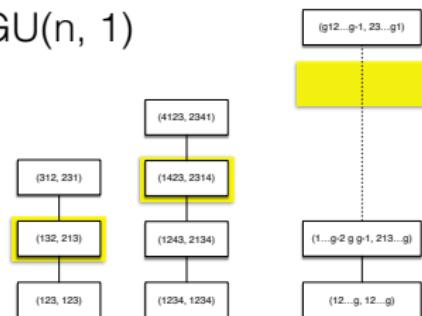


GU(2, 2)

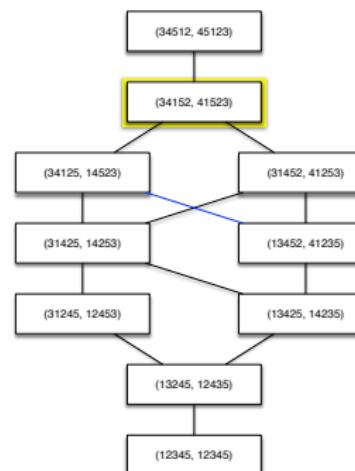


Non-ordinary

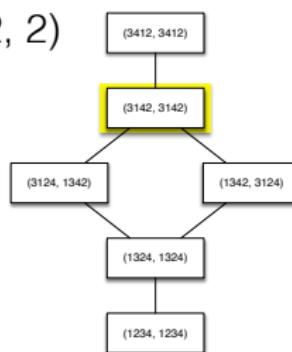
GU(n, 1)



GU(3, 2)

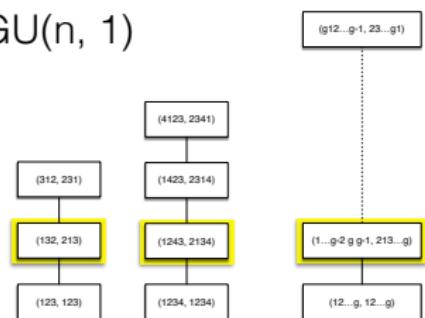


GU(2, 2)

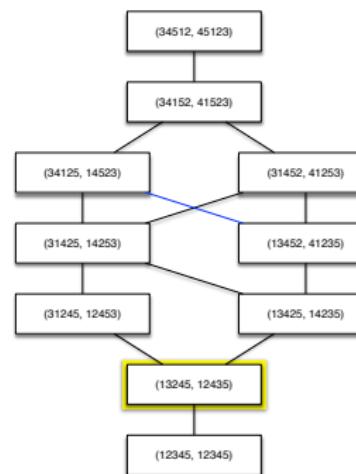


Almost-core

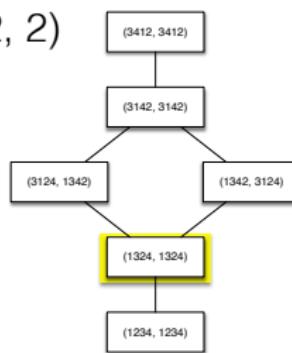
GU(n, 1)



GU(3, 2)

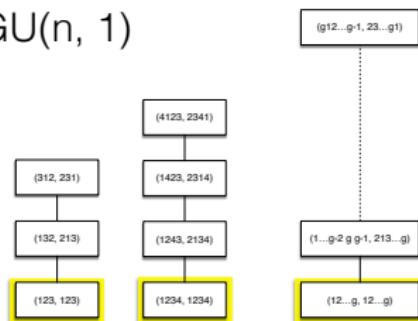


GU(2, 2)

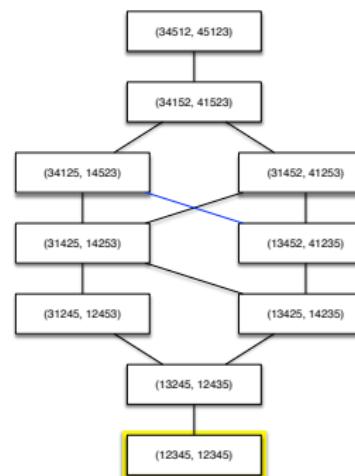


Core

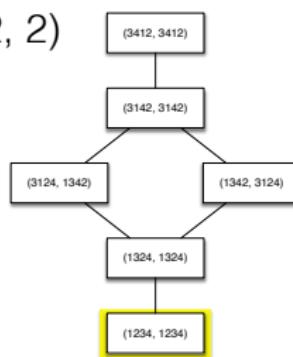
GU(n, 1)



GU(3, 2)



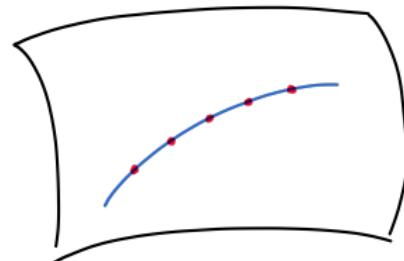
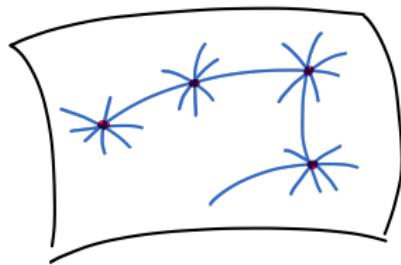
GU(2, 2)



There is a way to go from an element $w \in {}^J W$ to a basis for a Dieudonné module \mathcal{D} with the E-O stratum w . We use these to:

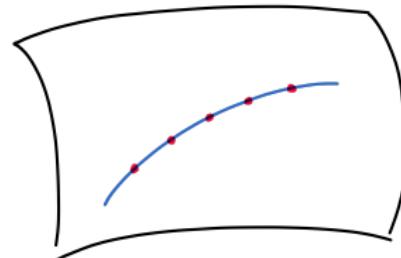
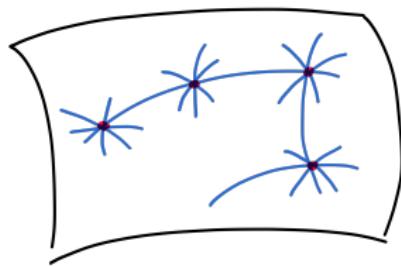
- determine the a -number, f -number, and minimal power of F that kills \mathcal{D} from (m_1, m_2) ,
- give models for the p -torsion of the μ -ordinary, non-ordinary, almost-core and core E-O strata.

p is split	$a(w)$	$f(w)$	$\min F(w)$
Core	$2m_2$	0	$\lceil \frac{g}{m_2} \rceil$
Almost-core	$m_1 = m_2 = m$	$2m - 2$	0
	$m_1 - m_2 \geq 1, m_2 = 1$	$2m_2 = 2$	1
	$m_1 - m_2 \geq 1, m_2 > 1, m_2 \mid m_1$	$2m_2$	0
	$m_1 - m_2 \geq 1, m_2 > 1, m_2 \nmid m_1$	$2m_2$	$\lceil \frac{g}{m_2} \rceil$
Non-ordinary	2	$g - 2$	—
μ -ordinary	0	g	—



p is inert	$a(w)$	$f(w)$	$\min F(w)$
Core	g	0	2
Almost-core	$m_1 \geq m_2 > 1$	$g - 2$	0
	$m_1 > m_2 = 1$	$g - 2$	0
Non-ordinary	$m_1 = m_2 = m$	2	$2m - 2$
	$m_1 - m_2 = 1, m_2 = 1$	$m_1 - m_2$	$2m_2 - 2 = 0$
	$m_1 - m_2 = 1, m_2 > 1$	$m_1 - m_2$	$2m_2 - 2$
	$m_1 - m_2 > 1$	$m_1 - m_2$	$2m_2 - 2$
μ -ordinary	$m_1 - m_2$	$2m_2$	—

p is split	$a(w)$	$f(w)$	$\min F(w)$
Core	$2m_2$	0	$\lceil \frac{a}{m_2} \rceil$
Almost-core	$m_1 = m_2 = m$	$2m - 2$	0
	$m_1 - m_2 \geq 1, m_2 = 1$	$2m_2 = 2$	1
	$m_1 - m_2 \geq 1, m_2 > 1, m_2 \mid m_1$	$2m_2$	0
	$m_1 - m_2 \geq 1, m_2 > 1, m_2 \nmid m_1$	$2m_2$	$\lceil \frac{a}{m_2} \rceil$
Non-ordinary	2	$g - 2$	—
μ -ordinary	0	g	—



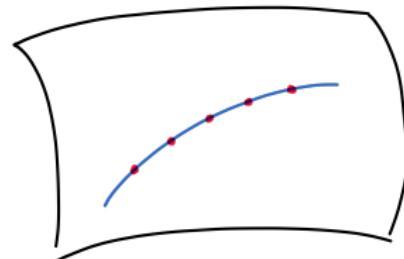
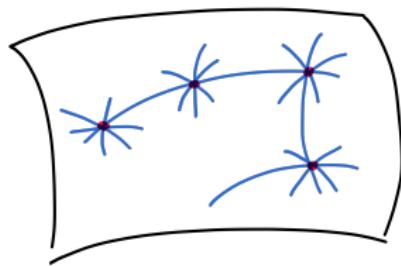
p is inert	$a(w)$	$f(w)$	$\min F(w)$
Core	g	0	2
Almost-core	$m_1 \geq m_2 > 1$	$g - 2$	0
	$m_1 > m_2 = 1$	$g - 2$	0
Non-ordinary	$m_1 = m_2 = m$	2	$2m - 2$
	$m_1 - m_2 = 1, m_2 = 1$	$m_1 - m_2$	$2m_2 - 2 = 0$
	$m_1 - m_2 = 1, m_2 > 1$	$m_1 - m_2$	$2m_2 - 2$
	$m_1 - m_2 > 1$	$m_1 - m_2$	$2m_2 - 2$
μ -ordinary	$m_1 - m_2$	$2m_2$	—

Ekedahl-Oort Stratifications of Unitary Shimura varieties

Ekedahl-Oort Stratification

Models for E-O Strata

p is split	$a(w)$	$f(w)$	$\min F(w)$
Core	$2m_2$	0	$\lceil \frac{a}{m_2} \rceil$
Almost-core	$m_1 = m_2 = m$	$2m - 2$	0
	$m_1 - m_2 \geq 1, m_2 = 1$	$2m_2 = 2$	1
	$m_1 - m_2 \geq 1, m_2 > 1, m_2 \mid m_1$	$2m_2$	0
	$m_1 - m_2 \geq 1, m_2 > 1, m_2 \nmid m_1$	$2m_2$	0
Non-ordinary	2	$g - 2$	—
μ -ordinary	0	g	—



p is inert	$a(w)$	$f(w)$	$\min F(w)$
Core	g	0	2
Almost-core	$m_1 \geq m_2 > 1$	$g - 2$	0
	$m_1 > m_2 = 1$	$g - 2$	0
	$m_1 = m_2 = m$	2	$2m - 2$
	$m_1 - m_2 = 1, m_2 = 1$	$m_1 - m_2$	$2m_2 - 2 = 0$
Non-ordinary	$m_1 - m_2 = 1, m_2 > 1$	$m_1 - m_2$	$2m_2 - 2$
	$m_1 - m_2 > 1$	$m_1 - m_2$	$2m_2 - 2$
	$m_1 - m_2$	$2m_2$	—
	$m_1 - m_2$	$2m_2$	—
μ -ordinary	$m_1 - m_2$	$2m_2$	—

Points in the core E-O stratum come from superspecial abelian varieties when p is inert.

Question:

Is there a way to get models for abelian varieties in the core E-O stratum when p is split?

Answer:

Yes! We can construct core points as reductions of certain CM points.

More generally:

Theorem (W.)

Let A be an abelian variety with CM by (E, Φ) where E/K is a Galois extension of degree g . Then $A/\bar{\mathbb{F}}_p$ lies on the Shimura variety associated to $\mathrm{GU}(m_1, m_2)$, and its E-O type can be computed from Φ .

Corollary

If $m_1, m_2 \leq 200$ and E is a CM field with totally real subfield E^+ such that

- $E = KE^+$, p splits in K , p is inert in E^+ ,
- E^+ is cyclic Galois of order $g = m_1 + m_2$,
- E has a relative integral basis over K ,

then there is an evenly spaced CM type Φ with respect to m_1, m_2 .

Furthermore, if there exists an element $\lambda \in \mathcal{D}_{E/\mathbb{Q}}^{-1}$ such that

$\bar{\lambda} = -\lambda$, $\Im(\phi(\lambda)) > 0$ for all $\phi \in \Phi$, and $\mathrm{Nm}_{E/\mathbb{Q}}(\lambda)$ is prime-to- p , then the abelian variety associated to (E, Φ) reduce to a point in the core E-O stratum.

Vector bundles over \mathcal{M}

Let $\pi : \mathcal{A} \rightarrow \mathcal{M}$ be the structure map of the universal abelian scheme \mathcal{A} over \mathcal{M} . Then there is an exact sequence of locally free sheaves on \mathcal{M} :

$$0 \rightarrow \mathbb{E} \rightarrow \mathbb{H} \rightarrow \mathbb{E}^\vee \rightarrow 0$$

where $\mathbb{E} = \pi_*(\Omega^1_{\mathcal{A}/\mathcal{M}})$ (the Hodge bundle), $\mathbb{H} = \mathcal{H}^1_{dR}(\mathcal{A}/\mathcal{M})$.

The bundles \mathbb{E} and \mathbb{H} split under the $\mathcal{O}_K \otimes \bar{\mathbb{F}}_p$ -action, and the ranks of $\mathbb{E}_1, \mathbb{E}_2$ and $\mathbb{H}_1, \mathbb{H}_2$ are determined by the signature (m_1, m_2) .

Hodge flags

Let $\mathcal{F} \rightarrow \mathcal{M}$ be the space of complete flags of \mathbb{H}_1 extending the Hodge filtration:

$$\mathcal{E}_{1,\bullet} : 0 = \mathcal{E}_{1,0} \subsetneq \mathcal{E}_{1,1} \subsetneq \dots \subsetneq \mathcal{E}_{1,m_1} = \mathbb{E}_1 \subsetneq \dots \subsetneq \mathcal{E}_{1,g} = \mathbb{H}_1,$$

$$\text{rank}(\mathcal{E}_{1,i}) = i.$$

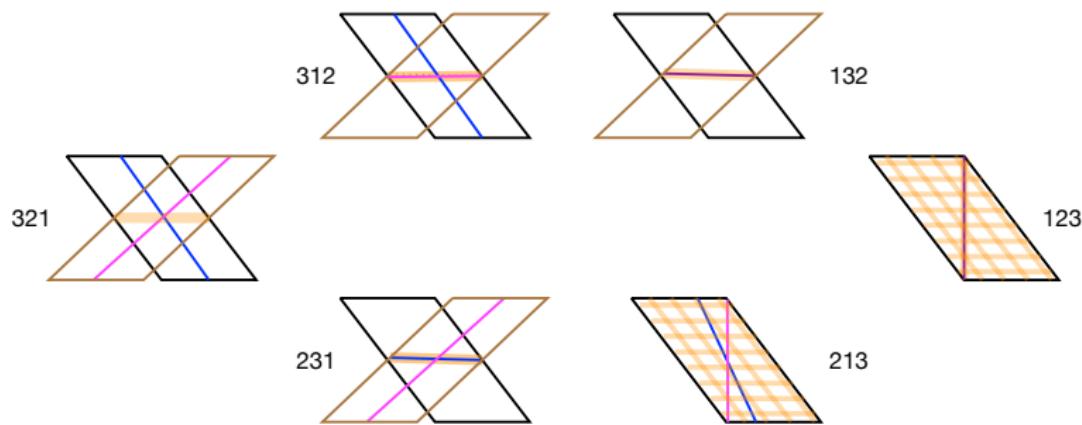
There is a way to construct another flag from $\mathcal{E}_{1,\bullet}$, the *conjugate* flag $\mathcal{D}_{1,\bullet}$.

Stratification on \mathcal{F}

\mathcal{F} has a stratification coming from the degeneracy loci of the complete flag $\mathcal{E}_{1,\bullet}$ with respect to $\mathcal{D}_{1,\bullet}$. The closure relations on the strata come from the Bruhat order on S_g . For $w \in S_g$, let \mathcal{U}^w be the stratum of \mathcal{F} corresponding to w .

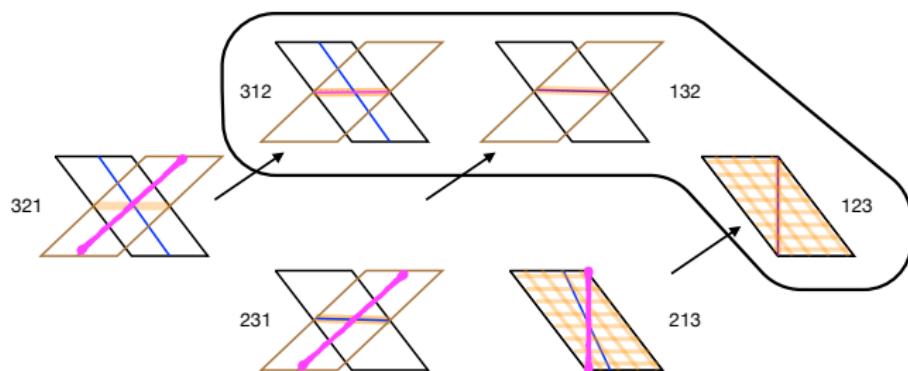
The E-O stratification can be described as the degeneracy loci of the partial flag $0 \subsetneq \mathbb{E}_1 \subsetneq \mathbb{H}_1$ with respect to $\mathcal{D}_{1,\bullet}$.

$$\mathcal{F} : GL_3/B \leftrightarrow W$$



(The orange indicates the intersection of the flags)

$$\mathcal{M} : GL_3/P \leftrightarrow {}^J W$$



Theorem (W.)

The map of stratified spaces $\mathcal{F} \rightarrow \mathcal{M}$ is isomorphic étale locally to a map of stratified spaces of the form $\mathrm{GL}_g/B \rightarrow \mathrm{GL}_g/P$.

Corollary

$\mathcal{F} \rightarrow \mathcal{M}$ restricted to $\mathcal{U}^w \rightarrow \mathcal{V}^w$ where $w \in W$ is a finite, flat, surjective morphism with degree equal to the number of extensions of the canonical flag to a conjugate flag.

Furthermore, the cycle class $[\bar{V}^w]$ can be calculated by pushing forward $[\bar{\mathcal{U}}^w]$. Therefore $[\bar{V}^w]$ lies in the tautological ring.

Thank you!

Hasse-invariants and Hasse-Witt matrices

Question:

What does the deformation theory of Hasse-Witt matrices tell us about the vanishing of the Hasse-invariants and geometry of the moduli space?

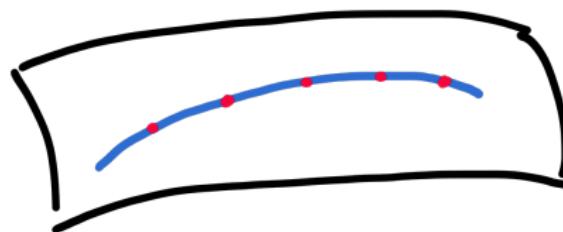
Vanishing of the
determinant of the
Hasse-Witt matrix

Vanishing of
the Hasse-
invariant(s)

Closure of the
non-ordinary
stratum

Theorem (p split in K)

The partial Hasse-invariants H_1, H_2 over M both vanish to order 1 on the non-ordinary locus, and the intersection of a connected component of M with the closure of the non-ordinary locus is irreducible.



Theorem (p inert in K)

When $m_1 > m_2 = 1$, the Hasse-invariant vanishes to order 1 on the non-ordinary locus, and the vanishing locus of the Hasse-invariant is locally formally cut-out at the core points by the equation of a Fermat hypersurface:

$$t_1^{p+1} + t_2^{p+1} + \dots + t_{m_1}^{p+1} = 0.$$

