

When shifted primes are practical

Victor Guo ¹ Andreas Weingartner ²

¹University of Missouri

²Southern Utah University

West Coast Number Theory
Pacific Grove, California
December 16-20, 2016

Practical numbers

Srinivasan (1948): A positive integer n is called **practical** if all smaller positive integers can be represented as sums of distinct divisors of n .

Practical numbers

Srinivasan (1948): A positive integer n is called **practical** if all smaller positive integers can be represented as sums of distinct divisors of n .

Examples:

- ▶ 12 is practical: $5 = 3 + 2$, $7 = 4 + 3$, $8 = 6 + 2$,
 $9 = 6 + 3$, $10 = 6 + 4$, $11 = 6 + 3 + 2$.
- ▶ 10 is not practical: $9 > 5 + 2 + 1$.

Practical numbers

Srinivasan (1948): A positive integer n is called **practical** if all smaller positive integers can be represented as sums of distinct divisors of n .

Examples:

- ▶ 12 is practical: $5 = 3 + 2$, $7 = 4 + 3$, $8 = 6 + 2$,
 $9 = 6 + 3$, $10 = 6 + 4$, $11 = 6 + 3 + 2$.
- ▶ 10 is not practical: $9 > 5 + 2 + 1$.

The sequence of practical numbers:

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, ...

Characterization of practical numbers

Stewart (1954) and Sierpinski (1955): An integer $n \geq 2$ with prime factorization $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, $p_1 < p_2 < \dots < p_k$, is practical if and only if

$$p_j \leq 1 + \sigma \left(\prod_{1 \leq i < j} p_i^{\alpha_i} \right) \quad (1 \leq j \leq k),$$

where $\sigma(n)$ is the sum of the positive divisors of n .

Characterization of practical numbers

Stewart (1954) and Sierpinski (1955): An integer $n \geq 2$ with prime factorization $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, $p_1 < p_2 < \dots < p_k$, is practical if and only if

$$p_j \leq 1 + \sigma\left(\prod_{1 \leq i < j} p_i^{\alpha_i}\right) \quad (1 \leq j \leq k),$$

where $\sigma(n)$ is the sum of the positive divisors of n .

Example: $1204 = 2^2 \cdot 7 \cdot 43$ is practical because

$$2 \leq 1 + \sigma(1) = 2, \quad 7 \leq 1 + \sigma(4) = 8, \quad 43 \leq 1 + \sigma(4 \cdot 7) = 57.$$

Analogies with prime numbers

Practical numbers: 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, ...

Prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...

Analogies with prime numbers

Practical numbers: 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, ...

Prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...

[Legendre's Conjecture] (Hausman & Shaprio, 1984):

There is a practical number between x^2 and $(x + 1)^2$ for every $x > 0$.

Analogies with prime numbers

Practical numbers: 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, ...

Prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...

[Legendre's Conjecture] (Hausman & Shaprio, 1984):

There is a practical number between x^2 and $(x + 1)^2$ for every $x > 0$.

[Goldbach's Conjecture] (Melfi, 1996):

Every even positive integer is the sum of two practical numbers.

Analogies with prime numbers

Practical numbers: 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, ...

Prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...

[Legendre's Conjecture] (Hausman & Shaprio, 1984):

There is a practical number between x^2 and $(x + 1)^2$ for every $x > 0$.

[Goldbach's Conjecture] (Melfi, 1996):

Every even positive integer is the sum of two practical numbers.

[Twin Prime Conjecture] (Melfi, 1996):

There exist infinitely many triples of practical numbers of the form $m - 2, m, m + 2$.

Analogies with prime numbers

Practical numbers: 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, ...

Prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...

[Legendre's Conjecture] (Hausman & Shaprio, 1984):

There is a practical number between x^2 and $(x + 1)^2$ for every $x > 0$.

[Goldbach's Conjecture] (Melfi, 1996):

Every even positive integer is the sum of two practical numbers.

[Twin Prime Conjecture] (Melfi, 1996):

There exist infinitely many triples of practical numbers of the form $m - 2, m, m + 2$.

[Prime Number Theorem] (W., 2015):

The number of practical numbers below x is asymptotic to $\frac{c x}{\log x}$ for some positive constant c .

Shifted primes

Consider $\{p + a : p \text{ prime}\}$, where $a \neq 0$ is fixed.

Shifted primes

Consider $\{p + a : p \text{ prime}\}$, where $a \neq 0$ is fixed.

Shifted primes behave a lot like random integers:

Shifted primes

Consider $\{p + a : p \text{ prime}\}$, where $a \neq 0$ is fixed.

Shifted primes behave a lot like random integers:

- ▶ Erdős (1935): $\omega(p + a)$ has average order $\log \log p$

Shifted primes

Consider $\{p + a : p \text{ prime}\}$, where $a \neq 0$ is fixed.

Shifted primes behave a lot like random integers:

- ▶ Erdős (1935): $\omega(p + a)$ has average order $\log \log p$
- ▶ Halberstam (1956): $\omega(p + a)$ satisfies a central limit theorem

Shifted primes

Consider $\{p + a : p \text{ prime}\}$, where $a \neq 0$ is fixed.

Shifted primes behave a lot like random integers:

- ▶ Erdős (1935): $\omega(p + a)$ has average order $\log \log p$
- ▶ Halberstam (1956): $\omega(p + a)$ satisfies a central limit theorem

Less is known about large (i.e. $> \sqrt{p}$) prime factors of $p + a$:

Shifted primes

Consider $\{p + a : p \text{ prime}\}$, where $a \neq 0$ is fixed.

Shifted primes behave a lot like random integers:

- ▶ Erdős (1935): $\omega(p + a)$ has average order $\log \log p$
- ▶ Halberstam (1956): $\omega(p + a)$ satisfies a central limit theorem

Less is known about large (i.e. $> \sqrt{p}$) prime factors of $p + a$:

- ▶ Is $p + a$ prime infinitely often?

Some primes get practical when shift happens

Shifted primes $p - 1$: 1, 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, ...

Practical numbers: 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, ...

Some primes get practical when shift happens

Shifted primes $p - 1$: 1, 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, ...

Practical numbers: 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, ...

Question: For how many primes p is $p - 1$ practical?

Some primes get practical when shift happens

Shifted primes $p - 1$: 1, 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, ...

Practical numbers: 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, ...

Question: For how many primes p is $p - 1$ practical?

Question: For how many primes p is $p + a$ practical?

Some primes get practical when shift happens

Shifted primes $p - 1$: 1, 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, ...

Practical numbers: 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, ...

Question: For how many primes p is $p - 1$ practical?

Question: For how many primes p is $p + a$ practical?

Heuristic: If the events “ p is prime” and “ $p + a$ is practical” are roughly independent, we would expect that the number of primes $p \leq x$ with $p + a$ practical is about $\frac{x}{(\log x)^2}$.

Counting shifted primes that are practical

Theorem (Guo, W.): Let a be a fixed odd integer. There are infinitely many primes p such that $p + a$ is practical.

Counting shifted primes that are practical

Theorem (Guo, W.): Let a be a fixed odd integer. There are infinitely many primes p such that $p + a$ is practical.

Definition: Let $P_a(x)$ denote the number of primes $p \leq x$ with $p + a$ practical.

Counting shifted primes that are practical

Theorem (Guo, W.): Let a be a fixed odd integer. There are infinitely many primes p such that $p + a$ is practical.

Definition: Let $P_a(x)$ denote the number of primes $p \leq x$ with $p + a$ practical.

Theorem (Guo, W.): Let a be a fixed odd integer. We have

$$\frac{x}{(\log x)^{5.769}} \ll P_a(x) \ll \frac{x}{(\log x)^{1.086}}.$$

Related sequences

These bounds for $P_a(x)$ still hold if the sequence of practical numbers is replaced by the sequence of

Related sequences

These bounds for $P_a(x)$ still hold if the sequence of practical numbers is replaced by the sequence of

- ▶ **2-dense numbers:** integers n which have a divisor in every interval $[y, 2y]$ for $1 \leq y \leq n$.

Related sequences

These bounds for $P_a(x)$ still hold if the sequence of practical numbers is replaced by the sequence of

- ▶ **2-dense numbers:** integers n which have a divisor in every interval $[y, 2y]$ for $1 \leq y \leq n$.
- ▶ **φ -practical numbers:** integers n , such that the polynomial $X^n - 1$ has a divisor in $\mathbb{Z}[X]$ of every degree below n .

Related sequences

These bounds for $P_a(x)$ still hold if the sequence of practical numbers is replaced by the sequence of

- ▶ **2-dense numbers:** integers n which have a divisor in every interval $[y, 2y]$ for $1 \leq y \leq n$.
- ▶ **φ -practical numbers:** integers n , such that the polynomial $X^n - 1$ has a divisor in $\mathbb{Z}[X]$ of every degree below n .
- ▶ integers $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ with the property

$$p_j \leq \theta(p_1^{\alpha_1} \cdots p_{j-1}^{\alpha_{j-1}}) \quad (1 \leq j \leq k),$$

Related sequences

These bounds for $P_a(x)$ still hold if the sequence of practical numbers is replaced by the sequence of

- ▶ **2-dense numbers:** integers n which have a divisor in every interval $[y, 2y]$ for $1 \leq y \leq n$.
- ▶ **φ -practical numbers:** integers n , such that the polynomial $X^n - 1$ has a divisor in $\mathbb{Z}[X]$ of every degree below n .
- ▶ integers $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ with the property

$$p_j \leq \theta(p_1^{\alpha_1} \cdots p_{j-1}^{\alpha_{j-1}}) \quad (1 \leq j \leq k),$$

where θ is an arithmetic function which satisfies

$$\max(2, n) \leq \theta(n) \ll n \exp\left((\log \log 3n)^{17.427}\right).$$

Upper Bound

Ford (2008), Integers with a divisor in an interval:

Upper Bound

Ford (2008), Integers with a divisor in an interval:

Upper bound for

$$H(x, y, z, a) := |\{p \leq x, p + a \text{ has a divisor in } (y, z]\}|$$

Upper Bound

Ford (2008), Integers with a divisor in an interval:

Upper bound for

$$H(x, y, z, a) := |\{p \leq x, p + a \text{ has a divisor in } (y, z]\}|$$

Practical numbers $n \in (\sqrt{x}, x]$ always have a divisor in the interval $(\sqrt{x}, \sqrt{x} \log x]$.

Upper Bound

Ford (2008), Integers with a divisor in an interval:

Upper bound for

$$H(x, y, z, a) := |\{p \leq x, p + a \text{ has a divisor in } (y, z]\}|$$

Practical numbers $n \in (\sqrt{x}, x]$ always have a divisor in the interval $(\sqrt{x}, \sqrt{x} \log x]$.

Thus

$$P_a(x) \leq H(x, \sqrt{x}, \sqrt{x} \log x, a) \ll \frac{x}{(\log x)^{1.086}}.$$

Lower Bound

Consider practical $q \asymp \sqrt{x}$ with $\gcd(q, a) = 1$.

There are $\asymp \sqrt{x}/\log x$ of these.

Lower Bound

Consider practical $q \asymp \sqrt{x}$ with $\gcd(q, a) = 1$.

There are $\asymp \sqrt{x}/\log x$ of these.

For $k \leq q$, the product qk will be practical.

Lower Bound

Consider practical $q \asymp \sqrt{x}$ with $\gcd(q, a) = 1$.

There are $\asymp \sqrt{x}/\log x$ of these.

For $k \leq q$, the product qk will be practical.

Bombieri, Friedlander, Iwaniec (1989), Primes in arithmetic progressions to large moduli. III:

Lower Bound

Consider practical $q \asymp \sqrt{x}$ with $\gcd(q, a) = 1$.

There are $\asymp \sqrt{x}/\log x$ of these.

For $k \leq q$, the product qk will be practical.

Bombieri, Friedlander, Iwaniec (1989), Primes in arithmetic progressions to large moduli. III:

For almost all of these q , the sequence $qk + a$, where $k \leq \sqrt{x}$, has the correct number of primes, that is $\gg \sqrt{x}/\log x$ primes.

Lower Bound

Consider practical $q \asymp \sqrt{x}$ with $\gcd(q, a) = 1$.

There are $\asymp \sqrt{x}/\log x$ of these.

For $k \leq q$, the product qk will be practical.

Bombieri, Friedlander, Iwaniec (1989), Primes in arithmetic progressions to large moduli. III:

For almost all of these q , the sequence $qk + a$, where $k \leq \sqrt{x}$, has the correct number of primes, that is $\gg \sqrt{x}/\log x$ primes.

Thus the number of pairs (q, k) such that qk is practical and $qk + a$ is prime is

$$\gg \frac{\sqrt{x}}{\log x} \cdot \frac{\sqrt{x}}{\log x} = \frac{x}{(\log x)^2}.$$

Lower Bound

Need to account for counting $n = qk = q'k'$ multiple times.

Lower Bound

Need to account for counting $n = qk = q'k'$ multiple times.

Let $\tau(n)$ be the number of divisors of n .

Lower Bound

Need to account for counting $n = qk = q'k'$ multiple times.

Let $\tau(n)$ be the number of divisors of n .

Norton (1994), On the frequencies of large values of the divisor function:

Lower Bound

Need to account for counting $n = qk = q'k'$ multiple times.

Let $\tau(n)$ be the number of divisors of n .

Norton (1994), **On the frequencies of large values of the divisor function:** For $c > e \log 2 = 1.88\dots$, the number of $k \leq \sqrt{x}$ for which $\tau(k) > (\log x)^c$ is $o(\sqrt{x}/\log x)$.

Lower Bound

Need to account for counting $n = qk = q'k'$ multiple times.

Let $\tau(n)$ be the number of divisors of n .

Norton (1994), **On the frequencies of large values of the divisor function:** For $c > e \log 2 = 1.88\dots$, the number of $k \leq \sqrt{x}$ for which $\tau(k) > (\log x)^c$ is $o(\sqrt{x}/\log x)$.

Hence we may assume $\tau(q) \leq (\log x)^c$ and $\tau(k) \leq (\log x)^c$, and

$$\tau(qk) \leq \tau(q)\tau(k) \leq (\log x)^{2c}.$$

Lower Bound

Need to account for counting $n = qk = q'k'$ multiple times.

Let $\tau(n)$ be the number of divisors of n .

Norton (1994), **On the frequencies of large values of the divisor function:** For $c > e \log 2 = 1.88\dots$, the number of $k \leq \sqrt{x}$ for which $\tau(k) > (\log x)^c$ is $o(\sqrt{x}/\log x)$.

Hence we may assume $\tau(q) \leq (\log x)^c$ and $\tau(k) \leq (\log x)^c$, and

$$\tau(qk) \leq \tau(q)\tau(k) \leq (\log x)^{2c}.$$

Thus

$$P_a(x) \gg \frac{x}{(\log x)^2} \frac{1}{(\log x)^{2c}} > \frac{x}{(\log x)^{5.769}}.$$

Open Problems

Open Problems

- ▶ Improve

$$\frac{x}{(\log x)^{5.769}} \ll P_a(x) \ll \frac{x}{(\log x)^{1.086}}.$$

Open Problems

- ▶ Improve

$$\frac{x}{(\log x)^{5.769}} \ll P_a(x) \ll \frac{x}{(\log x)^{1.086}}.$$

- ▶ Every twin prime pair $(p, p + 2)$ below 100 is centered around a practical $p + 1$:

4, 6, 12, 18, 30, 42, 60, 72.

Open Problems

- ▶ Improve

$$\frac{x}{(\log x)^{5.769}} \ll P_a(x) \ll \frac{x}{(\log x)^{1.086}}.$$

- ▶ Every twin prime pair $(p, p + 2)$ below 100 is centered around a practical $p + 1$:

4, 6, 12, 18, 30, 42, 60, 72.

Does this happen infinitely often?

Open Problems

- ▶ Improve

$$\frac{x}{(\log x)^{5.769}} \ll P_a(x) \ll \frac{x}{(\log x)^{1.086}}.$$

- ▶ Every twin prime pair $(p, p + 2)$ below 100 is centered around a practical $p + 1$:

4, 6, 12, 18, 30, 42, 60, 72.

Does this happen infinitely often?

Thank You!