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Practical numbers

Srinivasan (1948): A positive integer n is called practical if all smaller
positive integers can be represented as sums of distinct divisors of n.

Examples:
I 12 is practical: 5 = 3 + 2, 7 = 4 + 3, 8 = 6 + 2,

9 = 6 + 3, 10 = 6 + 4, 11 = 6 + 3 + 2.

I 10 is not practical: 9 > 5 + 2 + 1.

The sequence of practical numbers:

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, ...
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Characterization of practical numbers

Stewart (1954) and Sierpinski (1955): An integer n ≥ 2 with prime
factorization n = pα1

1 · · · p
αk
k , p1 < p2 < . . . < pk, is practical if and

only if

pj ≤ 1 + σ

( ∏
1≤i<j

pαi
i

)
(1 ≤ j ≤ k),

where σ(n) is the sum of the positive divisors of n.

Example: 1204 = 22 · 7 · 43 is practical because

2 ≤ 1 + σ(1) = 2, 7 ≤ 1 + σ(4) = 8, 43 ≤ 1 + σ(4 · 7) = 57.
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Analogies with prime numbers

Practical numbers: 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, ...

Prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...

[Legendre’s Conjecture] (Hausman & Shaprio, 1984):
There is a practical number between x2 and (x + 1)2 for every x > 0.

[Goldbach’s Conjecture] (Melfi, 1996):
Every even positive integer is the sum of two practical numbers.

[Twin Prime Conjecture] (Melfi, 1996):
There exist infinitely many triples of practical numbers of the form
m− 2, m, m + 2.

[Prime Number Theorem] (W., 2015):
The number of practical numbers below x is asymptotic to

c x
log x

for

some positive constant c.
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Shifted primes

Consider {p + a : p prime}, where a 6= 0 is fixed.

Shifted primes behave a lot like random integers:

I Erdős (1935): ω(p + a) has average order log log p

I Halberstam (1956): ω(p + a) satisfies a central limit theorem

Less is known about large (i.e. >
√

p) prime factors of p + a:

I Is p + a prime infinitely often?
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Some primes get practical when shift happens

Shifted primes p− 1: 1, 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, ...

Practical numbers: 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, ...

Question: For how many primes p is p− 1 is practical?

Question: For how many primes p is p + a is practical?

Heuristic: If the events “p is prime” and “p + a is practical” are
roughly independent, we would expect that the number of primes
p ≤ x with p + a practical is about

x
(log x)2 .
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Counting shifted primes that are practical

Theorem (Guo, W.): Let a be a fixed odd integer. There are infinitely
many primes p such that p + a is practical.

Definition: Let Pa(x) denote the number of primes p ≤ x with p + a
practical.

Theorem (Guo, W.): Let a be a fixed odd integer. We have

x
(log x)5.769 � Pa(x)�

x
(log x)1.086 .
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Related sequences

These bounds for Pa(x) still hold if the sequence of practical numbers
is replaced by the sequence of

I 2-dense numbers: integers n which have a divisor in every
interval [y, 2y] for 1 ≤ y ≤ n.

I ϕ-practical numbers: integers n, such that the polynomial Xn − 1
has a divisor in Z[X] of every degree below n.

I integers n = pα1
1 · · · p

αk
k with the property

pj ≤ θ(pα1
1 · · · p

αj−1
j−1 ) (1 ≤ j ≤ k),

where θ is an arithmetic function which satisfies

max(2, n) ≤ θ(n)� n exp
(
(log log 3n)17.427

)
.
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Upper Bound

Ford (2008), Integers with a divisor in an interval:

Upper bound for

H(x, y, z, a) := |{p ≤ x, p + a has a divisor in (y, z]}|

Practical numbers n ∈ (
√

x, x] always have a divisor in the interval
(
√

x,
√

x log x].

Thus
Pa(x) ≤ H(x,

√
x,
√

x log x, a)� x
(log x)1.086 .
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Lower Bound

Consider practical q �
√

x with gcd(q, a) = 1.
There are �

√
x/ log x of these.

For k ≤ q, the product qk will be practical.

Bombieri, Friedlander, Iwaniec (1989), Primes in arithmetic
progressions to large moduli. III:
For almost all of these q, the sequence qk + a, where k ≤

√
x, has the

correct number of primes, that is�
√

x/ log x primes.

Thus the number of pairs (q, k) such that qk is practical and qk + a is
prime is

�
√

x
log x

·
√

x
log x

=
x

(log x)2 .
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Lower Bound

Need to account for counting n = qk = q′k′ multiple times.

Let τ(n) be the number of divisors of n.

Norton (1994), On the frequencies of large values of the divisor
function: For c > e log 2 = 1.88..., the number of k ≤

√
x for which

τ(k) > (log x)c is o(
√

x/ log x).

Hence we may assume τ(q) ≤ (log x)c and τ(k) ≤ (log x)c, and

τ(qk) ≤ τ(q)τ(k) ≤ (log x)2c.

Thus
Pa(x)�

x
(log x)2

1
(log x)2c >

x
(log x)5.769 .
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Open Problems

I Improve
x

(log x)5.769 � Pa(x)�
x

(log x)1.086 .

I Every twin prime pair (p, p + 2) below 100 is centered around a
practical p + 1:

4, 6, 12, 18, 30, 42, 60, 72.

Does this happen infinitely often?

Thank You!
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