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Srinivasan (1948): A positive integer n is called practical if all smaller
positive integers can be represented as sums of distinct divisors of n.

Examples:
» 12ispractical: 5=342, T7=4+3 8§=6+2,
9=6+3, 10=6+4, 11=6+3+2.

» 10 is not practical: 9 > 5+ 2 + 1.

The sequence of practical numbers:

1,2, 4, 6,8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, ...
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Stewart (1954) and Sierpinski (1955): An integer n > 2 with prime
factorization n = p{"' - - - p*, pi < p2 < ... < px, is practical if and

only if
PjSlJrU(HP?") (1<j<k),

1<i<y

where o(n) is the sum of the positive divisors of n.

Example: 1204 = 2% - 7 - 43 is practical because

2<1+0(1)=2, 7<1+0(4) =8, 43<1+0(4-7)=5T.
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Analogies with prime numbers
Practical numbers: 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, ...
Prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...

[Legendre’s Conjecture] (Hausman & Shaprio, 1984):
There is a practical number between x? and (x + 1)? for every x > 0.

[Goldbach’s Conjecture] (Melfi, 1996):
Every even positive integer is the sum of two practical numbers.

[Twin Prime Conjecture] (Melfi, 1996):
There exist infinitely many triples of practical numbers of the form
m—2,mm-+ 2.

[Prime Number Theorem] (W., 2015):
cx
The number of practical numbers below x is asymptotic to @ for
X

some positive constant c.
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Shifted primes

Consider {p + a : p prime}, where a # 0 is fixed.

Shifted primes behave a lot like random integers:
» Erd6s (1935): w(p + a) has average order log log p

» Halberstam (1956): w(p + a) satisfies a central limit theorem

Less is known about large (i.e. > ,/p) prime factors of p + a:

» Is p 4 a prime infinitely often?
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Some primes get practical when shift happens

Shifted primes p — 1: 1, 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, ...
Practical numbers: 1, 2, 4,6, 8, 12, 16, 18, 20, 24, 28, 30, ...

Question: For how many primes p is p — 1 is practical?
Question: For how many primes p is p + a is practical?

Heuristic: If the events “p is prime” and “p + a is practical” are
roughly independent, we would expect that the number of primes

p < x with p 4 a practical is about

(logx)* -
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Counting shifted primes that are practical

Theorem (Guo, W.): Let a be a fixed odd integer. There are infinitely
many primes p such that p + a is practical.

Definition: Let P,(x) denote the number of primes p < x with p 4 a
practical.

Theorem (Guo, W.): Let a be a fixed odd integer. We have

X
X <P S
(log x)5769 < Palx) < (log x)1-0%6



Related sequences

These bounds for P,(x) still hold if the sequence of practical numbers
is replaced by the sequence of



Related sequences

These bounds for P,(x) still hold if the sequence of practical numbers
is replaced by the sequence of

» 2-dense numbers: integers n which have a divisor in every
interval [y, 2y] for 1 <y <n.



Related sequences

These bounds for P,(x) still hold if the sequence of practical numbers
is replaced by the sequence of

» 2-dense numbers: integers n which have a divisor in every
interval [y, 2y] for 1 <y <n.

» -practical numbers: integers n, such that the polynomial X" — 1
has a divisor in Z[X] of every degree below n.



Related sequences

These bounds for P,(x) still hold if the sequence of practical numbers
is replaced by the sequence of

» 2-dense numbers: integers n which have a divisor in every
interval [y, 2y] for 1 <y <n.

» -practical numbers: integers n, such that the polynomial X" — 1
has a divisor in Z[X] of every degree below n.

» integers n = p{" - - - pi* with the property

pi <Oy --p)  (1<j<k),



Related sequences

These bounds for P,(x) still hold if the sequence of practical numbers
is replaced by the sequence of

» 2-dense numbers: integers n which have a divisor in every
interval [y, 2y] for 1 <y <n.

» -practical numbers: integers n, such that the polynomial X" — 1
has a divisor in Z[X] of every degree below n.

» integers n = p{" - - - pi* with the property
<9(p .- afl) (1<j<k),
where 0 is an arithmetic function which satisfies

max(2,n) < 0(n) < nexp((log log 3n)]7'427>.
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Ford (2008), Integers with a divisor in an interval:
Upper bound for

H(x,y,z,a) := |{p < x, p + a has a divisor in (y, z] }|

Practical numbers n € (1/x, x| always have a divisor in the interval

(v, V/xlog x].

Thus
X

Pa(x) < H(X; ﬁa \/;Clogxa a) < W
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Lower Bound

Consider practical ¢ < /x with ged(g,a) = 1.
There are < /x/ log x of these.

For k < g, the product gk will be practical.

Bombieri, Friedlander, Iwaniec (1989), Primes in arithmetic
progressions to large moduli. I1I:

For almost all of these g, the sequence gk + a, where k < /x, has the
correct number of primes, that is > /x/ log x primes.

Thus the number of pairs (g, k) such that gk is practical and gk + a is

prime is
OV VE
logx logx (log x)?
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Lower Bound

Need to account for counting n = gk = ¢'k’ multiple times.
Let 7(n) be the number of divisors of 7.

Norton (1994), On the frequencies of large values of the divisor
function: For ¢ > elog2 = 1.88..., the number of k < /x for which

7(k) > (logx)€ is o(y/x/ log x).

Hence we may assume 7(q) < (logx)¢ and 7(k) < (logx)¢, and
7(gk) < T(g)(k) < (logx)*.

Thus

x 1 S x
(logx)? (logx)? = (logx)3-76"

Py(x) >
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Open Problems

» Improve
X

<<Pa()€) < W

(log x)5769

» Every twin prime pair (p,p + 2) below 100 is centered around a
practical p + 1:

4, 6, 12, 18, 30, 42, 60, 72.
Does this happen infinitely often?

Thank You!



