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PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 116, Number 2, October 1992

FINITE EXPONENTIAL SERIES AND NEWMAN POLYNOMIALS

BART GODDARD

(Communicated by Clifford J. Earle, Jr.)

ABSTRACT. A Newman polynomial is a sum of powers of z, with constant
term 1. The Newman polynomial of four terms whose minimum modulus on
the unit circle is as large as possible is found by examining the expression

4
f(4)= sup inf |) e
j=1

xy<--<x4 a€R £

and determining an extremal system (xj, ..., X4) using a technique that re-
duces the problem to a finite search.

1. INTRODUCTION

Let P(z) = Z;.;] a;z"i be a complex polynomial. Erdos [1] and Littlewood
[2] asked several questions concerning the minimum modulus of P(z) on the
unit circle, under various restrictions of the coefficients a;, e.g., |a;j| = 1 for
J=1,2,...,n. If we insist that a; =1 for j=2,...,n and r, =0, then
P(z) is a Newman polynomial, as defined by Campbell, Ferguson, and Forcade
[3]. Many other authors have investigated the minimum modulus of Newman
polynomials, most notably Smyth [4] and Boyd [5].

Rudolfer and Hayman [7] ask for information about

n
f(ny=sup inf [ e’
=1

X1 <Xg<+r <Xy @ER T

If x,=r1, Xo=ry, ..., X, =r, are natural numbers, we have

f(n)= sup min|P(z)|.

’1<"2<"'<rn 'Zl:l

The purpose of this paper is to calculate f(4) explicitly and, in the process,
discover some examples of Newman polynomials with few terms, but large
minimum modulus. f(2) is trivially 0, and f(3) is calculated in [3], being
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314 BART GODDARD

attained for the Newman polynomial 1+ z% 4+ z3. We shall prove here that
f(4) is attained for 1+ z2 4 z3 + z4.
2. PRELIMINARIES

For n a natural number, we define F,: R” —» R via
2

(1) Fo(x1,...,Xxs) = Ze’xf
Then we have f(n) = sup, ...y, infoem Fa(x10, ..., Xp0)!/2. It is easy to
show that
(2) F,,(xl,...,x,,)=n+2Zcos(xk—xj),
Jj<k

and from this, that
(3)  Fu(x1, X2, ey Xn) = Fu(X1, Xn 4+ X1 = Xn—15 ooy Xn + X1 — X2, Xn)-
The simplification

f(n) = sup 1an 0, Ara, ..., Apa)'/?
0=A,<Ay<-+-<d, @®€ER
where 0=4;<A4,<---<A, are nonnegative integers and gcd(A,, 43, ..., Ay)
=1, is given as Theorem 1 of [3], or we may proceed as follows: It suffices to
show that for every n-tuple (x;, ..., x,) € R" and ¢ > 0 there is an n-tuple
(r1,...,r,) € Q" such that

n n
inf el%il < inf |Y e +¢.
a€ER El ~ a€R El

Jj= Jj=

If each x; € Q, we are done. Otherwise, by the simultaneous rational ap-
proximation theorem (Hardy and Wright [8, p. 170]) there are infinitely many
solutions to the system of inequalities
pij .1

q q(+1/n)

Further, the function A(x) = ¢”* is continuous and periodic, hence uniformly
continuous over R, so there exists a J > 0 such that |e* —e”| < ¢/n whenever
|x —y| < 8. Let [p1/q, ..., pn/q] be a solution to the inequalities with g >
[2n/6]". Then q'/* > 2n/6, and hence § > 2x/q'/". Then the function of
a, gla)=|Y_ €™/ has period 2nq. Now for 0 < a < 27q we have

j=1 Jj=1 Jj=1 J=

since |ax; —ap;/q| = a|lx; — pj/a| < 2rnq/q+V/" =27 /q'/" < 5.
So,

< j=1,2,...,n

Xj —

eiax, _ eiap,/q

Z etax, < in Z em‘pj/q +e.
aE[O 27zq] acl0,2nq]
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FINITE EXPONENTIAL SERIES AND NEWMAN POLYNOMIALS 315

Then, since we are taking the infimum over a smaller set, we have

n
Z eloxi inf Z elox)
aE[O 2nq]

inf
a€ER

+s—1nf + ¢

< inf elopri/a
~ a€l0,2nrq] Zl

n
Z elopila
j=1

since g(a) has period 27g. Consequently, the following variation of (3) is
considered:

(4) Fn(0>A2>A3>~- sAn)an(Oa An_An—lsAn_An—Zs'--An_AZsAn)'

3. LEMMAs
We will need the following lemmas. Recall from (1) and (2) that

2
4
D e

j=1

Fy(x1, X2, X3, X4) = =442 cos(x; — X;).

Jj<k

Lemma 1. Given distinct integers (X, X2, X3, Xa), there is a zero (zy, z3, 23,
z4) of Fy and a ty € R such that
(1) Xalo = z25 Xslo = z3; Xalop = Z4; )
(i) |z1 — x1to| < mged(xs — X3, X2 — x1)/(|xa — x3|); and
(iii) (z4— z3) and (zy — z) are odd multiples of = .

Proof. Let d = ged(x4—X3, x2—X;). Consider the linear Diophantine equation
in / and k,
&) 21(x3 — x1) + 2k(x4 — x3) = (X1 — Xx2) + (x3 — X4) + Bd

where f = 0 or 1 is chosen so that the right-hand side is an even multiple of
d. With B so chosen, (5) is solvable. Let / =/, and k£ = k; be a solution.
Let to = 2o+ 1)n/(x4 — x3), z1 = toxa + (2ko + 1)7, z3 = Xa2tp, 23 = X3lo,
and z4 = x4¢9. Then it is easy to check that (z4 — z3) = (2lp + )7 and
(z3 — z1) = —(2ko + 1)z . It remains to show (ii) is satisfied:

|21 — x1to] = [tox2 + (2ko + 1) — X1 t0]
= |to(x2 — x1) + (2ko + 1)

(210—+1)z(x x1) + (2ko + )7

X4 —

- m—fx]l(ﬂo 1) = 31) + (ko + 1)(xs — x3)
nd

RIETEEA L ros

which completes the proof.

Lemma 2. Let w be a positive real number. Let A;, A, , Ay be distinct natural
numbers such that gcd(A,, Ay, A3) =1 and w(ged(A4,, Ay — A3)) < Ay . Then

inf F4(0, diar, Ao, 4s0) < (m/w)?.
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316 BART GODDARD

Proof. Let d = (A;, A, — A3). Then we have d/A; < 1/w. For the point
(0, Ay, Ay, A3) in R*, Lemma 1 gives a zero (z;, z3, z3, z4) € R* and an
ag € R such that Oag = z;, Ajag = z;, Arag = z3, and
m-ged(A;, A3 —Ay) 7md =
_ =" <,

[A3ag — z4| < 1 1 S
Further, z; = (z; — z;) and (z4 — z3) are odd multiples of 7, say z, =
(zo—2z1) =Rk + 1)n and (z4—z3) = (2] + 1)m. Let y = A3a9 — z4. Now we
compute

igof; F4(0, Aja, Aza, Aza) < F4(0, Ajog, Azag, Azag)
a

— |1 + eizz + eiz; + eiA3a0|2
— |1 + ei(2k+l)7t + ei24(ei(23—24) + ei(A;a—Z4))|2

— ll -1 +eiz4(e—i(21+l)7z +eiy)l2
— |eiz4|2| — 1+ ei7|2 =1. |ei}’/2 — e—i7/2|2

= 4sin? (%) <4 (%)2 =y2< (%)2 , as desired.

Lemma 3. Let (a, b, ¢) be a triple of natural numbers such that

(i) a<b<ec,
(i) ged(a,b,c)=1,
(i) c—a<b,
(iv) ged(a,c—b)>a/4.18,
(v) ged(b,c—a)>b/4.18,
(vi) ged(c, b—a)>c/4.18.
Then (a,b,c)=(2,3,4) or (4,9, 10).
Proof. Since ged(c, b — a) is a divisor of ¢, ged(c, b — a)/c is a rational
number of the form 1/m where m is a natural number. Then 1/m > 1/4.18
from (vi). Whence m < 4.18. Since b—a<c, ged(c,b—a)<c,so m#1.
Therefore, the possible values of m are 2, 3, and 4.
If m=2 then b—a=c/2,hence 2b—-2a=c.
If m=3then b—a=c/3 or 2¢/3,s0 3b —3a=c or 3b—3a=2c.
If m=4 then b—a=c/4 or 3c/4,s0 4b—4a=c or 4b—4a =3c.
So (a, b, ¢) must satisfy one of the five Diophantine equations:

2b-2a=c, 3b-3a=c, 3b - 3a=2c,
4b—-4a=c, 4b — 4a = 3c.
Similarly, using inequalities (v) and (iii), we have that (a, b, ¢) must satisfy
one of the five Diophantine equations:

2c—2a=hb, 3c-3a=>0, 3¢c-3a=2b,
4c—4da=>, 4c—4a=13b.

First suppose k(b—a)=Ic and j(c—a) = ib forintegers k, /, j, and i; that
is, (a, b, c) satisfy one of the first five and one of the second five equations
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FINITE EXPONENTIAL SERIES AND NEWMAN POLYNOMIALS 317

above. Then solving for b and ¢ in terms of a yields

_[kj+ki
) - [#57]
_[kj+li
) b= [kj—li]a
Define ¢ by a = (kj — li)t. Then from (6) and (7)
Ki+1J) 0 e — nii1s (kj+ ki) _
b= "= )(kj li)t=(kj+1li)t and c= GE )(k] It = (kj+kit.

Then ¢ is rational, say ¢t = p/q with p, g relatively prime integers. Then
pla, b, and c, whence p=1. So ¢t =1/q for some natural number g. Then
q|(kj—=1i), (kj+1j), and (kj+ ki). Since ged(a, b, ¢) = 1, we must have
q = ged((kj —1i), (kj+1j), (kj+ki)). Thus there is only one solution to the
Diophantine system

{ k(b—a)=lc,

Jjc—a)=
with (a, b, c) = 1. Also, since b < ¢, we have (kj +[j)t < (kj+ ki)t. So
lj < ki. There are 25 possibilities for the tuple (k, /, j, i), corresponding to
the 25 possible Diophantine systems. The following table lists those tuples with
lj < ki, along with the value of ¢ and the corresponding solution (a, b, ).

Table 1
k,l,j,i kj-1li kj+lj kj+ki g¢q (a,b,c)
2,1,3,2 4 9 10 1 (4,9, 10)
2,1,4,3 5 12 14 1 §\712 14)
3,1,2,1 5 8 9 1 (5,8,9)
3,1,3,2 7 12 15 1 (7,12,195)
3,1,4,3 9 16 21 1 (9,16,21)
3,2,4,3 6 20 21 1 (6,20,21)
4,1,2,1 7 10 12 1 (7,10, 12)
4,1,3,1 11 15 16 1 (11,15, 16)
4,1,3,2 10 15 20 5 (2,3,4)
4,1,4,3 13 20 28 1 (13,20, 28)

Now it remains to eliminate most of the triples (a, b, ¢) in Table I, by
showing that they violate one of the inequalities (iv)—(vi). Now ¢ —a < b, so
¢—b<a;whence at(c—b), soif a is a prime bigger than 4, we have

ged(a, c— ) 1 1

1
<_ -
a 5 <218’
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318 BART GODDARD

so the triples (5,12, 14),(5,8,9), (7, 12,15), (7, 10, 12), (11, 15, 16),
and (13, 20, 28) violate inequality (iv). This leaves only (4, 9, 10), (9, 16,
21), (6, 20, 21), and (2, 3, 4). But

god(9, 21— 16) _ ged(9, 5) _<L
9 9 9 <218

and

which violate (iv). This leaves (64, 9, 10) agd (;, g, 4) as claimed.
Lemma 4. inf,cq F4(0, 2a, 3a, 4a) = 0.566... .
Proof. From (3) and the Chebyshev polynomials,
F4(0, 2a, 3a, 4a) = 4 + 2(cos 2a + cos 3a + cos 4a + cos a + €cos 2a +Cos a)
=16cos*a+ 8cos®a — 8cos>a—2cosa + 2.

ged(6, 21 -20) 1 < 1

Then
inf F4(0, 20, 30, 40) = min (16x* + 8x3 — 8x2 — 2x +2).
a€R —1<x<1

It is a simple calculus exercise to show this last expression is equal to 0.566...
as desired.
Note that this is equivalent to saying

lmlir}|1 + 224 23+ 24 = (0.566...)1/2 =0.7524...,
Z|l=

which appears in Table 1 of [5]. Thus we have a Newman polynomial of only
four terms, with relatively large minimum modulus on the unit circle. The next
theorem shows this result is best possible.

4. MAIN RESULT

Theorem 1. f(4) = 0.7524... .
Proof. Let A; < Ay < Az be distinct positive integers with (A4, 4>, A3) = 1.
From the functional relationship (3), we have

F4(0, Aja, Ay, Aza) = F4(0, (43 — Ay)a, (A3 — 4A))a, Asa),
so if A3 — A; > A, let All = A3 — A, Aé = A3 — A, and Ag = A3z. Then
Ay — A] = A3 — (A3 — Ay) = Ay < A3 — A; = 4. So we may assume without
loss of generality that A; — A; < A, .

If A3 — A, = A4,, then exactly two of {4, 4,, A3} are odd, so exactly two
of {eim ¢idm ¢idsm) are equal to —1 and the other is equal to 1. Therefore,

12£ F4(0, A1, Aya, Asa) < F4(0, Az, Ay, A7)
a
= |1 4 ™™ 4 T 4 @i = |1 + 11— 1|2 =0<0.566....
So we may assume A; — A; < 4A,. Now if A4;, A5, A3 violate one of the

inequalities (iv)—(vi) in Lemma 3, we have, by Lemma 2, with w = 4.18, that

inf F4(0, 4ia, 4z, A3a)<[ < 0.566... = inf F4(0, 20, 3a, 4a).

4. 18]
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FINITE EXPONENTIAL SERIES AND NEWMAN POLYNOMIALS 319

Therefore, to find supg. 4, < 4,<4, infaen |Fa(0, 41, Ara, Aza)|, it suffices to
look only at triples (A4;, Ay, A3) that satisfy the hypotheses of Lemma 3. But
this means we need only check (2, 3, 4) and (4, 9, 10). Now

inf|F4(0, 4a, 9a, 100)| < Fa(0, 4({5), (), 10(¢5))
=0.3758... < 0.566... .

Therefore
f(A) = sup igg(l:k((), Aya, Ara, A3a))1/2

0<A4d1<Ay<4; @
ged(4y , Az, A3)=1

= inf(F4(0, 2a, 3a, 4a))'/? = (0.5661...)!/2 = 0.7524....

5. FURTHER RESULTS

In an effort to see how fast f(n) grows (or see if it is, in fact, monotonic),
we explicitly computed several examples to estimate the size of f(5) and f(6).

First, we generated all quadruples (A4;, 45, A3, A4) of natural numbers with
ged(A4y, A, A3z, As) =1 and 0 < 4; < Ay < A3 < A4 < 30. For each
quadruple, we computed the values of

F5(0, Ala, Aza, A3a, A4a) for 01=0, 001, 002, ceey 3.15

and saved the smallest value. The largest of these came from the quadruple
(1,2,6,9). The minimum value of F;5(0, a, 2a, 6a, 9a) apparently occurs
when a = 7 and gives the surprising value
F5(0, m, 27, 67, 97) = |1 + '™ + '2% + €'6™ + /72
=1-1+1+1-12=1,
which also appears in Table 1 of [5]. Thus f(5) > 1. We did the same for

f(6). We checked all tuples 0 < A; < Ay < A3 < A4 < As < 30 and all values
of o from 0 to 7 in increments of 0.001 and found that

1+ 55_: et

j=1

f(6)= sup inf

0<dy<---<As a€R

> ingt; |1+ e 4 g% 4 pil0a | pilTa 4 pi2da) 1 1348, ..,
a€

which is achieved when a =~ 2.45.

Thus the Newman polynomials 1+ z+ 2242642 and 1+2z°+2°+ 210+
z!7 + 224 have only five and six terms, but yet have minimum modulus on the
unit circle larger than or equal to 1. In [5] Boyd shows that f(n) > 1 for
6 < n < 16 and conjectures that log f(n)/logn — a > 0. It seems quite likely
that f(n) is at least monotonic.
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