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 PROCEEDINGS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 116, Number 2, October 1992

 FINITE EXPONENTIAL SERIES AND NEWMAN POLYNOMIALS

 BART GODDARD

 (Communicated by Clifford J. Earle, Jr.)

 ABSTRACT. A Newman polynomial is a sum of powers of z, with constant

 term 1. The Newman polynomial of four terms whose minimum modulus on
 the unit circle is as large as possible is found by examining the expression

 4

 f(4) = sup inf Z eixja

 and determining an extremal system (xIl, x4) using a technique that re-
 duces the problem to a finite search.

 1. INTRODUCTION

 Let P(z) = E> a 'zr1 be a complex polynomial. Erdbs [1] and Littlewood
 [2] asked several questions concerning the minimum modulus of P(z) on the

 unit circle, under various restrictions of the coefficients a1, e.g., jajI = 1 for
 j = 1, 2, ..., n. If we insist that aj = 1 for j = 2, ..., n and r, = O, then
 P(z) is a Newman polynomial, as defined by Campbell, Ferguson, and Forcade
 [3]. Many other authors have investigated the minimum modulus of Newman
 polynomials, most notably Smyth [4] and Boyd [5].

 Rudolfer and Hayman [7] ask for information about

 n

 f(n) = sup inf eiaxJ
 f Xi <X2 < ... <xn Cl!E91j 1]

 If xi = r1, x2 = r2, ..., xn = r, are natural numbers, we have

 f(n) = sup min IP(z) .
 r1<r2< <rn Iz1=1

 The purpose of this paper is to calculate f(4) explicitly and, in the process,
 discover some examples of Newman polynomials with few terms, but large
 minimum modulus. f(2) is trivially 0, and f(3) is calculated in [3], being
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 314 BART GODDARD

 attained for the Newman polynomial 1 + z2 + z3. We shall prove here that
 f (4) is attained for 1 + z2 + z3 + z4.

 2. PRELIMINARIES

 For n a natural number, we define Fn: RIR -- JR via

 2
 I

 ( 1 ) Fn (Xl, ... ., Xn ) = Zeixi

 j=1

 Then we have f(n) = SUPXi<. <Xn inf E ( Fnxi . . I , xno)1/2. It is easy to
 show that

 (2) Fn(Xl,. ..xn) = n + 2 E COS(Xk-Xj),
 j<k

 and from this, that

 (3) Fn(XI , X2 , .. . , xn) = Fn(X Xn + xi - xn- , ... , Xn + x -X2 Xn) .

 The simplification

 f(n) = sup inf Fn(O, A2a, ... a)12
 O=A,<A2< ...<An aE9%

 where 0 = AI <A2 <... <An are nonnegative integers and gcd(A2, A3, * . , An)
 = 1, is given as Theorem 1 of [3], or we may proceed as follows: It suffices to

 show that for every n-tuple (xI, ..., xn) E In and e > 0 there is an n-tuple
 (r,.., rn) E Qn such that

 inf eiaxj < inf Zeiarj +,.
 aE9% E9

 J=1 j=l

 If each xj E Q, we are done. Otherwise, by the simultaneous rational ap-
 proximation theorem (Hardy and Wright [8, p. 170]) there are infinitely many
 solutions to the system of inequalities

 Pi1< 1 , , n IXi-q q(l+ll/n)' jI ,2,...n.

 Further, the function h(x) = eix is continuous and periodic, hence uniformly
 continuous over ]R, so there exists a ( > 0 such that leix - e- I < e/n whenever

 Ix - yI < 6 . Let [pi /q ... , pI/ q] be a solution to the inequalities with q >
 [2r/(]n . Then qlln > 2,r/(5, and hence ( > 27r/qlln. Then the function of
 a, g(a) = >En= eiaPjlql has period 27rq. Now for 0 < a < 27rq we have

 Z ei - e iapq < eiaxJ - eiQPj/q < - e = c n
 j=l j=l j=l j=l

 since laxj - apj/ql = aixj -p1/ql < 27iq/q(l+ln) = 27,/ql/ln <(5
 So,

 inf eiaxj < inf | eia~pv/q +,
 aE[O,27rq] aE[O,2Irq]

 J=1 J=1
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 FINITE EXPONENTIAL SERIES AND NEWMAN POLYNOMIALS 315

 Then, since we are taking the infimum over a smaller set, we have

 inf Z eiaxj < inf ZeiaxJ
 aE[O,2Irq]

 < inf | e eiapl I q+ e = inf | e eiapjlq + e6
 aE[O,27rq] ji IE9% I1=l

 since g(a) has period 2irq. Consequently, the following variation of (3) is
 considered:

 (4) Fn(O, A2, A3,..., An) =Fn(O, An -An-i, An -An-2, ...An -A2, An)

 3. LEMMAS

 We will need the following lemmas. Recall from (1) and (2) that

 2
 4

 F4(xI, x2, x3, x4)= Zeixi 4 + 2Ecos(xk - x).
 j= 1 j<k

 Lemma 1. Given distinct integers (XI, X2, x3, x4), there is a zero (zi, z2, Z3,
 Z4) of F4 and a to E R such that

 (i) x2to = z2; x3to = Z3; x4to =z4;
 (ii) Izi - xitol < irgcd(x4 - X3, x2 - xi)/(1x4 - x31j; and
 (iii) (Z4 - Z3) and (z2 - zl) are odd multiples of 7r.

 Proof. Let d = gcd(x4 -x3, x2 -xI) . Consider the linear Diophantine equation

 in l and k,

 (5) 2l(x2 - xi) + 2k(x4 - X3) = (xI - x2) + (X3 - X4) + fd

 where ,B = 0 or 1 is chosen so that the right-hand side is an even multiple of
 d. With ,B so chosen, (5) is solvable. Let l = 10 and k = ko be a solution.
 Let to = (210 + 1)ir/(x4 - x3), zI = tOX2 + (2k0 + 1)7r, z2 = x2tO, z3 = X3tO,
 and Z4 = x4tO. Then it is easy to check that (Z4 - Z3) = (210 + 1)ir and
 (z2 - Zi) = -(2ko + 1)7r. It remains to show (ii) is satisfied:

 zi - XItol = Itox2 + (2ko + 1)ir - xito

 = Ito(X2 - xi) + (2ko + 1)>r
 _(210 +1) 7r

 = | 0:4 X) (X2 - XI) + (2ko + 1)7r

 = - I (210 + 1)(x2 - x1) + (2ko + 1)(x4 - X3)I

 -X4-X3 Id 1X4 X31

 which completes the proof.

 Lemma 2. Let w be a positive real number. Let A1, A2, A3 be distinct natural

 numbers such that gcd(AI, A2, A3) = 1 and w(gcd(AI, A2 - A3)) < A1 . Then

 inf F4(0, A1a, A2a, A3a) < (7r/w)2.
 aE9%
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 316 BART GODDARD

 Proof. Let d = (A1, A2 - A3). Then we have d/Al < 1/w. For the point
 (0, Al, A2, A3) in 1R4, Lemma 1 gives a zero (zI, z2, Z3, z4) E R4 and an
 ao E R such that Oao = z1, A1ao = z2, A2o!0 = z3, and

 IA3eO- 41<ir -gcd(A I, A3 -A2) _ 7rd <7
 A; A1 w

 Further, z2 = (z2 - zj) and (Z4 - Z3) are odd multiples of or, say z2 =
 (z2 - Z1) = (2k + 1)ir and (z4 - Z3) = (21 + 1)7r. Let y = A3a0 - Z4. Now we
 compute

 inf F4(0, A 1a, A2a, A3a) < F4(0, AIceo, A2Cr0, A3a%)
 aE9%

 - +eiZ2 +eiZ3 +eiA3aol2

 - e + ei(2k+1) + eiZ4(ei(Z3-z4) + ei(A3a-z4))I2

 = 1 - 1 + eiz4 (e-i(2+l + ey

 = 1eiz4121 1 + = 1 Ie2 -y212

 = 4 sin2 (2) < 4 (2 )= y2 <o) , as desired.

 Lemma 3. Let (a, b, c) be a triple of natural numbers such that

 (i) a < b < c,
 (ii) gcd(a, b, c) = 1,
 (iii) c - a < b,
 (iv) gcd(a, c- b) > a/4.18,
 (v) gcd(b, c - a) > b/4.18,
 (vi) gcd(c, b - a) > c/4.18.

 Then (a, b, c) = (2, 3, 4) or (4, 9, 10).

 Proof. Since gcd(c, b - a) is a divisor of c, gcd(c, b - a)/c is a rational
 number of the form 1/nm where m is a natural number. Then 1/m > 1/4.18
 from (vi). Whence m <4.18. Since b-a <c, gcd(c, b-a) <c, so m & 1.
 Therefore, the possible values of m are 2, 3, and 4.

 If m = 2 then b - a = c/2, hence 2b - 2a = c.
 If m = 3 then b - a = c/3 or 2c/3, so 3b - 3a = c or 3b - 3a = 2c.
 If m=4 then b-a =c/4 or 3c/4,so 4b-4a=c or 4b-4a=3c.

 So (a, b, c) must satisfy one of the five Diophantine equations:

 2b- 2a = c, 3b - 3a = c, 3b - 3a = 2c,

 4b - 4a = c, 4b - 4a = 3c.

 Similarly, using inequalities (v) and (iii), we have that (a, b, c) must satisfy
 one of the five Diophantine equations:

 2c - 2a = b, 3c - 3a = b, 3c - 3a = 2b,

 4c - 4a = b, 4c - 4a = 3b.

 First suppose k(b - a) = lc and j(c - a) = ib for integers k, 1, j, and i; that
 is, (a, b, c) satisfy one of the first five and one of the second five equations
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 FINITE EXPONENTIAL SERIES AND NEWMAN POLYNOMIALS 317

 above. Then solving for b and c in terms of a yields

 (6) c=[kj + kia

 (6) kj -1i] (7) a.i+ i

 Define t by a = (kj - li)t. Then from (6) and (7)

 b (J+J) (kj- li)t =(kj+li)t and c= (k+ki)(kj - li)t = (kj + ki)t.

 Then t is rational, say t = p/q with p, q relatively prime integers. Then

 pla, b, and c, whence p = 1. So t = 1/q for some natural number q. Then
 ql(kj - ii), (kj + 1j), and (kj + ki). Since gcd(a, b, c) = 1, we must have
 q = gcd((kj - li), (kj + 1j), (kj + ki)) . Thus there is only one solution to the
 Diophantine system

 { k(b - a) = Ic,
 j(c - a) = ib,

 with (a, b, c) = 1. Also, since b < c, we have (kj + lj)t < (kj + ki)t. So
 1j < ki. There are 25 possibilities for the tuple (k, 1, j, i), corresponding to
 the 25 possible Diophantine systems. The following table lists those tuples with
 lj < ki, along with the value of q and the corresponding solution (a, b, c) .

 Table I

 k, 1, j i kj-li kj+lj kj+ki q (a, b, c)

 2, 1,3,2 4 9 10 1 (4,9, 10)

 2, 1,4,3 5 12 14 1 (V12, 14)

 3, 1,2, 1 5 8 9 1 (5,8,9)

 3, 1, 3,2 7 12 15 1 (7, 12, 15)

 3, 1,4, 3 9 16 21 1 (9, 16,21)

 3,2,4,3 6 20 21 1 (6,20,21)

 4, 1, 2, 1 7 10 12 1 (7, 10, 12)

 4,1,3,1 11 15 16 1 (11,15,16)

 4, 1, 3, 2 10 15 20 5 (2, 3, 4)

 4, 1,4, 3 13 20 28 1 (13,20,28)

 Now it remains to eliminate most of the triples (a, b, c) in Table I, by
 showing that they violate one of the inequalities (iv)-(vi). Now c - a < b, so
 c - b < a; whence a { (c - b), so if a is a prime bigger than 4, we have

 gcd(a,c-b) 1 1< 1
 a a- 5 4.18'
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 318 BART GODDARD

 so the triples (5, 12, 14), (5, 8, 9), (7, 12, 15), (7, 10, 12), (11, 15, 16),
 and (13, 20, 28) violate inequality (iv). This leaves only (4, 9, 10), (9, 16,
 21), (6, 20, 21), and (2, 3, 4). But

 gcd(9, 21 - 16) _ gcd(9, 5) 1 < 1
 9 9 9 4.18

 and
 gcd(6,21-20) 1< 1

 6 6 4.18'

 which violate (iv). This leaves (4, 9, 10) and (2, 3, 4) as claimed.

 Lemma 4. inf, E9 F4(0, 2a, 3a, 4a) 0.566....
 Proof. From (3) and the Chebyshev polynomials,

 F4(0, 2a, 3a, 4a) = 4 + 2(cos2a + cos3a + cos4a + cosa + cos2a + cosa)

 = 16 cos4a + 8 cos3 a-8cos2a-2 cosa + 2.

 Then

 inf F4(0, 2a, 3a, 4a)= min (16x4+ 8x3 - 8x2 - 2x +2).
 aE9% -1<x<1

 It is a simple calculus exercise to show this last expression is equal to 0.566...
 as desired.

 Note that this is equivalent to saying

 min 11 + z2 + z3 + z41 = (0.566... )1/2 = 0.7524...
 Izl=l

 which appears in Table 1 of [5]. Thus we have a Newman polynomial of only
 four terms, with relatively large minimum modulus on the unit circle. The next
 theorem shows this result is best possible.

 4. MAIN RESULT

 Theorem 1. f(4) = 0.7524....

 Proof. Let Ai < A2 < A3 be distinct positive integers with (AI, A2, A3) = 1.
 From the functional relationship (3), we have

 F4(0, Ala, A2a, A3a) = F4(0, (A3-A2)a, (A3-AI)a, A3a),

 so if A3- Al > A2 let A' = A3- A2, A' = A3- Al, and A' = A3. Then
 A' -A' = A3 -(A3- A2) = A2 < A3- A1 = A'. So we may assume without

 loss of generality that A3 - Al <A2.
 If A3 - Al = A2, then exactly two of {AI, A2, A3} are odd, so exactly two

 of {eiAllr, eiA2%, eiA3 f} are equal to -1 and the other is equal to 1. Therefore,

 inf F4(0, A1a, A2a, A3a) < F4(0, Ainr, A27r, A3 7)
 aE9%

 = Ii + ebiA,7 + eiA2r +eiA37eI = I + 1 - 1 - 12 = 0 < 0.566....

 So we may assume A3 - Al < A2. Now if Al, A2, A3 violate one of the
 inequalities (iv)-(vi) in Lemma 3, we have, by Lemma 2, with w = 4.18, that

 infF4(0, Aa, A2a, A3a) < [4 18 < 0.566 ... = infF4(0, 2a, 3a, 4a).
 aE9% .1 aE9%
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 FINITE EXPONENTIAL SERIES AND NEWMAN POLYNOMIALS 319

 Therefore, to find SUPO<A,<A2<A3 infa!E9 IF4(0, Ala, A2a, A3a)I, it suffices to
 look only at triples (Al, A2, A3) that satisfy the hypotheses of Lemma 3. But
 this means we need only check (2, 3, 4) and (4, 9, 10). Now

 inf IF4 (0 , 4a, 9a, 1 0a)l1 < F4 (?, 4( 14 ), 9( 4o ), l O( 4o)

 =0.3758... < 0.566....

 Therefore

 f(A) = sup inf(F4(0, Ala, A2a, A3a))1/2
 O<A1<A2<A3 aE9%

 gcd(Ai A2,A3)=1

 = inf(F4(0, 2a, 3a, 4a))1/2 = (0.5661 ... )1/2 = 0.7524....
 aE9%

 5. FURTHER RESULTS

 In an effort to see how fast f(n) grows (or see if it is, in fact, monotonic),
 we explicitly computed several examples to estimate the size of f(5) and f(6).

 First, we generated all quadruples (AI, A2, A3, A4) of natural numbers with
 gcd(AI, A2, A3, A4) = 1 and 0 < A1 < A2 < A3 < A4 ? 30. For each
 quadruple, we computed the values of

 F5(0,Ala,A2a,A3a,A4a) fora==0,0.01,0.02,...,3.15

 and saved the smallest value. The largest of these came from the quadruple
 (1, 2, 6, 9). The minimum value of F5(0, a, 2a, 6a, 9a) apparently occurs
 when a = ir and gives the surprising value

 F5(0, or, 27r, 67r, 97r) = II + e'7 + ei2n + ei67 + ei9712

 = 11- 1 + 1 + 1 - 112 = 1,

 which also appears in Table 1 of [5]. Thus f(5) > 1. We did the same for

 f(6). We checked all tuples 0 < Al < A2 < A3 < A4 < A5 < 30 and all values
 of a from 0 to ir in increments of 0.001 and found that

 5

 f(6) = sup inf 1 +: ZeiA~a
 O<Ai < ... <A5 a!E% j=l

 > inf 11 + ei6a + ei9a + eila + eil7a + ei24a _ 1.1348...
 -aE9%

 which is achieved when a - 2.45.

 Thus the Newman polynomials 1 + z + z2 + Z6 + Z9 and 1 + z6 + Z9 + Z10 +
 Z17 + z24 have only five and six terms, but yet have minimum modulus on the
 unit circle larger than or equal to 1. In [5] Boyd shows that f(n) > 1 for
 6 < n < 16 and conjectures that log f(n)/ log n -+ a > 0. It seems quite likely
 that f(n) is at least monotonic.
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