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Spherical Geometry

S = {~x : ||~x || = 1} = {~x : ~x · ~x = 1} = {~x : ~x t I~x = 1}
Lines: S ∩ P
Angles: ~x · ~y = ||~x ||||~y || cos θ
Weighted dot product: I 7→ A, ( A positive-definite, symmetric)
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Lorentz Product

~x ◦ ~y = ~x tJ~y , J =

1 0 0
0 1 0
0 0 −1


” ◦ ” is bi-linear and symmetric, but not an inner product.

Light Cone:

L+ = {~x : ~x ◦ ~x = 0}

Outer Hyperboloid (1 sheet) :

~x ◦ ~x = 1
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Pseudosphere

Pseudosphere model:

V = {~x : ~x ◦ ~x = −1}

V+ = {~x = (x , y , z) ∈ V : z > 0}

Lines: P ∩ V+
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Disk Model

Stereographic Projection:

π : V+ −→ D

D = {(x , y , 0) : x2 + y2 < 1}
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Disk Model Cont.
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Disk Model: Lines

~n1 = (1, 0, 0)
~n2 = (−1, 1, 0)
~n3 = (1, 1, 1)
Intersect

planes :


~x ◦ ~n1 = 0
~x ◦ ~n2 = 0
~x ◦ ~n3 = 0

with V+ to get lines. Apply π to these
lines.
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Disk Model: Moving Points

The vectors ~n1, ~n2, and ~n3 define 3
planes. The mapping

Rj (~x) = ~x − 2Proj~nj
~x = ~x − 2

~x ◦ ~nj

~nj ◦ ~nj
~nj

is reflection through the plane defined
by ~nj . Rj is an isometry since

Rj (~x) ◦ Rj (~y) = ~x ◦ ~y
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Disk Model: Lattice Points

(8, 4, 9) 7→R2 (4, 8, 9) 7→R3 (−2, 2, 3) 7→R1 (2, 2, 3) 7→R3 (0, 0, 1)

I F is the fundamental domain for
the group Γ = {R1,R2,R3}

I Γ acts transitively on the lattice
points of V+

I F is a Coxeter polyhedron
I Method of descent to F
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What does a picture look like after inversion in a circle?
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Process: Pictures to/from Lorentz Product

Rules:

1. Choose a basis: {e1, · · · , en}
2. Construct J = [ei · ej ]...

Example:

I Think of ” · ” as ” ◦ ”

I Choose e1 · e1 = e2 · e2 = −2
I Since e3 is the point at infinity,

e3 · e3 = 0
I e1 · e2 = ±||e1||||e2|| cos θ or...

e1 · e2 = ±||e1||||e2|| coshψ
I e1 · e3 = curvature (1/radius)

J =

−2 d 1
d −2 1
1 1 0


I J induces "◦"
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Fundamental Domain

{
l1 · e1 = 0⇐⇒~l1 ◦ ~e1 = 0
l1 · e3 = 0⇐⇒~l1 ◦ ~e1 = 0{

n1 · e1 = 0
n1 · e2 = 0

{
l3 · n1 = 0
l3 · e3 = 0
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Fundamental Domain

~l1 = (1,−1, 2 + d), ~n1 = (1, 1, 2− d)

L1 =

1 2 0
0 −1 0
0 2d + 4 1

 ,N1 =

1 0 2
d−2

0 1 2
d−2

0 0 −1

 , L3 =

0 1 0
1 0 0
0 0 1



13 / 23



Introduction: Hyperbolic Geometry Rules Translations Apollonian Packing K3’s Further Work

Hyperbolic Translations

L1L3 ∼

1 1 0
0 1 1
0 0 1



N1L1 ∼


d+6+4

√
d+2

d−2 0 0

0 d+6+4
√

d+2
d−2 0

0 0 1



I Since N1L1 is an isometry,
det(N1L1) = 1 = product of
eigenvalues.

I If d = 1, 3, 4 then we get
fundamental units in the ring of
integers Z[

√
D] ⊆ Q[

√
D], some

D ∈ N.
I Example: If d = 4, then

Spec(N1L1L3) = {7± 4
√

3,−1},
Spec(N1(L1L3)2) =
{25± 4

√
39,−1}.

(Pell’s eqn. for D=3,39)
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Translations cont.
Let Λ = {N1(L1L3)k}∞k=1. How big is Spec(Λ)?

Values of the Discriminant (Within Eigenvalue)

k d=1 d=3 d=4
1 6 30 3
2 33 105 39
3 78 230 21
4 141 5 3
5 222 70 57
6 321 905 327
7 438 1230 111
8 573 1605 579
9 6 2030 183
10 897 2505 903

Guess (based on first 10,000 cases): Spec(Λ) has units in infinitely many D,
but misses some values e.g. D = 7.
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Ji = [ei ·ej ] =


−2 2 2 4
2 −2 2 4
2 2 −2 0
4 4 0 0

 , Γ = 〈R1,R2,R3,R4,R5〉 ,T = 〈R1,R2,R3,R4〉
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Connection to K3 surfaces

Given a (class of) K3 surface, we may describe a hyperbolic cross section of
the ample cone.
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I Each previous J is even (even entries on main diagonal), symmetric,
and has signature (1, n − 1).

I By [Mor84] and the Hodge Index Theorem, there exists a class of K3
surfaces with intersection matrix J = [ei · ej ].

I So, these fractals are ample cones of K3 surfaces.
I "Apollonian K3 surfaces"
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Further Work

1. Can we modify or generalize the matrix J in the hyperbolic translations
case to hit more values of D?

2. Generalized method of descent in "non-Coxeter" cases

3. Using kJ−1 as a Lorentz product, some k ∈ N.

"Dual" belt packing:
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Connections to K3 surfaces

I K3 surfaces are examples of elliptic fibrations There are smooth curves
(divisor classes) passing through each elliptic curve.

I The isogeny P 7→ −P sends one smooth curve to another and induces
an automorphism of the K3 surface.
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Ample Cone Symmetries

Ample cone symmetries←→
arithmetic on elliptic curves

I O 7→ O + P (horizontal
translation fixing∞)

I O 7→ O + Q (diagonal translation)
I P 7→ −P (−1 map through O)

Jamp =


−2 2 2 4
2 −2 2 4
2 2 −2 4
4 4 4 0


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