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The PSLQ integer relation algorithm

Let X = (xx) be an (m + 1)-long real or complex vector. An integer relation algorithm
such as PSLQ finds a nontrivial integer vector A = (ai) such that

apxo +aix1+ -+ amxm = 0.

» The multipair PSLQ algorithm is a more efficient and parallelizable variant of
PSLQ, the most widely used integter relation algorithm (other researchers use a
variant of the LLL algorithm).

» Integer relation detection (by any algorithm) requires very high precision: at least
(m+ 1) - max logyg |ak| digits, both in the input data and the algorithm.

> H. R. P. Ferguson, D. H. Bailey and S. Arno, “Analysis of PSLQ, an integer relation finding
algorithm,” Mathematics of Computation, vol. 68, no. 225 (Jan 1999), pg. 351-369.

» D. H. Bailey and D. J. Broadhurst, “Parallel integer relation detection: Techniques and
applications,” Mathematics of Computation, vol. 70, no. 236 (Oct 2000), 1719-1736.
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Decrease of log 10(min |y;|) in multipair PSLQ run
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Application of multipair PSLQ

One simple but important application of multipair PSLQ is to recognize a computed
numerical value as the root of an integer polynomial of degree m.

Example: The following constant is suspected to be an algebraic number:

o = 1.232688913061443445331472869611255647068988824547930576057634684778 . . .

What is its minimal polynomial?

Method: Compute the vector (1,,a?,---,a™) for m = 30, then input this vector to
multipair PSLQ.
Answer (using 250-digit arithmetic):
0 = 697 — 1440a — 205200 — 982800 — 1020600* — 1458a° + 80a® — 439200
+ 53838008 — 336420a° + 121501° — 80a!? — 56160a!3 — 13554001* — 54001°
+ 400! — 73800 + 13502° — 1002* — 180° + o*°
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The Poisson potential function

In 2012, Richard Crandall, while investigating techniques to sharpen images, noted
that each pixel was given by a form of the 2-D Poisson potential function:

¢2(X7y) = % Z

m,n odd

cos(mmx) cos(nmy)
m2 + n?

In a 2013 study, we numerically discovered, and then proved the intriguing fact that for
rational (x, y),
1
$2(x,y) = —loga
where « is algebraic, i.e., the root of a some integer polynomial of degree m.
By computing high-precision numerical values of ¢2(x, y) for various specific rational x

and y, and applying a multipair PSLQ program, we were able to produce the explicit
minimal polynomials for o in numerous specific cases.

» D. H. Bailey, J. M. Borwein, R. E. Crandall and J. Zucker, “Lattice sums arising from the Poisson
equation,” Journal of Physics A: Mathematical and Theoretical, vol. 46 (2013), 115201.
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Samples of minimal polynomials found by multipair PSLQ

Minimal polynomial corresponding to x =y = 1/s:

14520 — 2602 — 1203 + o

1—28a + 602 — 283 + o

—1 — 196a + 1302a% — 1475602 + 15673 + 421680° — 11191608 + 82264a”
—35231a8 + 1985202 — 2954019 — 308a!! + 7a!?

1 — 88a + 92a2 — 87203 + 19900* — 872a° + 92ab — 88a” + af

—1 — 534 + 1092302 — 34286405 + 23046840* — 7820712a° + 137290680°
—223215840" + 3977598608 — 444310440° 4+ 19899882010 + 354657601
—84580200'? + 400917603 — 273348a* + 121392a/°

—11385a1% — 342017 + 318

10 1 —216a + 86002 — 74403 + 4540* — 74405 + 86008 — 21607 + o

~N O O »n

O 0

These computations are very expensive. The case x = y = 1/32, for instance, required
10,000-digit arithmetic and ran for 45 hours. Other runs, using even higher precision,
ultimately failed, evidently due to subtle program bugs. Help!
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Kimberley's formula for the degree of the polynomial

Based on our preliminary results, Jason Kimberley of the University of Newcastle,
Australia observed that the degree m(s) of the minimal polynomial associated with the
case x =y = 1/s appears to be given by the following:

Set m(2) = 1/2. Otherwise for primes p congruent to 1 mod 4, set m(p) = int?(p/2),
where int denotes greatest integer, and for primes p congruent to 3 mod 4, set
m(p) = int (p/2)(int (p/2) + 1). Then for any other positive integer s whose prime

factorization is s = py'p5? - - - pgr,

m(s) = 4T p2 ™ m(py).
i=1

Does Kimberley's formula hold for larger s? Why?

What is the true mathematical connection between the pair of rationals (x, y) and the
algebraic number o7
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Three improvements to the Poisson polynomial computation program

1. MPFUN2015: A new thread-safe multiprecision package.
» Speedup: 3X

2. A new 3-level multipair PSLQ program.
» Speedup: 4.2X

3. Parallel implementation on a 16-core system.
» Speedup: 12.2X

Overall speedup: 156X
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192-degree minimal polynomial found by multipair PSLQ for x = y = 1/35

This polynomial has degree 192, with coefficients as large as 108%. This computation
required 18,000-digit arithmetic and 34 CPU-hours.

The case (1/37,1/37) required 51,000-digit arithmetic and 90 CPU-days (5.6 days on
a 16-core parallel system).

Kimberley's formula was upheld for (1/s,1/s), for all s up to 52 (except for
s = 41,43,47,49,51, which were too expensive), and also for s = 60 and s = 64.
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Palindromic polynomials

From our results, in the case (1/s,1/s) where s is even, the resulting polynomial is
always palindromic (ax = an—x). For instance, when s = 16,

pis(a) = 1 — 1376a" — 125600° — 35504960° + 812417200 — 169589984°
+ 13349649440° — 243077259840 + 238934926108a° — 10430271247040°
+ 2328675366384 — 3219896325280 + 4238551472456
— 102474144300480" + 28552105805904a'* — 558328516879680/"°
+ 700202683090620'°
— 558328516879680/" + 285521058059040™° — 102474144300480/"°
+ 42385514724560°° — 32198963252800°" + 2328675366384
— 1043027124704 4 2389349261080 — 243077259840 + 13349649440
— 1695899840°" + 812417200 — 35504960 — 12560a°° — 1376a°" + o

Nitya Mani, an undergraduate student at Stanford University, observed that if « is a

root of a palindromic polynomial such as this, then o+ 1/« is a root of a transformed
polynomial of half the degree. This fact can be used to significantly accelerate the
computation of Poisson polynomials in the even case. 10/21



Proofs of Kimberley's formula and the palindromic property

>

On March 16, DHB presented our results at a seminar at the University of
California, Berkeley.

Following the presentation, Watson Ladd, a graduate student in mathematics,
brought to our attention the fact that some of our conjectures should follow from
results in the theory of elliptic curves, Gaussian integers and ideals.

After some effort, Ladd produced proofs of Kimberley's formula and the
palindromic property, which proofs were then incuded in our paper and returned
to the journal.

The paper has now appeared:

David H. Bailey, Jonathan M. Borwein, Jason Kimberley and Watson Ladd,
“Computer discovery and analysis of large Poisson polynomials,” Experimental
Mathematics, 27 Aug 2016.

A preprint is available here:
http://www.davidhbailey.com/dhbpapers/poisson-res.pdf.
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Mordell-Tornheim—-Witten sums
The simplest MTW sum is:

W(r,s, t) = Z

m,n>1

1
m'ns(m+ n)t’

Such sums arise in combinatorics, mathematical physics (e.g., Feynmann diagrams and
string theory), Lie algebras, number theory and numerous other fields. In special cases
these sums have simple evaluations. For example, when t =0,

W(rs,00= > —— Z

m,n>1 m>1 n>1

= ((r)¢(s)-

nS
The n-dimensional MTW sum is defined for integer m; and positive real r; as

1
W(r,m,...,r,t) = :
(72t ) ml,.§7n21 mymg - -my(my+ mp+ -+ mp)t

Matsumoto proved that W can be continued meromorphically to the entire C" ! space.
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Special case
We will focus on the special case 1 = =--- = r, =t = s for real s (analytically
continued as above), namely
1
Wnp+1(S) = y
n1(s) Z (mimy---mp(my+ma+ -+ mp))°

my,my,...,mp>1

for n=2,3,---. These sums were studied by Tomkins, who conjectured that

(=1)"

n+1°

This was proved by Romik for the case n = 2 and in the general case by Borwein and
Dilcher.

wn—i—l(o) =

1. H. Tomkins, “An exploration of multiple zeta functions,” Honours Thesis, Dalhousie University,
21 Apr 2016.

2. J. M. Borwein and K. Dilcher, “Derivatives and fast evaluation of multiple Witten functions,”
manuscript, to appear in Ramanujan Journal, 2016.

3. D. Romik, “On the number of n-dimensional representations of SU(3), the Bernoulli numbers,
and the Witten zeta function.” 17 Apr 2015, https://arxiv.org/pdf/1503.03776v3.pdf.

13
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Key result from Tomkins' thesis

Let rn,r, ..., ry, t be complex variables with r; € N for 1 < i < n. Then for any real
6 >0,

F(t,(mi+ ma+---+ mp)d)
mimg - -mg(my+ my+ -4+ mpy)t

Fre)W(n,r, ..., rm,t) =

my,my,...mp>1

ow ra — Uj,
+ Z ( Z —HF rI)H |rclira)1))>

{a1,a2,...,ak }C{1,2,...,n} \Uay,lUay,...;Us, >0 i=1

where w =t — (n — k) + Zjl-(zl(uaj —ry)+ 2t
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Example: Special case when n =4

1 F(s,(m+n+ p)o)
)= 1) ngp?N (mnp(m -+ 1+ p))
m+n+p<(5 _ )C(S _ n)C(s _ p)0m+n+P+s

+o3
mas0 mlnlp!(m+n+p—+5s)

—1)"+i(s — m — n)gmintae
T3 =) mzn;O = mC!E;s!(m +)§7(Jsr 2s 1 1)

o B 4352 4s—3
#3r -9  CE r-  g

p=0

where 6 > 0 is an arbitrary real parameter, and s is real but not an integer.
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Computation of w, derivatives

In initial computations of omega derivatives at zero, namely w/,(0) for d = 3,4,. ..,
Borwein and Dilcher found and then proved the intriguing experimental equivalence

w3(0) = log(2m),

based purely on the numerical value of w5(0) as computed from a more complex
evaluation due to Romik, where the sum arises in counting representations of SU(3).
Tomkins then showed that

wy(0) = —log(2m) + '(-2).

These results immediately raise the question of whether the higher-degree constants
w’,(0) have similarly elegant evaluations.
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Numerical issues

We computed these constants to 400-digit precision and then employed the multipair
PSLQ algorithm to attempt to obtain an analytic evaluation.

Straightforward evaluation is exceedingly expensive, since with each higher degree d,
the summations involve one more level of loop nesting, and each higher level of loop

nesting typically increases the computational run time by a factor of 10 or more over
the previous level.

However, after carefully examining these formulas and the equivalent computer code,
we ultimately achieved a 30-million-fold speedup.
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PSLQ analysis

In this application, we defined xp = w/;(0), and then selected a set of candidate
constants, based on experience with the cases degree d = 3 and d = 4. In particular,
we tried the following input vectors x in our multipair PSLQ computations, where all

terms are computed to at least 400-digit precision:

x = (w}(0), log(27), ¢'(=2), ¢'(—4),- - ,{'(—d +3)) forodd d
x = (wj(0), log(27), ¢'(=2), ('(=4),--- ,¢'(=d +2)) foreven d.
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Experlmental relations produced by multipair PSLQ

0 = wy(0)+log(2m) — ¢'(—2)
0 = 7w5(0) + log(2m) — 2¢'(—2)
0 £ 12ws(0)+ 12 log(2m) — 35¢'(—2) — ¢'(—4)
0 = 4wi(0)—4log(2m) +15¢'(=2) + ¢'(—4)
0 £ —360wi(0) — 360 log(2m) 4 1624 ¢’ (—2) + 175¢'(—4) + ¢'(—6)
0 = 90w)(0) —90 log(27) + 469 ¢’ (—2) +70¢'(—4) + ¢'(—6)
0 = —20160wiy(0) — 20160 log(27) + 118124 ('(—2) + 22449 (' (—4) + 546 ¢'(—6) + ¢'(—8)
0 = —4032w},(0) + 4032 log(27) — 26060 ¢’ (—2) — 5985 ¢'(—4) — 210 ¢’ (—6) — ¢'(—8)
0 = 1814400wi,(0) + 1814400 log(2m) — 12753576 ¢'(—2) — 3416930 ¢'(—4)
—157773¢'(—6) — 1320¢'(—8) — ¢'(—10)
0 = —302400wi3(0) + 302400 log(2m) — 2286636 ¢'(—2) — 696905 ¢’ (—4)
—39963 ¢'(—6) — 495 ¢'(—8) — ¢’(—10)
0 = 239500800 wi,(0) + 239500800 log(2m) — 1931559552 ¢'(—2) — 657206836 ¢'(—4)
—44990231 ¢'(—6) — 749463 ¢'(—8) — 2717 ¢'(—10) — ¢'(-12)
0 = 34214400 wi5(0) — 34214400 log(2n) + 292271616 ¢'(—2) + 109425316 ¢'(—4)
+8691683 (' (—6) + 183183 ¢’'(—8) + 1001 ¢’ (—10) + ¢'(—12)
0 = —43589145600w}s(0) — 43589145600 log(27) + 392156797824 ¢'(—2) + 159721605680 ¢’ (—4)
+14409322928 ¢'(—6) + 368411615 ¢’ (—8) + 2749747 ¢'(—10) + 5005 ¢'(—12) + ¢'(—14)
0 = 5448643200 wi,(0) — 5448643200 log(2r) + 51381813456 ¢'(—2) + 22556777880 (' (—4)

42273360089 ¢’ (—6) -+ 68396900 ¢'(—8) + 654654 (' (—10) + 1820 ¢'(—12) + ¢'(—14)

19/21



Solved relations

wi(0) = —log(2m) +¢'(-2)
ws(0) = log(2m) —2¢'(-2)
ws(0) = —log(2m) + LC =2 %
SH0) = log(an) - BN <
wh(0) =  —log(2w) 4+ 28 %72) + 5 C;§74) + Cléf;)ﬁ)
wé(O) = log(2r) — 469(9( 2) 7(’574) _ C’(ggﬁ)
wio(0) = —log(2m) + 29532030( 2+ ,10699%/0(_4) j‘ = it/éo 6, + Czolﬁg)
p(0) = log(2m) — eslslgoé 2) 9% <6£—4) _lsgg(ﬁ—e) - c;
wip(0) = —log(2m) + 17713; Coo( 2+ 34161%,3154(()74) + 751;6&0(076) + 111%1(208) + §8(1441(;)o)
wis(0) = log(2m) - BRI _ BERALY _ BBEl0 _ Melh _ SO ,
o)) 2 - log(an) + BECCD | Bimtoci Mmoo § amlh | 2o
+2§9(50018230 , , , , ,
wis(0) = log(2m) — FETEEA MR e — PiGen . — “siomo”
~ et , , , ,
wio(0) = —log(2m) + o= + Fiisen— + i) + Panasssn . + i
_|_C (=12) + ¢'(~14)
8700120 ' 43589145600 , , , ,
wir(0) = log(2m) — FEEGRA — B — P e — " Ssionr . — “sareon

¢/(~12) ¢’(~14)

"~ 2993760 5448643200 20/21




Problem: Can we prove these experimental relations?

» This talk is available at
http://www.davidhbailey.com/dhbtalks/dhb-wcnt-2016.pdf.

» A preprint with full details, results and analysis is available at

http://www.davidhbailey.com/dhbpapers/omega-numerics.pdf.
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