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Simultaneous Pellian Equations

aX2 − bY 2 = c, dY 2 − eZ2 = f

Ljunggren, Baker and Davenport, Grinstead,

Bennett, Anglin, Cipu and Mignotte, Okazaki,

Yuan, and many others.
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Simultaneous Pell Equations

x2 − ay2 = 1, z2 − by2 = 1
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Let α = t+u
√
a, β = w+v

√
b denote the small-

est units (> 1) of norm 1 in Z[
√
a] and Z[

√
b]

respectively.
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√
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√
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un =
αn − α−n

2
√
a
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βn − β−n

2
√
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A solution to the above system of equations is

the same as a solution to

un =
αn − α−n

2
√
a

=
βm − β−m

2
√
b

= vm.
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A Theorem of M.A. Bennett

Theorem (Bennett, 1998) For any pair of dis-

tinct positive integers a and b, there are at

most three positive integer solutions (x, y, z)

to the system of equations

x2 − ay2 = 1, z2 − by2 = 1.
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An Improvement by Ping Zhi Yuan

Theorem (Yuan, 2006) If a and b are dis-

tinct positive integers satisfying max{a, b} >
1.4 · 1057, there are at most two positive in-

teger solutions (x, y, z) to the system of equa-

tions

x2 − ay2 = 1, z2 − by2 = 1.
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The State of the Art

Theorem (Bennett, Cipu, Mignotte, Okazaki

2006) For any pair of distinct positive integers

a and b, there are at most two positive integer

solutions (x, y, z) to the system of equations

x2 − ay2 = 1, z2 − by2 = 1.
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Ingredients of proof
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principle).
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Ingredients of proof

• Solutions are not too close together (gap

principle).

• Lower bounds for linear forms in three com-

plex logarithms of algebraic numbers.

• Baker-Davenport Lemma (LLL).

• Certain elementary arguments.

• Computations.
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A Variant

Theorem (Cipu, Mignotte)

The system of Pell equations

x2 − ay2 = 1, y2 − bz2 = 1

has at most two solutions in positive integers

x, y, z.
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Yuan’s Improvement

Theorem (Yuan)

For all a ≥ 1, the system of Pell equations

x2 − (4a2 − 1)y2 = 1, y2 − bz2 = 1

has at most one solution in positive integers

x, y, z.

Note: Although this is best possible, this

general upper bound is rarely attained.
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Solving Subfamilies

Theorem (Jian Hua Chen, 2015)

For any prime p, the system of Pell equations

x2 − 24y2 = 1, y2 − pz2 = 1

has no solutions in positive integers x, y, z, ex-
cept only for

p = 2 and p = 11,

in which case the only positive integer solutions
are (x, y, z) = (485,99,70) and (49,10,3) re-
spectively.

Note: this is a special case of

x2 − (m2 − 1)y2 = 1, y2 − pz2 = 1.
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Work in Progress with Paul Voutier

Theorem

Let p denote a rational prime.

Let 5 < m < 106 be a positive integer for which

• m ≡ 5 (mod 8) and

• (m− 1)/4 is a prime power.

Then the system of equations

x2 − (m2 − 1)y2 = 1, y2 − pz2 = 1

has no solutions in positive integers x, y, z,

except only for

(m, p) ∈ {(13,3), (29,2)},

in which for each case there is the only one

solution:

(x, y, x) = (337,26,15) and (97469,3363,2378)

respectively.
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Ingredients of the Proof

• Factorization Identities of integers in Lucas
Sequences.

• An old Theorem on b2X4 − DY 2 = 1 by
Bennett-W.

• A Theorem on Primitive Divisors by Cam
Stewart and Bilu-Hanrot-Voutier.

• The heart of the proof lies in solving the
family of Thue equations

x4 − (2k2 + 2k)x2y2 + k4y4 = 1,

where k = (m− 1)/8.

Conjecture No nontrivial solutions (i.e. with
Y 6= 0) for all k > 3, and the Theorem holds
for all m ≡ 5 (mod 8) .
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Saving Cycles

Rewrite x4 − (2k2 + 2k)x2y2 + k4y4 = 1 as

X2 − (2k + 1)k2Y 4 = 1,

and use the following refinement Ljunggren’s

Theorem (Togbe, Voutier, W):

Theorem Let D > 1 denote a nonsquare inte-

ger, µD = T + U
√
D denote the minimal unit

with norm 1 in Z[
√
D, and

µiD = Ti + Ui
√
D. (i ≥ 1)

If there are two indices i, j for which Ui, Uj are

squares, then

(i, j) = (1,2) or (1,4).

If there is only one such i, then either i = 1,2

or p where p is a prime of the form 4t + 3, in

which case U1 is of the form pv2.
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The upshot is, Chen’s Theorem (JNT, 2015)

on

x2 − 24y2 = 1, y2 − pz2 = 1

can be reduced to noticing that the only posi-

tive integer solutions (X,Y ) to

X2 − 3Y 4 = 1

arise from µ3 = 2 +
√

3 and its square

(i.e. (X,Y ) = (2,1), (7,2)),
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