Solving families of simultaneous Pell equations

Gary Walsh, Tutte Institute and University of Ottawa

December 2016



Simultaneous Pellian Equations

aX? —bY2=c, dY? —eZ?’=f

Ljunggren, Baker and Davenport, Grinstead,
Bennett, Anglin, Cipu and Mignotte, Okazaki,
Yuan, and many others.
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A Theorem of M.A. Bennett

Theorem (Bennett, 1998) For any pair of dis-
tinct positive integers a and b, there are at
most three positive integer solutions (z,v, z)
to the system of equations

a:z—a,yzzl, z2—by2=1.



An Improvement by Ping Zhi Yuan

Theorem (Yuan, 2006) If ¢« and b are dis-
tinct positive integers satisfying max{a,b} >
1.4 -10°7, there are at most two positive in-
teger solutions (z,vy, z) to the system of equa-
tions

:Bz—ay2=1, zz—by2:1.



The State of the Art

Theorem (Bennett, Cipu, Mignotte, Okazaki
2006) For any pair of distinct positive integers
a and b, there are at most two positive integer
solutions (x,vy, z) to the system of equations

a:z—a,yzzl, z2—by2=1.
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Ingredients of proof

e Solutions are not too close together (gap
principle).

e Lower bounds for linear forms in three com-
plex logarithms of algebraic numbers.

e Baker-Davenport Lemma (LLL).

e Certain elementary arguments.

e Computations.
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A Variant

Theorem (Cipu, Mignotte)

The system of Pell equations
:c2—ay2 = 1,y2—bz2 =1

has at most two solutions in positive integers

r,Yy, .
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Yuan’s Improvement

Theorem (Yuan)

For all a > 1, the system of Pell equations
22— (4a®° —1Dy? =1,9° - b2 =1

has at most one solution in positive integers

r,Y, <.

Note: Although this is best possible, this
general upper bound is rarely attained.
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Solving Subfamilies

Theorem (Jian Hua Chen, 2015)

For any prime p, the system of Pell equations
72 —24y2 = 1,y2 —p22 =1

has no solutions in positive integers z,y, z, €x-
cept only for

p=2andp=11,

in which case the only positive integer solutions
are (z,y,z) = (485,99,70) and (49,10,3) re-
spectively.

Note: this is a special case of

22— (m° -1y’ =1, y°—pz°=1.
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Work in Progress with Paul Voutier

Theorem
Let p denote a rational prime.
Let 5 < m < 10° be a positive integer for which

e m=5(mod 8) and
e (m—1)/4is a prime power.

Then the system of equations
22— (m? - 1)y =1, y* —p*=1

has no solutions in positive integers =z, vy, z,
except only for

(m,p) € {(13,3),(29,2)},

in which for each case there is the only one
solution:

(z,y,r) = (337,26,15) and (97469, 3363, 2378)

respectively.
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Ingredients of the Proof

e Factorization Identities of integers in Lucas
Sequences.

e An old Theorem on b2X4 — DY2 = 1 by
Bennett-W.

e A Theorem on Primitive Divisors by Cam
Stewart and Bilu-Hanrot-VVoutier.

e T he heart of the proof lies in solving the
family of Thue equations

ot — (2k% 4 2k)z%y? + k*yt = 1,
where k= (m — 1)/8.

Conjecture No nontrivial solutions (i.e. with
Y # 0) for all k > 3, and the Theorem holds
for all m =5 (mod 8) .
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Saving Cycles

Rewrite 2% — (2k2 4 2k)z%y? 4+ k%y* =1 as
X? - (2k+ DK’Y4 =1,

and use the following refinement Ljunggren’s
Theorem (Togbe, Voutier, W):

Theorem Let D > 1 denote a nonsquare inte-
ger, up = T + U+/D denote the minimal unit
with norm 1 in Z[v'D, and

wp =T+ U;VD. (i>1)

If there are two indices 4,5 for which U;, U; are
squares, then

(4,7) = (1,2) or (1,4).

If there is only one such 7, then either : = 1,2
or p where p is a prime of the form 4¢ 4 3, in
which case Uj is of the form pv2.
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The upshot is, Chen's Theorem (JNT, 2015)
on

:132—24y2 = 1,y2—pz2= 1

can be reduced to noticing that the only posi-
tive integer solutions (X,Y) to

X2 _3y%=1

arise from puz = 2 + /3 and its square

(i,e. (X,Y)=1(2,1),(7,2)),
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