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Motivation

Proposed by Henry Cohen in 2013 [Coh13]

FRQOs are defined based on imaginary quadratic fields but behave
similarly to real quadratic orders

Cohen-Lenstra Heuristics hold for real quadratic orders and FRQOs

Ankeny-Artin-Chowla Conjecture does NOT hold for FRQOs

⇓

NOT hold for real quadratic fields
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Definition

Definition 1 [Coh13]

Let p be a fixed prime number. Take any fundamental discriminant D < 0
such that (Dp ) = 1. We put K = Q(

√
D) and let OK denote its ring of

integers. We write pOK = pp and define the ring OK [p−1] as a fake real
quadratic order. Let OK ,p be the shorthand notation for it.
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History

Cohen [Coh13]:

Definition, theorems and numerical experiements

Cohen-Lenstra Heuristics: experiments for p < 30 and |D| up 228

Ankeny-Artin-Chowla Conjecture: p < 1000 an |D| up to 1072000

Oh [Oh14]:

Proofs to all the theorems

Mean number of three torsion elements
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Contributions

Repaired and clear proofs

Description of infrastructure

Cohen-Lenstra Heuristics:

Fixed p: p = 2, 3, 5, 7, 11, 101, 1009 and |D| up 240

Fixed D: randomly selected D and p up to 30000

Ankeny-Artin-Chowla Conjecture:

Counterexamples: p = 2, 3, 5, 7, 11, 101, 1009 and |D| up to 240

Counterexamples: D < 10 · 228 and p up to 30000
Counterexamples: selected large D, p up to 1011

Proportion of Counterexamples: selected small D, p up to 1010
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Elements

Theorem 1 [Coh13]

Any element α ∈ OK ,p can be written in a unique way as

α =
x + y

√
D

pk
,

where k ∈ Z, x , y ∈ ( 1
2 )Z, gcd(x , y , p) = 1, and either k ≤ 0 (i.e.

α ∈ OK ) or k > 0, which means that pk | x2 − Dy2 and x ≡ −sy (mod p)
where D ≡ s2 (mod p).
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Unit Group

Theorem 2 [Coh13]

Let UK ,p denote the unit group of OK ,p. Then UK ,p = µK × εZ, where µK
is the group of roots of unity in OK , and the fundamental unit ε is a
generator of the principal ideal po(p), where o(p) is the order of the class
of p in the ideal class group ClK .
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Class Group

Theorem 3 [Coh13]

The class group ClK ,p of OK ,p is canonically isomorphic to ClK/ 〈[p]〉,
where ClK is the ideal class group of K and 〈[p]〉 is the cyclic subgroup of
ClK generated by the class of p. In particular, we have
hK ,p = |ClK ,p| = hK/o(p).
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Computation

Resources:

Class group tabulation for |D| up to 240 by Mosunov [Mos15]

Implementation of ideal arithmetics by Sayles [Say13]

Servers:

University of Calgary: Storm

WestGrid: Breezy, Grex, Orcinus

Running time: 35 days
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Cohen-Lenstra Heuristics

CL Heuristics for Real Quadratic Fields [CL84]

The proportion of real quadratic fields for which the odd part of the class
number equals one should exist and be equal to

C = 1/
∏

k≥2(1− 2−k)ζ(k) = 0.754458173....

CL Heuristics for FRQOs

Let p be a prime number. Then the proportion of fake real quadratic
orders for which the odd part of the class number equals one should exist
and be equal to the constant C = 0.754458173....
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Cohen-Lenstra Heuristics

Figure: CL Heuristics for p = 2, p = 101, p = 1009, |D| up to X · 228
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Ankeny-Artin-Chowla Conjecture

AAC Conjecture for Real Quadratic Fields [AAC52]

Let K = Q(
√
D) be a real quadratic field where D is a prime discriminant

such that D ≡ 1 (mod 4) where the fundamental unit of K has the form

ε = a+b
√
D

2 with a, b ∈ Z. Then D - b.

*Note: No counterexamples have been found for D up to 2 · 1011.
*The ”log log” argument → The expected number of counterexamples for
D up to 2 · 1011 is no more than 1.4.

AAC Conjecture for FRQOs

Let ε = a+b
√
D

2 be the fundamental unit of OK ,p with a, b ∈ Z, where D is
a prime discriminant. Then D - b.
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Counterexamples to the AAC Conjecture

D = −7, p = 29983, ε = 164 + 21
√
−7

D = −11, p = 29401, ε = −325/2− 33/2
√
−11

D = −823, p = 21107, ε = −642110− 104521
√
−823

D = −2147483647, p = 268435561,
ε = −165237779688422410874446106720082143507032972457555
30638718726952628644710978055910231295505886510842200489
8161251054420379− 64640734667080971294992512025395118428
58738302872138546929434069000796075061154151096990668348
6493257867474971571660

√
−2147483647
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Counterexamples to the AAC Conjecture

D = −89716079, p = 11, ε =

36387774605376039237113262167623706994225588540809271479834420988976676361651871172249723518361
37866209291903542432954299304715124943238060157080227241286509383904536940754667365474660368835
27575782349950475491584202757980212029890039854551161905136307256092198544610440641675018191570
73496176461923908092792599094428983478003171870510894151383976289683796644475333704923714225057
03713725735442464288023279655169597327569925790813566840210146730360966896960468201124268844318
77805514495189828133078318678669285267896925182841599555626182665430876712974196227379799931229
87097236547585935569062874843867919337539645606354476946513317847622716745026992037126182708376
56765425496805322654746826962733626315607888926987050919083103892987014045695930797925669513674
65384100945914578776030494100162608495361654796353164394817236617233397309344002389449638870713
64540429734940860534911723360821086855598640422603734−
94547112813650249056098286225521572674479789054570951558773067104570264572575238002591525163240
81166069524634383088039992542897888339155808190034162613715487646316154945369412612235917480093
80393914494601353908733918128753024993401436082256669063592811537662200815303908646799459297729
60766404640300949017678568674920832754096242160228335381231103394960956537629795321052094958714
15166931467185670236494083351144497166900737360561348627838810598528624093834367002376533931190
28119386855870250727214743607753589045669430874428917430492773336823957543997211268120482744139
70304585808214823489576383147564579008944326677325537941939289272851761186263614501991361318321
30821249537849284585188342248928151698250294387057862318177327838361256785427189237115371303063
49532947284567762665717265320979550222016838020406615195486868458584893126263917872865994282661
757729286492170289044424486842610186928733585895

√
−89716079
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Proportions of Counterexamples to the AAC Conjecture

Figure: D = −7, p up to X · 107
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Proportions of Counterexamples to the AAC Conjecture

Figure: D = −127, p up to X · 107
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Proportions of Counterexamples to the AAC Conjecture

Figure: D = −100019, p up to X · 107
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Ankeny-Artin-Chowla Conjecture

The proportion of counterexamples converges to 1/|D| for any fixed D.
Thus, the divisibility of b by D behaves randomly for any fake real

quadratic order OK ,p with fundamental unit ε = a+b
√
D

2 .

We believe that the divisibility of b by D also behaves randomly for any

real quadratic field K = Q(
√
D) with fundamental unit ε = a+b

√
D

2 . Thus,
the ”log log” explanation is believed to be true.

Conjecture

The Ankeny-Artin-Chowla conjecture is false for real quadratic fields.
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Conclusion

Cohen-Lenstra Heuristics:

The probability of FRQOs for which the odd part of the class number
equals 3, 5, 7...

The probability that any prime number q divides hK ,p is equal to

1−
∏

k≥2(1− q−k) = q−2 + q−3 + q−5 − q−7 − ...
where q

The probability that the q-rank of ClK ,p equals r is
q−r(r+1)

∏
k≥1(1− q−k)

∏
1≤k≤r (1− q−k)−1

∏
1≤k≤r+1(1− q−k)−1

Ankeny-Artin-Chowla Conjecture:

Experiments on larger discriminants with more prime numbers
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Thanks for your attention!
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