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Eisenstein polynomials

Definition
Recall that

f (x) = adx
d + ad−1x

d−1 + · · ·+ a1x + a0

is called an Eisenstein polynomial if for some prime p we have:

1. p|ai for i = 0, 1, . . . , d − 1

2. p2 - a0
3. p - ad

For this talk, we only consider monic polynomials, where ad = 1.

Example

x3 + 105x2 + 315x + 210 is Eisenstein at p = 3, 5, 7.
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The genus number

The following is motivated by the study of the genus field of an
algebraic number field.

Definition
Suppose f is Eisenstein at the primes in P = {p1, . . . , p`} and no
other primes. Let e be the number of p in P such that p ≡ 1
(mod d), and add +1 to e in the case where d ∈ P and

a1 ≡ · · · ≡ ad−2 ≡ a0 + ad−1 ≡ 0 (mod d2) .

We define the genus number of f (x) to be gf = de .

Example

When f = x3 + 105x2 + 315x + 210, we have gf = 9.
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Main Question

Fix an odd prime degree d .

Question
What proportion of Eisenstein polynomials of degree d have genus
number one?

Remark
For this question to make sense, we must choose an ordering. We
will order out polynomials by height.

Definition
The height of a polynomial f is defined to be max{|a0|, ..., |ad−1|}.
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Main Question

Definition
Let Ed(H) denote the collection of all monic Eisenstein polynomials
of height at most H. Also, let E?d (H) = {f ∈ Ed(H) : gf = 1}.

H 10 20 30 40 50
#E?d (H)
#Ed (H) 0.9581 0.9537 0.9377 0.9400 0.9419

Question

Does lim
H→∞

#E?d (H)

#Ed(H)
exist and what is its value?
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Counting Eisenstein polynomials

Theorem (Dubickas 2003, Heyman–Shparlinski 2013)

#Ed(H) = θd(2H)d +

{
O(Hd−1) if d > 2

O(H(logH)2) if d = 2

where

θd = 1−
∏
p

(
1− p − 1

pd+1

)
.
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Idea of Proof

The inclusion-exclusion principle gives

#Ed(H) = −
H∑

s=2

µ(s)#Gd(s,H),

where #Gd(s,H) is the set of monic polynomials of height at most
H satisfying s|ai for i = 0, . . . , d − 1 and gcd(a0s , s) = 1.

One can show

#Gd(s,H) =
2dHdϕ(s)

sd+1
+ O

(
Hd−12ω(s)

sd−1

)
.
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Main Result

Theorem (C.–M.)

#E?d (H) = θ?d(2H)d +

{
O(Hd−1) if d > 2

O(H(logH)2) if d = 2

where

θ?d = 1−d − 1

d2d
−
(

1− (d − 1)(dd−1 + 1)

d2d

) ∏
p 6=d ,p 6≡1(d)

(
1− p − 1

pd+1

)
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Corollary

Corollary

lim
H→∞

#E?d (H)

#Ed(H)
=
θ?d
θd

For example,
θ?3
θ3
≈ 0.9681.

Moreover,

lim
d→∞

θ?d
θd

= 1

Genus numbers of Eisenstein polynomials Jongwoo Choi 8/ 9



Thank you

Thanks for your attention!
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