

# Genus numbers of Eisenstein polynomials

Jongwoo Choi

California State University, Chico

December 17, 2016

(Joint work with Kevin McGown)

West Coast Number Theory Conference  
Pacific Grove, California

# Eisenstein polynomials

## Definition

Recall that

$$f(x) = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_1 x + a_0$$

is called an Eisenstein polynomial if for some prime  $p$  we have:

1.  $p|a_i$  for  $i = 0, 1, \dots, d-1$
2.  $p^2 \nmid a_0$
3.  $p \nmid a_d$

For this talk, we only consider monic polynomials, where  $a_d = 1$ .

## Example

$x^3 + 105x^2 + 315x + 210$  is Eisenstein at  $p = 3, 5, 7$ .

# The genus number

The following is motivated by the study of the genus field of an algebraic number field.

## Definition

Suppose  $f$  is Eisenstein at the primes in  $P = \{p_1, \dots, p_\ell\}$  and no other primes. Let  $e$  be the number of  $p$  in  $P$  such that  $p \equiv 1 \pmod{d}$ , and add  $+1$  to  $e$  in the case where  $d \in P$  and

$$a_1 \equiv \cdots \equiv a_{d-2} \equiv a_0 + a_{d-1} \equiv 0 \pmod{d^2}.$$

We define the genus number of  $f(x)$  to be  $g_f = d^e$ .

## Example

When  $f = x^3 + 105x^2 + 315x + 210$ , we have  $g_f = 9$ .

# Main Question

Fix an odd prime degree  $d$ .

## Question

*What proportion of Eisenstein polynomials of degree  $d$  have genus number one?*

## Remark

*For this question to make sense, we must choose an ordering. We will order out polynomials by height.*

## Definition

*The height of a polynomial  $f$  is defined to be  $\max\{|a_0|, \dots, |a_{d-1}|\}$ .*

# Main Question

## Definition

Let  $\mathcal{E}_d(H)$  denote the collection of all monic Eisenstein polynomials of height at most  $H$ . Also, let  $\mathcal{E}_d^*(H) = \{f \in \mathcal{E}_d(H) : g_f = 1\}$ .

| $H$                                               | 10     | 20     | 30     | 40     | 50     |
|---------------------------------------------------|--------|--------|--------|--------|--------|
| $\frac{\#\mathcal{E}_d^*(H)}{\#\mathcal{E}_d(H)}$ | 0.9581 | 0.9537 | 0.9377 | 0.9400 | 0.9419 |

## Question

Does  $\lim_{H \rightarrow \infty} \frac{\#\mathcal{E}_d^*(H)}{\#\mathcal{E}_d(H)}$  exist and what is its value?

# Counting Eisenstein polynomials

Theorem (Dubickas 2003, Heyman–Shparlinski 2013)

$$\#\mathcal{E}_d(H) = \theta_d(2H)^d + \begin{cases} O(H^{d-1}) & \text{if } d > 2 \\ O(H(\log H)^2) & \text{if } d = 2 \end{cases}$$

where

$$\theta_d = 1 - \prod_p \left(1 - \frac{p-1}{p^{d+1}}\right).$$

# Idea of Proof

The inclusion-exclusion principle gives

$$\#\mathcal{E}_d(H) = - \sum_{s=2}^H \mu(s) \#\mathcal{G}_d(s, H),$$

where  $\#\mathcal{G}_d(s, H)$  is the set of monic polynomials of height at most  $H$  satisfying  $s|a_i$  for  $i = 0, \dots, d-1$  and  $\gcd(\frac{a_0}{s}, s) = 1$ .

One can show

$$\#\mathcal{G}_d(s, H) = \frac{2^d H^d \varphi(s)}{s^{d+1}} + O\left(\frac{H^{d-1} 2^{\omega(s)}}{s^{d-1}}\right).$$

# Main Result

## Theorem (C.-M.)

$$\#\mathcal{E}_d^{\star}(H) = \theta_d^{\star}(2H)^d + \begin{cases} O(H^{d-1}) & \text{if } d > 2 \\ O(H(\log H)^2) & \text{if } d = 2 \end{cases}$$

where

$$\theta_d^{\star} = 1 - \frac{d-1}{d^{2d}} - \left(1 - \frac{(d-1)(d^{d-1} + 1)}{d^{2d}}\right) \prod_{p \neq d, p \nmid 1(d)} \left(1 - \frac{p-1}{p^{d+1}}\right)$$

# Corollary

## Corollary

$$\lim_{H \rightarrow \infty} \frac{\#\mathcal{E}_d^{\star}(H)}{\#\mathcal{E}_d(H)} = \frac{\theta_d^{\star}}{\theta_d}$$

For example,  $\frac{\theta_3^{\star}}{\theta_3} \approx 0.9681$ .

Moreover,

$$\lim_{d \rightarrow \infty} \frac{\theta_d^{\star}}{\theta_d} = 1$$

Thank you

Thanks for your attention!