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Coprime mappings

A bijection f : A→ B on two sets of integers A and B is a coprime
mapping if gcd(a, f (a)) = 1 for all a ∈ A.

Daykin & Baines (1963): Investigated the existence of coprime
mappings on sets of consecutive integers.

Main Result: If

A = {1, 2, . . . , n} and B = {n + 1, n + 2, . . . , 2n}

then a coprime mapping from A onto B always exists.



Proof of D.J. Newman’s Coprime Mapping Conjecture

Pomerance & Selfridge (1980): If n is a positive integer and B is
any set of n consecutive integers, then there is a coprime mapping
f : {1, 2, 3, . . . , n} → B.

LR & Small (2009): Generalized to sets in arithmetic progression.
Let S = {a + tb | 0 ≤ t ≤ n− 1}. Then there is a coprime mapping
g : {1, 2, . . . , n} → S if and only if every common prime divisor of
a and b is greater than n.



We refer to a set of n consecutive integers as an n-set and consider
coprime mappings on adjacent n-sets A and B where 1 6∈ A. Take:

A = {s, s+1, . . . , s+n−1} and B = {s+n, s+n+1, . . . , s+2n−1}.

The existence of a coprime mapping is not guaranteed:

I A = {2, 3, 4} and B = {5, 6, 7}
I n = 3, 2 divides s, 3 divides s + 1

I n = 10, 3 · 5 · 7 · 11 = 1155, A =
{1143, 1144, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152},
B = {1153, 1154, 1155, 1156, . . . , 1162}

I A = {9, 10, 11, 12} and B = {13, 14, 15, 16}
I A = {66, 67, 68, 69, 70, 71} and B = {72, 73, 74, 75, 76, 77}



The smallest adjacent n-sets A and B without a coprime
mapping

n Smallest Element of A Smallest Element of B
2 3 5
3 2 5
4 9 13
5 9 14
6 66 72
7 65 72
8 50 58
9 51 60

10 1143 1153
11 1143 1154
12 14999 15011
13 14999 15012
14 14999 15013
15 14999 15014
16 255237 255253
17 255237 255254



Conjecture: Let n be a positive integer, n 6= 3, and A and B be
adjacent n-sets with n ∈ A. Then a coprime mapping f : A→ B
exists.

We prove the conjecture holds in two special cases:

1. When A = {2, 3, 4, . . . , n + 1}, and

2. When n or n + 1 is prime.

We computationally verify that the conjecture holds for n ≤ 600.
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Special case: A = {2, 3, . . . , n + 1}

Theorem
Let n > 3. If A = {2, 3, . . . , n + 1} and B = {n + 2, . . . , 2n + 1},
then there exists a coprime mapping f : A→ B.

Outline of proof:

I Map the evens in A to the odds in B by using the result of
Daykin & Baines / Pomerance & Selfridge.

I Map odds in A to the evens in B by dividing the evens in B
by powers of two to reduce the problem to finding a coprime
mapping from the set of odds in A to itself. Then use the
lemma.

Lemma
Let A = {s + bt | 0 ≤ t ≤ n − 1} be a set of n integers in
arithmetic progression. Then there exists a coprime mapping
f : A→ A if and only if gcd(s, b) = 1 and s is odd if n is odd.



Example: n = 10

A = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
B = {12, 13, 14, 15, 16, 17, 18, 19, 20, 21}

Separate into odds/evens:
Aevens = {2, 4, 6, 8, 10} Aodds = {3, 5, 7, 9, 11}
Bodds = {13, 15, 17, 19, 21} Bevens = {12, 14, 16, 18, 20}

Coprime mapping on evens in A:
Use the coprime mapping {1, 2, . . . , 11} → {12, 13, . . . , 22}:
2→ 13, 4→ 15, 6→ 17, 8→ 19, 10→ 21

Coprime mapping on odds in A:
Divide the evens in B by powers of 2: B∗

evens = {3, 7, 1, 9, 5}. Use
the lemma to construct a coprime mapping Aodds → B∗

evens .
Return powers of 2 to get coprime mapping Aodds → Bevens .



Special case: n or n + 1 is prime

Theorem
Let p > 3 be prime, and A and B be adjacent p-sets with p ∈ A.
Then a coprime mapping f : A→ B exists.

Example: n = 13, a0 = 5
A = {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}

B = {18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}

(5, 18), (6,19), (7,20), (8,21), (9,22), (10,23), (11,24), (12,25), (13,28),
(14,27), (15,26), (16,29), (17,30)



Theorem
Let n > 3 be a positive integer such that n + 1 is prime. Let A and
B be adjacent n-sets with n ∈ A. Then a coprime mapping
f : A→ B exists.

Example: n = 12, s = 5
A = {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}

B = {17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28}

(5, 18), (6,19), (7,20), (8,21), (9,22), (10,23), (11,26), (12,25), (13,24),
(14,27), (15,28), (16,17)



Algorithm for a coprime mapping f : A→ B

A = {s, s + 1, . . . , s + n − 1}
B = {s + n, s + n + 1, . . . , s + 2n − 1}

Pomerance and Selfridge prove D. J. Newman’s coprime mapping
conjecture (s = 1) by providing an algorithm for the construction
of the desired coprime mapping, and proving that their algorithm is
always successful. They also briefly describe a simpler algorithm.

It is the main idea behind their simpler algorithm that we use to
computationally verify our conjecture for n ≤ 600.

General idea: Let φ denote Euler’s function and relabel the
integers in A as a1, a2, . . . , an where φ(ai )/ai ≤ φ(ai+1)/ai+1 for
1 ≤ i < n . Inductively define f (ai ) as the least integer in B
coprime to ai and not equal to f (a1), . . . , f (ai−1).

.



Rough description of the algorithm:

1. Input n.

2. Let s := 3.

3. Let A and B be adjacent n-sets such that the smallest
element of A is s.

4. Order Aevens , Aodds , Bevens , Bodds by increasing values of
φ(k)/k.

5. Construct a coprime mapping from Aevens onto Bodds by
inductively mapping each element of Aevens to the first
element in Bodds that it is coprime to.

6. Construct a coprime mapping from Aodds onto Bevens in the
same way.

7. If a pair of elements is left over, run back through the pairs
already matched until a pair is found that can be swapped to
give two coprime pairings.

8. Repeat Steps 3–7 for s = 4, 5, . . . , n.



Example of algorithm: n = 11, s = 6

A = {6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
B = {17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27}

Split into evens/odds and sort by φ(k)/k:
Aevens = {6, 12, 10, 14, 8, 16} Aodds = {15, 9, 7, 11, 13}
Bodds = {21, 27, 25, 17, 19, 23} Bevens = {18, 24, 20, 22, 26}

Use algorithm to find a coprime mapping from Aevens onto Bodds :
6→ 25, 12→ 17, 10→ 21, 14→ 27, 8→ 19, 16→ 23

Use algorithm to find a coprime mapping from Aodds onto Bevens :
15→ 22, 9→ 20, 7→ 18, 11→ 24, 13→ 26

Swap to complete the mapping:
15→ 22, 9→ 20, 7→ 18, 11→ 26, 13→ 24
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Computational Result

For n ≤ 600 we successfully implemented our algorithm in
SageMath. This verifies:

Let 4 ≤ n ≤ 600 and A and B be adjacent n-sets with
n ∈ A. Then a coprime mapping f : A→ B exists.



Application to prime trees

Definition
A graph with vertex set V is said to be prime if its vertices can be
labeled with distinct integers 1, 2, . . . , |V | such that for each edge
xy the labels assigned to x and y are coprime.

Around 1980, Entringer conjectured that all trees are prime. Little
progress was made on this conjecture until 2011 when Haxell,
Pikhurko, Taraz proved that all large trees are prime. Various
classes of trees are known to be prime.

We wanted to prove that all Fibonacci trees are prime.



Fibonacci trees

Definition
The Fibonacci tree Fn is defined as the binary tree created by
adjoining to a solitary vertex the Fibonacci tree Fn−2 as a left
subtree and the Fibonacci tree Fn−1 as a right subtree. By
definition, F0 is the empty tree, and F1 is the trivial tree consisting
of a single vertex.

F1 F2 F3 F4

Let fn denote the nth Fibonacci number (1, 1, 2, 3, 5, 8, 13, . . .).

I Number of leaves of the tree Fn is fn.

I Number of vertices of Fn is fn+2 − 1.



Coprime mappings on Fibonacci n-sets

Theorem
Let N ≥ 5. If there exists a coprime mapping between the fn-sets
An = {fn−1, . . . , fn, . . . , fn+1 − 1} and Bn = {fn+1, . . . , fn+2 − 1}
for all 5 ≤ n ≤ N, then the Fibonacci tree FN is prime.

We used our algorithm: The first 30 Fibonacci trees are prime!

Note that F30 is a tree on 2,178,308 vertices. The computation
took 27 hours.



Thank you


