

Coprime Mappings on n -Sets

Bayley Larsen, Hunter Lehmann, Andrew Park,
and Leanne Robertson

Seattle University

West Coast Number Theory Conference, Pacific Grove, CA,
December 19, 2016

Coprime mappings

A bijection $f : A \rightarrow B$ on two sets of integers A and B is a *coprime mapping* if $\gcd(a, f(a)) = 1$ for all $a \in A$.

Daykin & Baines (1963): Investigated the existence of coprime mappings on sets of consecutive integers.

Main Result: If

$$A = \{1, 2, \dots, n\} \text{ and } B = \{n+1, n+2, \dots, 2n\}$$

then a coprime mapping from A onto B always exists.

Proof of D.J. Newman's Coprime Mapping Conjecture

[Pomerance & Selfridge \(1980\)](#): If n is a positive integer and B is any set of n consecutive integers, then there is a coprime mapping $f : \{1, 2, 3, \dots, n\} \rightarrow B$.

[LR & Small \(2009\)](#): Generalized to sets in arithmetic progression. Let $S = \{a + tb \mid 0 \leq t \leq n - 1\}$. Then there is a coprime mapping $g : \{1, 2, \dots, n\} \rightarrow S$ if and only if every common prime divisor of a and b is greater than n .

We refer to a set of n consecutive integers as an *n-set* and consider coprime mappings on adjacent n -sets A and B where $1 \notin A$. Take:

$$A = \{s, s+1, \dots, s+n-1\} \text{ and } B = \{s+n, s+n+1, \dots, s+2n-1\}.$$

The existence of a coprime mapping is not guaranteed:

- ▶ $A = \{2, 3, 4\}$ and $B = \{5, 6, 7\}$
- ▶ $n = 3$, 2 divides s , 3 divides $s + 1$
- ▶ $n = 10$, $3 \cdot 5 \cdot 7 \cdot 11 = 1155$, $A = \{1143, 1144, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152\}$,
 $B = \{1153, 1154, 1155, 1156, \dots, 1162\}$
- ▶ $A = \{9, 10, 11, 12\}$ and $B = \{13, 14, 15, 16\}$
- ▶ $A = \{66, 67, 68, 69, 70, 71\}$ and $B = \{72, 73, 74, 75, 76, 77\}$

The smallest adjacent n -sets A and B without a coprime mapping

n	Smallest Element of A	Smallest Element of B
2	3	5
3	2	5
4	9	13
5	9	14
6	66	72
7	65	72
8	50	58
9	51	60
10	1143	1153
11	1143	1154
12	14999	15011
13	14999	15012
14	14999	15013
15	14999	15014
16	255237	255253
17	255237	255254

Conjecture: Let n be a positive integer, $n \neq 3$, and A and B be adjacent n -sets with $n \in A$. Then a coprime mapping $f : A \rightarrow B$ exists.

Conjecture: Let n be a positive integer, $n \neq 3$, and A and B be adjacent n -sets with $n \in A$. Then a coprime mapping $f : A \rightarrow B$ exists.

We prove the conjecture holds in two special cases:

1. When $A = \{2, 3, 4, \dots, n + 1\}$, and
2. When n or $n + 1$ is prime.

We computationally verify that the conjecture holds for $n \leq 600$.

Special case: $A = \{2, 3, \dots, n + 1\}$

Theorem

Let $n > 3$. If $A = \{2, 3, \dots, n + 1\}$ and $B = \{n + 2, \dots, 2n + 1\}$, then there exists a coprime mapping $f : A \rightarrow B$.

Outline of proof:

- ▶ Map the evens in A to the odds in B by using the result of Daykin & Baines / Pomerance & Selfridge.
- ▶ Map odds in A to the evens in B by dividing the evens in B by powers of two to reduce the problem to finding a coprime mapping from the set of odds in A to itself. Then use the lemma.

Lemma

Let $A = \{s + bt \mid 0 \leq t \leq n - 1\}$ be a set of n integers in arithmetic progression. Then there exists a coprime mapping $f : A \rightarrow A$ if and only if $\gcd(s, b) = 1$ and s is odd if n is odd.

Example: $n = 10$

$$A = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$$

$$B = \{12, 13, 14, 15, 16, 17, 18, 19, 20, 21\}$$

Separate into odds/evens:

$$A_{\text{evens}} = \{2, 4, 6, 8, 10\} \quad A_{\text{odds}} = \{3, 5, 7, 9, 11\}$$

$$B_{\text{odds}} = \{13, 15, 17, 19, 21\} \quad B_{\text{evens}} = \{12, 14, 16, 18, 20\}$$

Coprime mapping on evens in A :

Use the coprime mapping $\{1, 2, \dots, 11\} \rightarrow \{12, 13, \dots, 22\}$:

$$2 \rightarrow 13, 4 \rightarrow 15, 6 \rightarrow 17, 8 \rightarrow 19, 10 \rightarrow 21$$

Coprime mapping on odds in A :

Divide the evens in B by powers of 2: $B_{\text{evens}}^* = \{3, 7, 1, 9, 5\}$. Use the lemma to construct a coprime mapping $A_{\text{odds}} \rightarrow B_{\text{evens}}^*$. Return powers of 2 to get coprime mapping $A_{\text{odds}} \rightarrow B_{\text{evens}}$.

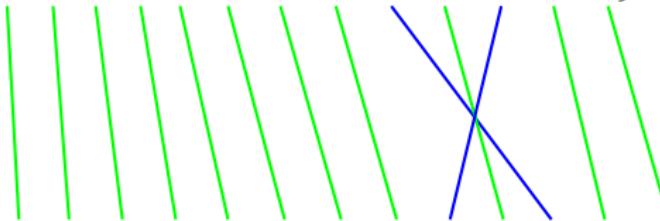
Special case: n or $n + 1$ is prime

Theorem

Let $p > 3$ be prime, and A and B be adjacent p -sets with $p \in A$.
Then a coprime mapping $f : A \rightarrow B$ exists.

Example: $n = 13$, $a_0 = 5$

$$A = \{5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17\}$$



$$B = \{18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30\}$$

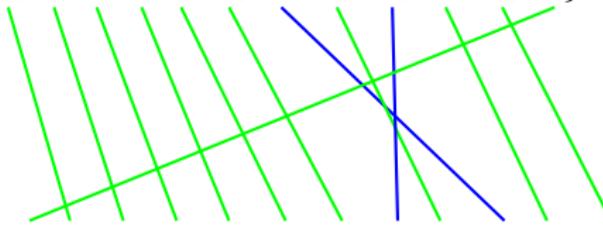
$(5, 18), (6, 19), (7, 20), (8, 21), (9, 22), (10, 23), (11, 24), (12, 25), (13, 28),$
 $(14, 27), (15, 26), (16, 29), (17, 30)$

Theorem

Let $n > 3$ be a positive integer such that $n + 1$ is prime. Let A and B be adjacent n -sets with $n \in A$. Then a coprime mapping $f : A \rightarrow B$ exists.

Example: $n = 12, s = 5$

$$A = \{5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}$$



$$B = \{17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28\}$$

$(5, 18), (6, 19), (7, 20), (8, 21), (9, 22), (10, 23), (11, 26), (12, 25), (13, 24),$
 $(14, 27), (15, 28), (16, 17)$

Algorithm for a coprime mapping $f : A \rightarrow B$

$$A = \{s, s+1, \dots, s+n-1\}$$

$$B = \{s+n, s+n+1, \dots, s+2n-1\}$$

Pomerance and Selfridge prove D. J. Newman's coprime mapping conjecture ($s = 1$) by providing an algorithm for the construction of the desired coprime mapping, and proving that their algorithm is always successful. They also briefly describe a simpler algorithm.

It is the main idea behind their simpler algorithm that we use to computationally verify our conjecture for $n \leq 600$.

General idea: Let ϕ denote Euler's function and relabel the integers in A as a_1, a_2, \dots, a_n where $\phi(a_i)/a_i \leq \phi(a_{i+1})/a_{i+1}$ for $1 \leq i < n$. Inductively define $f(a_i)$ as the least integer in B coprime to a_i and not equal to $f(a_1), \dots, f(a_{i-1})$.

Rough description of the algorithm:

1. Input n .
2. Let $s := 3$.
3. Let A and B be adjacent n -sets such that the smallest element of A is s .
4. Order A_{evens} , A_{odds} , B_{evens} , B_{odds} by increasing values of $\phi(k)/k$.
5. Construct a coprime mapping from A_{evens} onto B_{odds} by inductively mapping each element of A_{evens} to the first element in B_{odds} that it is coprime to.
6. Construct a coprime mapping from A_{odds} onto B_{evens} in the same way.
7. If a pair of elements is left over, run back through the pairs already matched until a pair is found that can be swapped to give two coprime pairings.
8. Repeat Steps 3–7 for $s = 4, 5, \dots, n$.

Example of algorithm: $n = 11$, $s = 6$

$$A = \{6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}$$

$$B = \{17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27\}$$

Split into evens/odds and sort by $\phi(k)/k$:

$$A_{\text{evens}} = \{6, 12, 10, 14, 8, 16\} \quad A_{\text{odds}} = \{15, 9, 7, 11, 13\}$$

$$B_{\text{odds}} = \{21, 27, 25, 17, 19, 23\} \quad B_{\text{evens}} = \{18, 24, 20, 22, 26\}$$

Example of algorithm: $n = 11, s = 6$

$$A = \{6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}$$

$$B = \{17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27\}$$

Split into evens/odds and sort by $\phi(k)/k$:

$$A_{\text{evens}} = \{6, 12, 10, 14, 8, 16\} \quad A_{\text{odds}} = \{15, 9, 7, 11, 13\}$$

$$B_{\text{odds}} = \{21, 27, 25, 17, 19, 23\} \quad B_{\text{evens}} = \{18, 24, 20, 22, 26\}$$

Use algorithm to find a coprime mapping from A_{evens} onto B_{odds} :

$$6 \rightarrow 25$$

Example of algorithm: $n = 11, s = 6$

$$A = \{6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}$$

$$B = \{17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27\}$$

Split into evens/odds and sort by $\phi(k)/k$:

$$A_{\text{evens}} = \{6, 12, 10, 14, 8, 16\} \quad A_{\text{odds}} = \{15, 9, 7, 11, 13\}$$

$$B_{\text{odds}} = \{21, 27, 25, 17, 19, 23\} \quad B_{\text{evens}} = \{18, 24, 20, 22, 26\}$$

Use algorithm to find a coprime mapping from A_{evens} onto B_{odds} :

$$6 \rightarrow 25, 12 \rightarrow 17, 10 \rightarrow 21, 14 \rightarrow 27, 8 \rightarrow 19, 16 \rightarrow 23$$

Example of algorithm: $n = 11, s = 6$

$$A = \{6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}$$

$$B = \{17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27\}$$

Split into evens/odds and sort by $\phi(k)/k$:

$$A_{\text{evens}} = \{6, 12, 10, 14, 8, 16\} \quad A_{\text{odds}} = \{15, 9, 7, 11, 13\}$$

$$B_{\text{odds}} = \{21, 27, 25, 17, 19, 23\} \quad B_{\text{evens}} = \{18, 24, 20, 22, 26\}$$

Use algorithm to find a coprime mapping from A_{evens} onto B_{odds} :

$$6 \rightarrow 25, 12 \rightarrow 17, 10 \rightarrow 21, 14 \rightarrow 27, 8 \rightarrow 19, 16 \rightarrow 23$$

Use algorithm to find a coprime mapping from A_{odds} onto B_{evens} :

$$15 \rightarrow 22, 9 \rightarrow 20, 7 \rightarrow 18, 11 \rightarrow 24, 13 \rightarrow 26$$

Example of algorithm: $n = 11, s = 6$

$$A = \{6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}$$

$$B = \{17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27\}$$

Split into evens/odds and sort by $\phi(k)/k$:

$$A_{\text{evens}} = \{6, 12, 10, 14, 8, 16\} \quad A_{\text{odds}} = \{15, 9, 7, 11, 13\}$$

$$B_{\text{odds}} = \{21, 27, 25, 17, 19, 23\} \quad B_{\text{evens}} = \{18, 24, 20, 22, 26\}$$

Use algorithm to find a coprime mapping from A_{evens} onto B_{odds} :

$$6 \rightarrow 25, 12 \rightarrow 17, 10 \rightarrow 21, 14 \rightarrow 27, 8 \rightarrow 19, 16 \rightarrow 23$$

Use algorithm to find a coprime mapping from A_{odds} onto B_{evens} :

$$15 \rightarrow 22, 9 \rightarrow 20, 7 \rightarrow 18, 11 \rightarrow 24, 13 \rightarrow 26$$

Swap to complete the mapping:

$$15 \rightarrow 22, 9 \rightarrow 20, 7 \rightarrow 18, 11 \rightarrow 26, 13 \rightarrow 24$$

Computational Result

For $n \leq 600$ we successfully implemented our algorithm in SageMath. This verifies:

Let $4 \leq n \leq 600$ and A and B be adjacent n -sets with $n \in A$. Then a coprime mapping $f : A \rightarrow B$ exists.

Application to prime trees

Definition

A graph with vertex set V is said to be *prime* if its vertices can be labeled with distinct integers $1, 2, \dots, |V|$ such that for each edge xy the labels assigned to x and y are coprime.

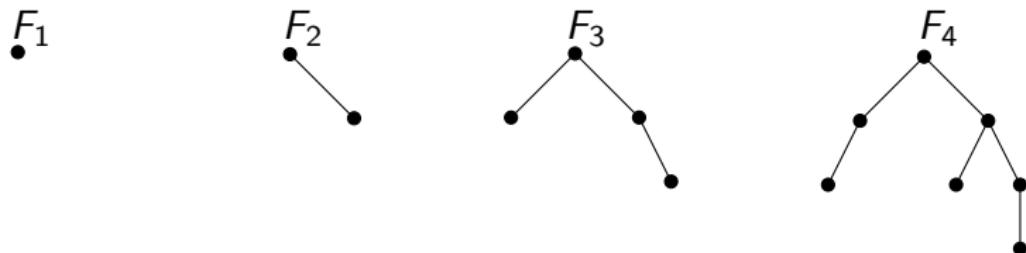
Around 1980, **Entringer** conjectured that all trees are prime. Little progress was made on this conjecture until 2011 when **Haxell, Pikhurko, Taraz** proved that all large trees are prime. Various classes of trees are known to be prime.

We wanted to prove that all Fibonacci trees are prime.

Fibonacci trees

Definition

The *Fibonacci tree* F_n is defined as the binary tree created by adjoining to a solitary vertex the Fibonacci tree F_{n-2} as a left subtree and the Fibonacci tree F_{n-1} as a right subtree. By definition, F_0 is the empty tree, and F_1 is the trivial tree consisting of a single vertex.



Let f_n denote the n th Fibonacci number $(1, 1, 2, 3, 5, 8, 13, \dots)$.

- ▶ Number of leaves of the tree F_n is f_n .
- ▶ Number of vertices of F_n is $f_{n+2} - 1$.

Coprime mappings on Fibonacci n -sets

Theorem

Let $N \geq 5$. If there exists a coprime mapping between the f_n -sets $A_n = \{f_{n-1}, \dots, f_n, \dots, f_{n+1} - 1\}$ and $B_n = \{f_{n+1}, \dots, f_{n+2} - 1\}$ for all $5 \leq n \leq N$, then the Fibonacci tree F_N is prime.

We used our algorithm: The first 30 Fibonacci trees are prime!

Note that F_{30} is a tree on 2,178,308 vertices. The computation took 27 hours.

Thank you