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Introduction Hifisifte Cres

Elliptic Curves

@ Let p > 3 be a prime and let E be an elliptic curve over the
field IF,, be an elliptic curve given by

E:y>=x3+ax+b
with a, b € Fj, and 423 + 27b% # 0.
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@ Let p > 3 be a prime and let E be an elliptic curve over the
field IF,, be an elliptic curve given by
E:y>=x3+ax+b

with a, b € Fj, and 423 + 27b% # 0.
@ It is known that these equations generate J = 2p 4+ O(1)
distinct (non-isomorphic over F,,) curves.
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Elliptic Curves

@ Let p > 3 be a prime and let E be an elliptic curve over the
field IF,, be an elliptic curve given by
E:y>=x3+ax+b

with a, b € Fj, and 423 + 27b% # 0.

@ It is known that these equations generate J = 2p 4+ O(1)
distinct (non-isomorphic over F,,) curves.

@ The Hasse-Weil bound gives that

#E(F,) —p—1€[—T,T]where T =[2\/p].
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Elliptic Curves

@ Let p > 3 be a prime and let E be an elliptic curve over the
field IF,, be an elliptic curve given by
E:y>=x3+ax+b

with a, b € Fj, and 423 + 27b% # 0.

@ It is known that these equations generate J = 2p 4+ O(1)
distinct (non-isomorphic over F,,) curves.

@ The Hasse-Weil bound gives that

#E(F,) —p—1€[—T,T]where T =[2\/p].

@ Curves with the same value of #E(F,) are said to be
isogenous.
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Introduction Hifisifte Cres

Elliptic Curves

@ Let p > 3 be a prime and let E be an elliptic curve over the
field IF,, be an elliptic curve given by

E:y?’=x34ax+b
with a, b € Fj, and 423 + 27b% # 0.
@ It is known that these equations generate J = 2p 4+ O(1)

distinct (non-isomorphic over F,,) curves.
@ The Hasse-Weil bound gives that

#E(F,) —p—1€[—T,T]where T =[2\/p].
@ Curves with the same value of #E(F,) are said to be
isogenous.
o Let /(t) be number of distinct isomorphism classes in the
isogeny class of curves with #E(F,) = p+ 1 — t, with
[t| < T.
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Introduction Hifisifte Cres

Elliptic Curves

@ The average value of /(t) over t € [~ T, T] is clearly

1 U P
71 2 =57y ="7 TOo0)
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Introduction Hifisifte Cres

Elliptic Curves

@ The average value of /(t) over t € [~ T, T] is clearly

1 J VP
71 2 [O=g57 =5 0o
—T<t<T

@ Therefore, on average, each isogeny class contains about
v/P/2 non-isomorphic curves.
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Introduction Hifisifte Cres

Elliptic Curves

@ The average value of /(t) over t € [~ T, T] is clearly

1 U P
71 2 =57y ="7 TOo0)
—T<t<T

@ Therefore, on average, each isogeny class contains about
v/P/2 non-isomorphic curves.
@ This motivates the study of the distribution of the values of

_ ()
1) = 0.5,/p
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Introduction Hifisifte Cres

Elliptic Curves

@ The average value of /(t) over t € [~ T, T] is clearly

1 U P
71 2 =57y ="7 TOo0)
—T<t<T

@ Therefore, on average, each isogeny class contains about
v/P/2 non-isomorphic curves.
@ This motivates the study of the distribution of the values of
I(t
u(t) = (t) .
0.5\/p

o Lenstra showed that for any t € [-2,/p,2,/p], we have

u(t) = O (log p(log log p)?) .
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Introduction Hlffzite Comes

Elliptic Curves

@ Birch showed that the Sato-Tate conjecture over the family of
all isomorphism classes of elliptic curves over F, implies that
for o, 8 € [-1,1],

> ut) = (e, B)T + o(p),
aT<t<BT
where p(a, ) is the Sato-Tate density given by

arccos (3

2
,u(oz,ﬂ):; / sin? 6 do.
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Introduction Hifisifte Cres

Elliptic Curves

@ Birch showed that the Sato-Tate conjecture over the family of
all isomorphism classes of elliptic curves over F, implies that
for o, 8 € [-1,1],

> ut) = p(a, B)T + o(p),

aT<t<BT
where p(a, ) is the Sato-Tate density given by

arccos (3

(e, B) 2 / sin? 6 do.

™
arccos «

@ The definition of /(t) and «(t) can be extended to arbitrary
finite fields with g elements and these are the objects of our
study.
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Introduction Hifisifte Cres

Main Result

Theorem 1 (Shparlinski, Z)
Let R € Z with 0 < R <2R < 2,/q. We have

= Z ot) < (loglog q)"/=.
R R<t<2R |0g R

e Now we get that for any fixed € > 0, there is a constant c(¢)
such that for R > g°, we have

% > ut) < c(e)/log q(log log )"/

R<t<2R
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Theorem 1 (Shparlinski, Z)
Let R € Z with 0 < R <2R < 2,/q. We have

= Z ot) < (loglog q)"/=.
R R<t<2R |0g R

e Now we get that for any fixed € > 0, there is a constant c(¢)
such that for R > g°, we have

% > ut) < c(e)/log q(log log )"/
R<t<2R

@ Recall Lenstra's individual bound (t) < log g(log log q)?.
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Introduction Hifisifte Cres

Main Result

Theorem 1 (Shparlinski, Z)
Let R € Z with 0 < R <2R < 2,/q. We have

= Z ot) < (loglog q)"/=.
R R<t<2R |0g R

e Now we get that for any fixed € > 0, there is a constant c(¢)
such that for R > g°, we have

% > ut) < c(e)/log q(log log )"/
R<t<2R

@ Recall Lenstra's individual bound (t) < log g(log log q)?.
@ Our Theorem is better than what one gets from the individual
bounds as soon as R > (log log g)3*¢.
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Sketching the Proof

Proof of the Theorem

e Using an identity of Lenstra for /(t), we get

I(t) < /A(R)L(t)(log log 9)°,
where A(t) = 4q — t? and L(t) is essentially the value of the
Dirichlet L-function associated with the primitive quadratic
character modulo the square-free kernel of A(t) at s = 1.
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Sketching the Proof

Proof of the Theorem

e Using an identity of Lenstra for /(t), we get

(1) < v/ A(t)L(t)(log log g)°,

where A(t) = 4q — t? and L(t) is essentially the value of the
Dirichlet L-function associated with the primitive quadratic
character modulo the square-free kernel of A(t) at s = 1.

@ We are led to investigate the sum >, |L(t)
t~Rmeans R <t <2R.

, where
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Sketching the Proof

Proof of the Theorem

e Using an identity of Lenstra for /(t), we get

I(t) < /A(R)L(t)(log log 9)°,

where A(t) = 4q — t? and L(t) is essentially the value of the
Dirichlet L-function associated with the primitive quadratic
character modulo the square-free kernel of A(t) at s = 1.

@ We are led to investigate the sum >, |L(t)
t~Rmeans R <t <2R.

@ Using the Dirichlet series for £(t) and partial summation, it
suffices to estimate

, Where

N

th(”)

n=1

> max : (1)
t~R
where &; is a quadratic character modulo A(t)and L is a large

parameter to be optimized.
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Sketching the Proof Blcc

Proof of the Theorem

e Now after some manipulations of (1) using the orthogonality
of characters, Holder's inequality to amplify the n-sum and
the Gauss sums, we are led to

At) K kv ?
DS \zpw)e(Am)
t~R v=1 k=1

ged(v,A(t))=1

where K = (2L)" with v being the exponent when applying
Holder. p(k) is bounded by a divisor function.
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Sketching the Proof

Proof of the Theorem

e Now after some manipulations of (1) using the orthogonality
of characters, Holder's inequality to amplify the n-sum and
the Gauss sums, we are led to

A(t) K Y 2
DS \zpw)e(Am)
t~R v=1 k=1

ged(v,A(t))=1

where K = (2L)" with v being the exponent when applying
Holder. p(k) is bounded by a divisor function.

@ We now need a large sieve inequality of quadratic moduli.
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Large Sieve with Quadratic Moduli

Large Sieve with Quadratic Moduli

@ The classical large sieve inequality is a mean-value estimate
for character sums.

q M+N M+N

2
an
>3 () <@m Y lanl
g<Q a=1 n=M-+1 q n=M+1
ged(a,q)

where {a,} is an arbitrary sequence of complex numbers.
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Large Sieve with Quadratic Moduli

Large Sieve with Quadratic Moduli

@ The classical large sieve inequality is a mean-value estimate
for character sums.

q M+N M+N

X 1Y ane(a;>2<<(o2+N) 3 Jadl®

g<Q a=1 n=M+1 n=M+1
ged(a,q)

where {a,} is an arbitrary sequence of complex numbers.

@ We need an estimate like the above, but for g running over
values of a quadratic polynomial.

Liangyi Zhao Joint work with I. E. Shparlinski Elliptic Curves in Isogeny Classes



Large Sieve with Quadratic Moduli

Large Sieve with Quadratic Moduli

@ The classical large sieve inequality is a mean-value estimate
for character sums.

q M+N M+N

X 1Y ane(a;>2<<(o2+N) 3 Jadl®

g<Q a=1 n=M+1 n=M+1
ged(a,q)

where {a,} is an arbitrary sequence of complex numbers.

@ We need an estimate like the above, but for g running over
values of a quadratic polynomial.

@ As is often the case in analytic number theory, the problem
becomes more difficult when the averaging is taken over a
sparse set.
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Large Sieve with Quadratic Moduli

Large Sieve with Quadratic Moduli

@ The large sieve inequality for square moduli has been studied
by S. Baier and the speaker, both independently and jointly.
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Large Sieve with Quadratic Moduli

Large Sieve with Quadratic Moduli

@ The large sieve inequality for square moduli has been studied
by S. Baier and the speaker, both independently and jointly.

@ The best known result is

7 M+N 2
> X Y (%)
g<Q a=1 n=M-+1 q
gcd{2.9)=1 (2)
M+N
<<(Q3+N+min{¢5/v,@2f/v}> 3 Janf
n=M+1
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Large Sieve with Quadratic Moduli

Large Sieve with Quadratic Moduli

@ The large sieve inequality for square moduli has been studied
by S. Baier and the speaker, both independently and jointly.

@ The best known result is

7 M+N 2
> X Y (%)
g<Q a=1 n=M-+1 q
gcd{2.9)=1 (2)
M+N
<<(Q3+N+min{¢5/v,@2f/v}> 3 Janf
n=M+1

@ (2) is obtained using intricate Fourier analysis and the method
can be adapted to our situation.
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Large Sieve with Quadratic Moduli

Large Sieve with Quadratic Moduli

@ We have
A(t) N an 2
>3 [See(ay)
t~R a=1 n=1
ged(a,A(t))=1
N
< (qR + N+ min {\/E/v + JgN3/, mq}) 3 lanl
n=1

(3)
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Large Sieve with Quadratic Moduli

@ We have

A(t) .
Yoy [Se(at)

ged(a,A(t))=1
N
< (qR + N+ min {\/E/v + JgN3/, mq}) 3 lanl
n=1
(3)

@ Using (3) at the appropriate places and optimizing everything,
we get the desired result.

2

Liangyi Zhao Joint work with I. E. Shparlinski Elliptic Curves in Isogeny Classes



	Introduction
	Elliptic Curves

	Sketching the Proof
	Proof

	Large Sieve with Quadratic Moduli

