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Let p > 3 be a prime and let E be an elliptic curve over the
field Fp be an elliptic curve given by

E : y2 = x3 + ax + b

with a, b ∈ Fp and 4a3 + 27b2 6= 0.

It is known that these equations generate J = 2p + O(1)
distinct (non-isomorphic over Fp) curves.
The Hasse-Weil bound gives that

#E (Fp)− p − 1 ∈ [−T ,T ] where T = [2
√
p].

Curves with the same value of #E (Fp) are said to be
isogenous.
Let I (t) be number of distinct isomorphism classes in the
isogeny class of curves with #E (Fp) = p + 1− t, with
|t| ≤ T .
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The average value of I (t) over t ∈ [−T ,T ] is clearly

1

2T + 1

∑
−T≤t≤T

I (t) =
J

2T + 1
=

√
p

2
+ O(1).

Therefore, on average, each isogeny class contains about√
p/2 non-isomorphic curves.

This motivates the study of the distribution of the values of

ι(t) =
I (t)

0.5
√
p
.

Lenstra showed that for any t ∈ [−2
√
p, 2
√
p], we have

ι(t) = O
(
log p(log log p)2

)
.
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Birch showed that the Sato-Tate conjecture over the family of
all isomorphism classes of elliptic curves over Fp implies that
for α, β ∈ [−1, 1],∑

αT≤t≤βT
ι(t) = µ(α, β)T + o(p),

where µ(α, β) is the Sato-Tate density given by

µ(α, β) =
2

π

arccosβ∫
arccosα

sin2 θ dθ.

The definition of I (t) and ι(t) can be extended to arbitrary
finite fields with q elements and these are the objects of our
study.
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Main Result

Theorem 1 (Shparlinski, Z)

Let R ∈ Z with 0 < R < 2R < 2
√
q. We have

1

R

∑
R<t≤2R

ι(t)� log q√
logR

(log log q)7/2.

Now we get that for any fixed ε > 0, there is a constant c(ε)
such that for R ≥ qε, we have

1

R

∑
R<t≤2R

ι(t) ≤ c(ε)
√

log q(log log q)7/2.

Recall Lenstra’s individual bound ι(t)� log q(log log q)2.
Our Theorem is better than what one gets from the individual
bounds as soon as R > (log log q)3+ε.
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Using an identity of Lenstra for I (t), we get

I (t)�
√

∆(t)L(t)(log log q)3,

where ∆(t) = 4q − t2 and L(t) is essentially the value of the
Dirichlet L-function associated with the primitive quadratic
character modulo the square-free kernel of ∆(t) at s = 1.

We are led to investigate the sum
∑

t∼R |L(t)|, where
t ∼ R means R < t ≤ 2R.
Using the Dirichlet series for L(t) and partial summation, it
suffices to estimate ∑

t∼R

max
L∼N

∣∣∣∣∣
N∑

n=1

ξt(n)

∣∣∣∣∣ , (1)

where ξt is a quadratic character modulo ∆(t)and L is a large
parameter to be optimized.
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Proof of the Theorem

Now after some manipulations of (1) using the orthogonality
of characters, Hölder’s inequality to amplify the n-sum and
the Gauss sums, we are led to

∑
t∼R

∆(t)∑
v=1

gcd(v ,∆(t))=1

∣∣∣∣∣
K∑

k=1

ρ(k)e

(
kv

∆(t)

)∣∣∣∣∣
2

,

where K = (2L)ν with ν being the exponent when applying
Hölder. ρ(k) is bounded by a divisor function.

We now need a large sieve inequality of quadratic moduli.
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The classical large sieve inequality is a mean-value estimate
for character sums.

∑
q≤Q

q∑
a=1

gcd(a,q)

∣∣∣∣∣
M+N∑

n=M+1

ane

(
an

q

)∣∣∣∣∣
2

� (Q2 + N)
M+N∑

n=M+1

|an|2.

where {an} is an arbitrary sequence of complex numbers.

We need an estimate like the above, but for q running over
values of a quadratic polynomial.

As is often the case in analytic number theory, the problem
becomes more difficult when the averaging is taken over a
sparse set.
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The large sieve inequality for square moduli has been studied
by S. Baier and the speaker, both independently and jointly.

The best known result is

∑
q≤Q

q2∑
a=1

gcd(a,q)=1

∣∣∣∣∣
M+N∑

n=M+1

ane

(
an

q2

)∣∣∣∣∣
2

�
(
Q3 + N + min

{√
QN,Q2

√
N
}) M+N∑

n=M+1

|an|2.

(2)

(2) is obtained using intricate Fourier analysis and the method
can be adapted to our situation.
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We have

∑
t∼R

∆(t)∑
a=1

gcd(a,∆(t))=1

∣∣∣∣∣
N∑

n=1

ane

(
an

∆(t)

)∣∣∣∣∣
2

�
(
qR + N + min

{√
RN +

√
qN3/4,

√
Nq
}) N∑

n=1

|an|2.

(3)

Using (3) at the appropriate places and optimizing everything,
we get the desired result.
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