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Motivation

• 1974 Drinfeld: Shtuka correspondence between Drinfeld
modules and vector bundles

• Rank 1 Drinfeld modules =⇒ vector bundles are actually
line bundles

• Concrete shtuka function, determines much of arithmetic

Question
Can we write down explicit formulas (as in Carlitz) for
arithmetic objects using the shtuka function?

Answer
Yes, three applications
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Overview

1. Notation and Drinfeld modules

2. Exponential function and period

3. Reciprocal sums and L-series



Background Drinfeld Modules Period and ωρ Reciprocal Sums L-series

Notation

• q = pr, p prime (for talk assume p > 3)

• Fq field with q elements

• E/Fq, elliptic curve given by the equation

E : y2 = t3 + at+ b

• A = Fq[t, y] coordinate ring of E

• K = Fq(t, y) its fraction field
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Notation

• A = Fq[θ, η]

• K = Fq(θ, η)

• Still have η2 = θ3 + aθ + b

• Important! Two copies of Fq(t, y)

• In general: A = scalars, A = operators

• Map ι : A→ A, canonical isomorphism (ι(t) = θ)
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Notation

• K algebraic closure of K

• K∞ completion of K at infinite place

• C∞ completion of K∞

• Extend scalars of function field to C∞(t, y)

• Ξ = (θ, η) is an K-rational point on E with weighted
degree (2, 3)
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Twisting

• For a ∈ C∞[t, y], and a =
∑

i,j aijt
iyj, and k ∈ Z define

twisting

a(k) =
∑
i,j

aq
k

ij t
iyj

• Ie. twisting only affects the θ, η variables

• Define twisting on E(C∞), eg. Ξ(1) = (θq, ηq)
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Twisting via Operators

• K{τ}, twisted polynomial ring, for a ∈ K

τa = aqτ

• K{τ} acts on a ∈ C∞(t, y)

τ ia = a(i)

and K acts by multiplication
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Drinfeld Module
A Drinfeld module is an Fq-module homomorphism
ρ : A→ K{τ}, such that

ρa = ι(a) + a1τ + · · ·+ aiτ
i,

which provides an A action on C∞. The rank r of ρ is the
unique integer such that i = r deg a for all a ∈ A.

Example: If ρt = θ + τ , then

ρt(x) = θ · x+ xq.
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Exponential Function
The exponential function, expρ : C∞ → C∞, defined as

expρ(z) =
∞∑
i=0

zq
i

di
∈ K[[z]],

is the unique Fq-linear power series satisfying

expρ(ι(a)z) = ρa(expρ(z)), a ∈ A.
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Drinfeld divisor
Drinfled (1974): There exists a point V on E(K) such that

V − V (1) = Ξ,

with coordinates denoted V = (α, β). The point V is called
the Drinfeld divisor.
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Shtuka function
The function in f ∈ K(t, y) with divisor

div(f) = (V (1))− (V ) + (Ξ)− (∞),

is called the shtuka function for A (suitably normalized).
Explicitly,

f(t, y) =
y − η −m(t− θ)

t− α
=
ν(t, y)

δ(t)
,

where m is the slope between V (1) and Ξ.
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The ωρ function

Application: Calculating the Period. Following Anderson
and Thakur we define the function

ωρ = ξ1/(q−1)

∞∏
i=0

ξq
i

f (i)
,

where ξ ∈ K is a normalizing factor.

Essential properties:

• (τ − f)(ωρ) = 0

• Simple poles at Ξ(i) for i ≥ 0
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The Period and ωρ

Theorem (G., Papanikolas)
Denote πρ := −ResΞ(ωρ · dt2y

). Then πρ generates ker(expρ)
and we have the product formula

πρ = −ξ
q/(q−1)

δ(1)(Ξ)

∞∏
i=1

ξq
i

f (i)(Ξ)
,

where δ(t) is the denominator of the shtuka function.

Proof.
Anderson generating functions.
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Reciprocal Sums
Application: Reciprocal Sums. We derive new formulas for
reciprocal sums

Si =
∑
a∈Ai+

1

a
,

where Ai+ are the monic elements in A of degree i.

• Studied first by Carlitz in 1935

• Thakur in 1992

• Recently by Pellarin, Anglès, Simon and Perkins (others)
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Reciprocal Sums

Theorem (G., Papanikolas)
The following formula holds for i ≥ 2,

Si =
∑
a∈Ai+

1

a
=

ν(i)

g
(1)
i · f (1) · · · f (i)

∣∣∣∣∣
Ξ

,

where gi(t, y) ∈ K(t, y) is an easily understood linear
polynomial and ν(t, y) is the numerator of the shtuka function.

We also get similar formulas for sums over elements in certain
prime ideals.
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Example
Let E : y2 = t3 − t− 1 over F3. Recall Ξ = (θ, η) is a
K-rational point on E. Monic polynomials in A are

• Degree 0: 1

• Degree 1: ∅
• Degree 2: θ, θ + 1, θ − 1

• Degree 3: η, η + 1, η − 1, η + θ, η − θ, η + θ + 1,
η + θ − 1, η − θ + 1, η − θ − 1
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Example
We calculate

S2 =
1

θ
+

1

θ + 1
+

1

θ − 1
=

1

θ − θ3
.

Also, we can write

f(t, y) =
ν(t, y)

δ(t)
=
y − η − η(t− θ)

t− θ − 1

and

g
(1)
i (t, y) = y − η3 +

η3i + η3

θ3i − θ3
· (t− θ3 − 1).
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Example
One then checks (on the computer) that

S2 =
1

θ − θ3
=

ν(2)(Ξ)

g
(1)
2 (Ξ)f (1)(Ξ)f (2)(Ξ)

.
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Ideas Behind Proof
We use a generalization of a lemma of Simon.

Lemma
Let s ≥ 1 and i ≥ 2, define

Ti,s(t1, y1, . . . , ts, ys) =
∑
a∈Ai+

a(t1, y1)a(t2, y2) · · · a(ts, ys)

Then Ti,s = 0 if and only if s < (i− 1)(q − 1).
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Ideas Behind Proof
Define a deformation of Si

Si(t, y) =
∑
a∈Ai+

a(t, y)

a(θ, η)
.

Using Simon’s lemma to analyze the divisor of Si we obtain
the identity of functions

Si = Si ·
gi

ν(i−1)
· ff (1) · · · f (i−1).

After some more work, we can specialize at Ξ and arrive at the
identity.
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L-series
Application: Pellarin’s L-series. Define

L(t, y; s) =
∑
a∈A+

χ(a)

as
=
∑
a∈A+

a(t, y)

as
.

• Compare with classical L-series where χ(a) = a(t, y) is a
“quasi-character”.

• Pellarin proves special values for s equals 1 in the genus 0
case (Carlitz module).

• We also consider L-series using ideal sums, a la Goss,
similar to Dedekind zeta function
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L-series
We are interested in the specialization at s = 1

L(t, y; 1) =
∑
i≥0

Si.

This allows us to apply the formulas for Si which we just
discussed.
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Theorem (G., Papanikolas)
As elements of the Tate algebra,

L(t, y; 1) = −πρ δ
(1)

fωρ
.

Recall:

• πρ = period of exponential

• δ = denominator of shtuka function

• ωρ = product of reciprocal shtuka functions
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Future Directions

• (Immediate future) Examine tensor powers of A-modules.
Can we get transcendence results?

• (Less near future) Examine rank-1 modules over curves of
higher genus.
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Thank you for listening!
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