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Lehmer’s interesting paper

In 1985 D. H. Lehmer published “Interesting Series Involving the Central Binomial Coe�cient” in
The American Mathematical Monthly.

“This paper marks the sixtieth anniversary of the publication of the author’s first paper in
this MONTHLY. The author hopes to submit manuscripts of other papers from time to time
as occasion arises.”

He defined a series to be interesting in case there is a simple explicit formula for its nth term
and at the same time its sum can be expressed in terms of known constants.
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Two types of interesting series

The two types of interesting series considered by Lehmer were

I.
1X

n=0

an
⇣2n
n

⌘
and II.

1X

n=0

an�2n
n

� .

The series of type II are more mysterious and less well understood. The paper was
apparently motivated by Apéry’s 1978 proof of the irrationality of ⇣(3), and van der
Poorten’s analysis thereof, which featured the series

1X

n=0

1

n2
�2n
n

� =
1

3
⇣(2) and

1X

n=0

(�1)n�1

n3
�2n
n

� =
2

5
⇣(3).

Although it is also known that
1X

n=0

1

n4
�2n
n

� =
17⇡4

3240
,

Lehmer remarks that there are no known interesting series of the form

1X

n=0

1

nk
�2n
n

�

for k > 4.
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Interesting series of type II

The main tool used to analyze series of type II is the identity

2x arcsin x
p
1� x2

=
1X

n=1

(2x)2n

n
�2n
n

�

which is valid for |x | < 1.

You can manipulate the powers of n by applying the operators
R

dx
x

and x d
dx

and get almost
an unlimited number of interesting series.

Corresponding to x = 1/2 he gives

1X

n=1

n
�2n
n

� =
2

27
(⇡

p
3 + 9)

1X

n=1

n2
�2n
n

� =
2

81
(5⇡

p
3 + 54)

1X

n=1

n3
�2n
n

� =
2

243
(37⇡

p
3 + 405)
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The most interesting series of type II

Corresponding to x = 1p
2
Lehmer writes

1X

n=1

2n
�2n
n

� =
⇡

2
+ 1

1X

n=1

n2n
�2n
n

� = ⇡ + 3

1X

n=1

n22n
�2n
n

� =
1

5

1X

n=1

n32n
�2n
n

� =
7⇡

2
+ 11

1X

n=1

n42n
�2n
n

� = 113⇡ + 355

1X

n=1

n102n
�2n
n

� = 229093376⇡ + 719718067.

In general,
1X

n=1

nk2n
�2n
n

� = a⇡ + b

where b/a is a close approximation to ⇡.
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Dyson’s contribution

In 2013 Dyson, Frankel, and Glasser published “Lehmer’s interesting series” in AMM, dealing
with the series

Sk (z) :=
1X

n=1

nkzn
�2n
n

�

for |z| < 4.

Gave a closed form for Sk (z) using hypergeometric functions.

Proved Lehmer’s assertion that Sk (2) = ak⇡ + bk with ak , bk 2 Q and

lim
k!1

bk

ak
= ⇡.

They referred to this as Lehmer’s limit.

Note that both sequences {bk} and {2ak} are actually sequences of positive integers; in fact
you can find them on OEIS as sequences A180875 and A014307.

Gave an detailed analysis of the rate of convergence.

Also included a nice tribute to D.H.Lehmer in the epilogue, along with a tribute to ⇡.
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Polylogarithmic zeta functions

For <(a) > 0 and |r | � 1 we define the zeta function

Zr,k (s, a) =
1

�(s)

Z 1

0
ts�1Lik

✓
1� e�t

r

◆
re�at

1� e�t
dt

for <(s) > 0, where

Lik (z) =
1X

m=1

zm

mk

denotes the order k polylogarithm function.

Note Li0(z) =
z

1� z
and Li1(z) = � log(1� z).

If |r | = 1 the integral converges when <(k) > 0 and <(a) + <(k) > 1, and if |r | > 1 it is
convergent for all k; in either case Zr,k (s, a) may be analytically continued to all s 2 C.
The change of variable u = (1� e�t)/r shows that the value Zr,k (s, a) is a real period in the
sense of Kontsevich and Zagier when k, s 2 Z and r , a 2 Q̄ \ R.
We have the Riemann zeta function Z1,1(s, 1) = s⇣(s + 1), and

Z1,1(s, a) = s⇣(s + 1, a)

where ⇣(s, a) =
P

m�0(m + a)�s is the Hurwitz zeta function.
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Polylogarithmic zeta functions - special cases

We have Z2,0(s,
1
2 ) = 2s+1�(s) where �(s) = L(s,�) =

P
m�0(�1)m(2m + 1)�s is the

Dirichlet beta function;

we have Z2,0(s, 1) = 2⌘(s) where ⌘(s) =
P

m�0(�1)m(m+1)�s is the Dirichlet eta function
(also known as the alternating zeta function);

and Z1,1(s,
1
2 ) = s(2s+1 � 1)⇣(s + 1) where ⇣(s) =

P
m�0(m + 1)�s is the Riemann zeta

function.

More generally, for k = 0 and |r � 1| � 1, Zr,0(s, a) may be expressed as

Zr,0(s, a) =
r

r � 1
�

✓
�1

r � 1
, s, a

◆

in terms of the Lerch transcendent �(z, s, a) =
P

m�0
zm

(m + 1)s
.

When r = 1 we get Arakawa-Kaneko zeta functions Z1,k (s, a) = ⇠k (s, a), which satisfy

⇠k�1(m, 1) = ⇣?(k, 1, ..., 1
| {z }
m�1

) :=
X

n1�n2�···�nm�1

1

nk1n2 · · · nm

in terms of non-strict multiple zeta values (also called multiple zeta-star values), whose
arithmetic has been extensively studied;

and when r = 2 we get alternating Arakawa-Kaneko zeta functions Z2,k (s, a) = 2⇠?k (s, a).
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nk1n2 · · · nm
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Lehmer’s series

Our series

Sk (2) :=
1X

n=1

nk2n
�2n
n

�

may be expressed as Sk (2) =
1
2Z2,�(k+1)(1,

1
2 ) = ⇠?�(k+1)(1,

1
2 ) = 2��(k+1)(1).

In general, for every nonnegative integer n we have

Zr,k (n + 1, a) =
1X

m=0

m!Pn(h
(1)
m (a), ..., h(n)m (a))

rm(m + 1)ka(a+ 1) · · · (a+m)

when <(a) > 0. Here Pn(x1, ..., xn) denotes the modified Bell polynomial defined by

exp

 1X

n=1

xn
tn

n

!
=

1X

n=0

Pn(x1, ..., xn)t
n

which we evaluate at generalized harmonic numbers

h
(n)
m (a) =

mX

j=0

1

(a+ j)n
.

This expansion is due to Coppo and Candelpergher. However, I showed that when |a|p > 1
and s 2 Zp , this same series also converges p-adically to a p-adic polylogarithmic zeta
function Zp,r,k (s, a) which encodes the p-adic properties of harmonic number sums.
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A 2-adic view of Lehmer’s interesting series

Lehmer and Dyson et al showed that the real limit of the series

Sk (2) :=
1X

n=1

nk2n
�2n
n

� = ak⇡ + bk in R

where {2ak} and {bk} are integer sequences and bk/ak ! ⇡.

{2ak} : 1, 2, 7, 35, 226, 1787, 16717, 180560, 2211181, 30273047, 458186752, ... (A014307)

{bk} : 1, 3, 11, 55, 355, 2807, 26259, 283623, 3473315, 47552791, 719718067, ... (A180875)

Theorem. The sum of the series in Q2 is

Sk (2) =
1X

n=1

nk2n
�2n
n

� = bk in Q2.

There is a general principle that “there is no p-adic 2⇡i”. One can see this by considering
exponential and logarithmic functions. To construct p-adic periods one works in the period
rings of Fontaine.

Perhaps this theorem is giving a very concrete illustration of this principle?
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Proof of the theorem

Begin by considering the 2-adic series Sk (2) as the 2-adic polylogarithmic zeta function
Z2,2,�(k+1)(1,

1
2 ). Define G(j , k) by

G(k, j) := (�1)j
j�1Y

i=0

(2i � 1) · Z2,2,1�k (1,
3

2
� j)

A lazy table of values of G(k, j) is

0 2 4 26 152
1 5 23 167 1473
3 19 141 1321
11 99 1013
55 655
355

The sequence G(1, j) = 2, 4, 26, 152, ... is twice sequence A024199 in OEIS, whose formula is

G(1, j) := 2(�1)j
j�1Y

i=0

(2i � 1) ·
jX

i=1

(�1)i�1

2i � 1
.

This may be proved by functional equation and di↵erence formulas for the functions
Z2,2,k (s, a). We want to prove the sequence G(k, 1) = 1, 3, 11, 55, 355, ... is G(k, 1) = bk�1

where Sk (2) = ak⇡ + bk .
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Proof of the theorem - continued

The values in the table G(k, j) satisfy the recurrence

2G(k, j) = (2j � 1)G(k � 1, j) + G(k � 1, j + 1).

This turns out to be a 2-adic version of an alternating analogue of Ohno’s sum formula for
multiple zeta values!

0 2 4 26 152
1 5 23 167 1473
3 19 141 1321
11 99 1013
55 655
355

This enables us to express the 2-adic Lehmer series bk�1 = G(k, 1) in terms of the sequence
G(1, j) = 2, 4, 26, 152, ... which is twice sequence A024199 in OEIS. From there it is just a
gnarly combinatorial problem, involving weighted Stirling numbers and generalized factorials,
to prove that Dyson’s formula for {bk} is obtained from these recurrences.

Several other series from Lehmer’s paper seem to behave in a similar way in Q2 or Q3, but I
haven’t given proofs of them. There are other similar interesting series that I have proved.
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Beta function examples

Similar examples arising from the Dirichlet beta function �0(s) =
P

m�0(�1)m(2m+1)�s include

1X

m=0

2m�1

(2m + 1)
�2m
m

� =

(
�0(1) = ⇡/4 in R
�2,0(1) = 0 in Q2.

1X

m=0

2m�1Om+1

(2m + 1)
�2m
m

� =

(
�0(2) = G in R
�2,0(2) = G2 in Q2.

1X

m=0

2m�2(O2
m+1 + O

(2)
m+1)

(2m + 1)
�2m
m

� =

(
�0(3) =

⇡3

32 in R
�2,0(3) = 0 in Q2.

Here O
(s)
n denotes the generalized odd harmonic number

O
(s)
n =

nX

j=1

(2j � 1)�s .

The value �0(2) = G = 0.9159655 · · · is known as Catalan’s constant; it is not known
whether G is irrational, but its 2-adic analogue �2,0(2) = G2 was shown to be irrational by
Calegari in 2004.

As known to Dirichlet, you get a rational multiple of a power of ⇡ from ⇣(2k) or from
�0(2k + 1). Yet the only one of the remaining (real) values whose arithmetic nature has
been determined to date is Apéry’s 1978 proof of the irrationality of ⇣(3). We have had
more success determining irrationality of their 2-adic and 3-adic analogues!
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whether G is irrational, but its 2-adic analogue �2,0(2) = G2 was shown to be irrational by
Calegari in 2004.

As known to Dirichlet, you get a rational multiple of a power of ⇡ from ⇣(2k) or from
�0(2k + 1). Yet the only one of the remaining (real) values whose arithmetic nature has
been determined to date is Apéry’s 1978 proof of the irrationality of ⇣(3). We have had
more success determining irrationality of their 2-adic and 3-adic analogues!
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Alternating Arakawa-Kaneko examples

Some examples involving the k = 1 polylogarithmic analogue of �0(s) include

1X

n=1

2n�1

n2
�2n
n

� =

(
�1(1) =

⇡2

16 in R
�2,1(1) = 0 in Q2.

1X

n=1

2n�1On

n2
�2n
n

� =

(
�1(2) =

7
4 ⇣(3)�

⇡
2 G in R

�2,1(2) = 2⇣2,1(3,
1
2 ) in Q2.

1X

n=1

2n�2(O2
n + O

(2)
n )

n2
�2n
n

� =

(
�1(3) =

⇡4

64 � G2 in R
�2,1(3) = �G2

2 in Q2.

1X

n=1

2n�2(O3
n + 3OnO

(2)
n + 2O(3)

n )

3n2
�2n
n

� =

(
�1(4) =

31
8 ⇣(5)� ⇡

2 �(4)�
⇡3

16 G in R
�2,1(4) = 4⇣2,1(5,

1
2 ) in Q2.

Here G = �0(2) =
1P
m=0

(�1)m

(2m + 1)2
is Catalan’s constant and G2 = �2,0(2).

The first three real values above were given by Coppo and Candelpergher.

These examples are part of an infinite family of series of rational numbers which converge to
polylogarithmic zeta values in R and simultaneously converge to their 2-adic counterparts in
Q2. Again the 2-adic side is “simpler”.
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Real consequences

A convolution relation for 2-adic Arakawa-Kaneko zeta functions led me to the ordinary
convolution identity

nX

j=0

Bj (a)Bn�j (a) = �4
⇣
B(3)
n+1(1� a) + (�1)nB(3)

n+1(a)
⌘

�(n + 1)
⇣
B(2)
n (1� a) + (�1)nB(2)

n (a)
⌘
,

where Bn(a) denotes the Bernoulli polynomial and B(k)
n (a) denotes the poly-Bernoulli

polynomial of order k.

A similar 2-adic convolution identity reveals to us that for all positive integers n, the
alternating odd harmonic series

1X

k=1

(�1)k�1

k

kX

j=1

(2j � 1)�n = n(1� 2�(n+1))⇣(n + 1)�
nX

k=1

�0(k)�0(n + 1� k)

is expressible in terms of Riemann zeta and Dirichlet beta values, and for n > 1, the odd
alternating harmonic series

1X

k=1

(2k � 1)�n
kX

j=1

(�1)j�1

j

is similarly expressible as a specific rational polynomial combination of log 2, Riemann zeta
and Dirichlet beta values.
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Thank You!
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