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Jacobians of low genus hyperelliptic curves over finite fields represent a
very good setting for cryptography and a strong alternative to elliptic
curves.

They are also of interest in number theory (arithmetic geometry).

Cryptography deals almost exclusively with odd degree models since their
arithmetic is simpler and faster than that of even degree models. They are
also more restrictive.

We like even degree models!
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with
o h(x),f(x) € Fq[x]
o Conditions on the degrees and leading coefficients of h(x) and f(x)
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y? + h(x)y = f(x)

with
o h(x),f(x) € Fq[x]
o Conditions on the degrees and leading coefficients of h(x) and f(x)
@ Non-singular and absolutely irreducible

Simplest case: g odd:
C:y?=f(x)
with f(x) € Fq[x] monic and squarefree of degree

@ 2g + 1 (odd degree model) or
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Hyperelliptic curve of genus g over I, (g odd):

y? + h(x)y = f(x)

with
o h(x),f(x) € Fq[x]
o Conditions on the degrees and leading coefficients of h(x) and f(x)
@ Non-singular and absolutely irreducible

Simplest case: g odd:
C:y?=f(x)
with f(x) € Fq[x] monic and squarefree of degree

@ 2g + 1 (odd degree model) or
@ 2g + 2 (even degree model).

For g = 1, the odd degree model yields the WeierstraB equation of an
elliptic curve.
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Why Bother With Even Degree Models?

Transformation between models via

1
X —a

X —

for suitable a € F,.
o Odd degree — even degree: f(a) #0 (so a € Fy)
o Even degree — odd degree: f(a) =0 (so a € Splitting field of f).

Hyperelliptic curve construction methods may generate even degree
models (which are traditionally just discarded).

Research into efficient arithmetic on even degree models is far less
advanced.

WCNT, 18 Dec. 2016 4 /14
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Points on C consists of the usual finite points plus

@ one infinite point, denoted oo, for odd degree models;
@ two infinite points, denoted co™ and oo™, for even degree models.
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Points on C consists of the usual finite points plus

@ one infinite point, denoted oo, for odd degree models;
@ two infinite points, denoted co™ and oo™, for even degree models.

r

Divisors on C are finite formal sums of points on C: D = Z n;P;.
i=1

Degree of D: deg(D) = Z n;.

The Jacobian of C, denoted Jach(C), is the quotient group of degree
zero divisors on C defined over F; modulo principal equivalence.

o AKA degree zero divisor class group;
o Similar to the (Arakelov) class group of a quadratic number field;

o For elliptic curves, this is just the group of points over Ig.
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For odd degree models, every degree zero divisor is of the form
D — deg(D)co

where D only contains finite points.

Renate Scheidler (Calgary) Shifty Hyperelliptic Curve Arithmetic WCNT, 18 Dec. 2016 6 /14



UNIVERSITY OF

Jacobian Arithmetic, Odd Degree Models W CALGARY
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where D only contains finite points.

Every class C € Jac ]Fq(C) is represented uniquely by a reduced divisor R as

C = [R — deg(R)o]
o deg(R) < g, with equality almost always (generic case)

@ R can be represented by two polynomials of degree < g with
coefficients in Fgq (Mumford representation of R).
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For odd degree models, every degree zero divisor is of the form
D — deg(D)co
where D only contains finite points.

Every class C € Jac IFq(C) is represented uniquely by a reduced divisor R as

C = [R — deg(R)o]
o deg(R) < g, with equality almost always (generic case)

@ R can be represented by two polynomials of degree < g with
coefficients in Fgq (Mumford representation of R).

Explicit addition in Jac IFq(C): if Ry represents C; and Ry represents Co,
then the reduced divisor representing C; + C» is efficiently computable via
Cantor’s algorithm (“add & reduce”).
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For even degree models, every degree zero divisor is of the form

D — deg(D)oo™ + n(oco™ — 00™)

where D only contains finite points and n € Z.
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For even degree models, every degree zero divisor is of the form
D — deg(D)oo™ + n(oco™ — 00™)
where D only contains finite points and n € Z.

Every class C € Jac ]Fq(C) is represented uniquely by a reduced divisor R as
C = [R — deg(R)oo™ + n(co™ — oo™)]

with R reduced and n € Z “small”.

@ n =0 too restrictive (misses non-generic divisor classes)
e 0 < n < g —deg(R) works, but needs Cantor plus up to |g/2]
adjustment steps (Paulus-Riick 1999)

o —[g/2] < n<|g/2| —deg(R) gets rid of the extra adjustment steps
— balanced representation (Galbraith-Harrison-Mireles Morales 2008)

WCNT, 18 Dec. 2016 7/ 14
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Generic situation @/ CALGARY

For generic divisors (deg(R) = g):
Paulus-Riick: D=R-—goo™

Balanced representation: D = R — L%J 00" — [%W oot

Cantor’s Algorithm:

o Divisor addition — yields a finite divisor of degree 2g

o Divisor reduction — [g/2] steps:
» |g/2| subtractions by co™ — oco_

» For g odd, one subtraction by oo™
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Paulus-Riick Arithmetic @/ CALGARY
For simplicity, assume that g is even. Consider two generic divisors

D1 =Ry — goo™ deg(R1) =g

D =Ry —goo™  deg(R2) =g
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D =Ry —goo™  deg(R2) =g

Cantor’s algorithm:

(Rl = [(Ry + Re) = S (00" +007)]  deg(Rs) = ¢

[Rs — go07] = [Ry — goo ] + [Re — goo ] = [$(oc —oc)]
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Renate Scheidler (Calgary) Shifty Hyperelliptic Curve Arithmetic WCNT, 18 Dec. 2016 9 /14



UNIVERSITY OF

Paulus-Riick Arithmetic @/ CALGARY
For simplicity, assume that g is even. Consider two generic divisors

D = Ry —goo™ deg(Ry) =

Dy =Ry — goo™ deg(R) =g

Cantor’s algorithm:

[Rs] = [(Ru+ R2) — 5 S0t +007)]  deg(Rs) =g
[Rs — go0™] = [R1 — goo™] + [R: — goo ] = |
(D3] = [D] + [Da] — [ (00™ — o0

Need g/2 additions by co™ — co™ to obtain the unique Paulus-Riick
representative in the class of D1 + Ds.
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Paulus-Riick Arithmetic @/ CALGARY
For simplicity, assume that g is even. Consider two generic divisors

D = Ry —goo™ deg(Ry) =

Dy =Ry — goo™ deg(R) =g

Cantor’s algorithm:
[Rs] = [(Ru+ R2) — 5 S0t +007)]  deg(Rs) =g
[Rs — go0™] = [R1 — goo™] + [R: — goo ] = |
(D3] = [D] + [Da] — [ (00™ — o0

Need g/2 additions by co™ — co™ to obtain the unique Paulus-Riick
representative in the class of D1 + Ds.

In general, |g/2| extra steps are required.
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Assume again that g is even. Consider two generic balanced divisors

Dy =R; — %(oo* +oot)  deg(Ry) =

D> = Ry — %(oo‘ +oot)  deg(R) =g
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Assume again that g is even. Consider two generic balanced divisors

Dy =R — %(007 + 0o™) deg(R1) =

D> = Ry — %(oo‘ +oot)  deg(R) =g

Cantor’s algorithm:

[Re] = [(Ry + Ra) = 5 (00" +007)]  deg(Rs) =
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Assume again that g is even. Consider two generic balanced divisors

Dy =R — %(007 + 0o™) deg(R1) =

Dy=Ry—3(c0” +00")  deg(R)) =&
Cantor’s algorithm:

(R3] = [(Ru + Ra) = S (00" +007)]  deg(Rs) =
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Assume again that g is even. Consider two generic balanced divisors

Dy =R — %(007 + 0o™) deg(R1) =

D> = Ry — %(oo‘ +oot)  deg(R) =g

Cantor’s algorithm:

(R3] = [(Ru + Ra) = S (00" +007)]  deg(Rs) =

[Rs — $(o0™ = 50™)] = [Ry = Z(00™ = 00")] + [Re = S(s0™ — o]

[D3] = [D1] + [D7]

No additional steps needed.
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Balanced Divisor Arithmetic @ CALGARY

Assume again that g is even. Consider two generic balanced divisors

Di =Ry — %(oof +o00™) deg(Ry) =

D= R~ E(oo t00)  dealRe) =g

Cantor’s algorithm:

[Ra] = [(Ry + Re) = S (00" +007)]  deg(Rs) =

[Rs — 5 (0™ —00")] = [Ry = 5 (00™ —0c™)] +[Re = 5 (00 — 00"

[Ds] = [D1] + D]
No additional steps needed.

For g odd, one additional balancing step is needed.
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Infrastructure ¢ CALGARY

Assume for simplicity that Jac, (C) = ([oo™ — oo™]).

Then the infrastructure is the set of divisors

R — deg(R)oo™ with R reduced

o Arithmetic is done like Paulus-Rick

o Same speed disadvantage, although fixed in the context of scalar
multiplication using the same “shift by [g/2]" trick
(Jacobson-S.-Stein 2007)

@ Misses an expected proportion of 1/q divisor classes (Fontein 2009)
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Infrastructure ¢ CALGARY

Assume for simplicity that Jac, (C) = ([oo™ — oo™]).

Then the infrastructure is the set of divisors

R — deg(R)oo™ with R reduced

o Arithmetic is done like Paulus-Rick

o Same speed disadvantage, although fixed in the context of scalar
multiplication using the same “shift by [g/2]" trick
(Jacobson-S.-Stein 2007)

@ Misses an expected proportion of 1/q divisor classes (Fontein 2009)

o No cryptographic security advantage over the Jacobian (Mireles
Morales 2008)

Mireles Morales declared this speed disadvantage in essence the final nail
in the infrastructure arithmetic coffin (he was likely unaware of JSS 2007).
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It turns out that redefining the infrastructure as the set of divisors
_rg i _
R —deg(R)oo™ — |2 | (00" —007)

fixes things.
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R —deg(R)oo™ — |2 | (00" —007)

fixes things.

e Same “shift by [g/2]" trick
o Arithmetic is identical to balanced divisor arithmetic

o Obviates need to work in infrastructure (which is a weird
“almost-group” structure that on rare occasions fails associativity)
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Infrastructure Revised W CALGARY

It turns out that redefining the infrastructure as the set of divisors
_rg i _
R —deg(R)oo™ — |2 | (00" —007)

fixes things.

e Same “shift by [g/2]" trick

o Arithmetic is identical to balanced divisor arithmetic

o Obviates need to work in infrastructure (which is a weird
“almost-group” structure that on rare occasions fails associativity)

o Final nail in infrastructure arithmetic coffin after all — but for a
somewhat different reason
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We implemented arithmetic in three frameworks for hyperelliptic curves:
o Jacobian, odd degree models
@ Jacobian via balanced divisors, even degree models
o Infrastructure with JSS 2007 improvements, even degree models
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We implemented arithmetic in three frameworks for hyperelliptic curves:
o Jacobian, odd degree models
o Jacobian via balanced divisors, even degree models
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The Diffie-Hellman key agreement protocol for example requires the same
number of Cantor operations in all three settings.

However, implementation of DH using state-of-the-art explicit formulas
shows that

@ in genus 2, even degree is about 7-8% slower than odd degree;
@ in genus 3, even degree is about 19-20% slower than odd degree.
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We implemented arithmetic in three frameworks for hyperelliptic curves:
o Jacobian, odd degree models
o Jacobian via balanced divisors, even degree models
o Infrastructure with JSS 2007 improvements, even degree models

The polynomial arithmetic underlying Cantor is somewhat slower for even
degree models (since deg(f) is larger by one).

The Diffie-Hellman key agreement protocol for example requires the same
number of Cantor operations in all three settings.

However, implementation of DH using state-of-the-art explicit formulas
shows that

@ in genus 2, even degree is about 7-8% slower than odd degree;
@ in genus 3, even degree is about 19-20% slower than odd degree.

It may well be possible to improve the genus 3 formulas for even degree.
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