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Why Hyperelliptic Curves?

Jacobians of low genus hyperelliptic curves over finite fields represent a
very good setting for cryptography and a strong alternative to elliptic
curves.

They are also of interest in number theory (arithmetic geometry).

Cryptography deals almost exclusively with odd degree models since their
arithmetic is simpler and faster than that of even degree models. They are
also more restrictive.

We like even degree models!
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Hyperelliptic Curves
Hyperelliptic curve of genus g over Fq (q odd):

y2 + h(x)y = f (x)

with

h(x), f (x) ∈ Fq[x ]

Conditions on the degrees and leading coefficients of h(x) and f (x)

Non-singular and absolutely irreducible

Simplest case: q odd:
C : y2 = f (x)

with f (x) ∈ Fq[x ] monic and squarefree of degree

2g + 1 (odd degree model) or
2g + 2 (even degree model).

For g = 1, the odd degree model yields the Weierstraß equation of an
elliptic curve.
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Why Bother With Even Degree Models?

Transformation between models via

x → 1

x − a

for suitable a ∈ Fq.

Odd degree → even degree: f (a) 6= 0 (so a ∈ Fq)

Even degree → odd degree: f (a) = 0 (so a ∈ Splitting field of f ).

Hyperelliptic curve construction methods may generate even degree
models (which are traditionally just discarded).

Research into efficient arithmetic on even degree models is far less
advanced.
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Points, Divisors, Jacobian

Points on C consists of the usual finite points plus

one infinite point, denoted ∞, for odd degree models;
two infinite points, denoted ∞+ and ∞−, for even degree models.

Divisors on C are finite formal sums of points on C : D =
r∑

i=1

niPi .

Degree of D: deg(D) =
r∑

i=1

ni .

The Jacobian of C , denoted Jac Fq (C ), is the quotient group of degree
zero divisors on C defined over Fq modulo principal equivalence.

AKA degree zero divisor class group;

Similar to the (Arakelov) class group of a quadratic number field;

For elliptic curves, this is just the group of points over Fq.
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Jacobian Arithmetic, Odd Degree Models

For odd degree models, every degree zero divisor is of the form

D − deg(D)∞

where D only contains finite points.

Every class C ∈ Jac Fq (C ) is represented uniquely by a reduced divisor R as

C = [R − deg(R)∞]

deg(R) ≤ g , with equality almost always (generic case)

R can be represented by two polynomials of degree ≤ g with
coefficients in Fq (Mumford representation of R).

Explicit addition in Jac Fq (C ): if R1 represents C1 and R2 represents C2,
then the reduced divisor representing C1 + C2 is efficiently computable via
Cantor’s algorithm (“add & reduce”).
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Jacobian Arithmetic, Even Degree Models

For even degree models, every degree zero divisor is of the form

D − deg(D)∞+ + n(∞− −∞+)

where D only contains finite points and n ∈ Z.

Every class C ∈ Jac Fq (C ) is represented uniquely by a reduced divisor R as

C = [R − deg(R)∞+ + n(∞− −∞+)]

with R reduced and n ∈ Z “small”.

n = 0 too restrictive (misses non-generic divisor classes)

0 ≤ n ≤ g − deg(R) works, but needs Cantor plus up to bg/2c
adjustment steps (Paulus-Rück 1999)

−dg/2e ≤ n ≤ bg/2c − deg(R) gets rid of the extra adjustment steps
— balanced representation (Galbraith-Harrison-Mireles Morales 2008)
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Generic situation

For generic divisors (deg(R) = g):

Paulus-Rück: D = R − g∞+

Balanced representation: D = R −
⌊g

2

⌋
∞− −

⌈g
2

⌉
∞+

Cantor’s Algorithm:

Divisor addition — yields a finite divisor of degree 2g

Divisor reduction — dg/2e steps:

I bg/2c subtractions by ∞+ −∞−

I For g odd, one subtraction by ∞−
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Paulus-Rück Arithmetic
For simplicity, assume that g is even. Consider two generic divisors

D1 = R1 − g∞− deg(R1) = g

D2 = R2 − g∞− deg(R2) = g

Cantor’s algorithm:

[R3] = [(R1 + R2)− g

2
(∞+ +∞−)] deg(R3) = g

[R3 − g∞−] = [R1 − g∞−] + [R2 − g∞−]−
[g

2
(∞+ −∞−)

]
[D3] = [D1] + [D2]−

[g
2

(∞+ −∞−)
]

Need g/2 additions by ∞+ −∞− to obtain the unique Paulus-Rück
representative in the class of D1 + D2.

In general, bg/2c extra steps are required.
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Balanced Divisor Arithmetic
Assume again that g is even. Consider two generic balanced divisors

D1 = R1 −
g

2
(∞− +∞+) deg(R1) = g

D2 = R2 −
g

2
(∞− +∞+) deg(R2) = g

Cantor’s algorithm:

[R3] = [(R1 + R2)− g

2
(∞+ +∞−)] deg(R3) = g

[R3 −
g

2
(∞− −∞+)] = [R1 −

g

2
(∞− −∞+)] + [R2 −

g

2
(∞− −∞+)]

[D3] = [D1] + [D2]

No additional steps needed.

For g odd, one additional balancing step is needed.
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Infrastructure

Assume for simplicity that Jac Fq (C ) = 〈[∞− −∞+]〉.

Then the infrastructure is the set of divisors

R − deg(R)∞− with R reduced

Arithmetic is done like Paulus-Rück

Same speed disadvantage, although fixed in the context of scalar
multiplication using the same “shift by dg/2e” trick
(Jacobson-S.-Stein 2007)

Misses an expected proportion of 1/q divisor classes (Fontein 2009)

No cryptographic security advantage over the Jacobian (Mireles
Morales 2008)

Mireles Morales declared this speed disadvantage in essence the final nail
in the infrastructure arithmetic coffin (he was likely unaware of JSS 2007).
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Infrastructure Revised

It turns out that redefining the infrastructure as the set of divisors

R − deg(R)∞− −
⌈g

2

⌉
(∞+ −∞−)

fixes things.

Same “shift by dg/2e” trick

Arithmetic is identical to balanced divisor arithmetic

Obviates need to work in infrastructure (which is a weird
“almost-group” structure that on rare occasions fails associativity)

Final nail in infrastructure arithmetic coffin after all — but for a
somewhat different reason
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Conclusion

We implemented arithmetic in three frameworks for hyperelliptic curves:

Jacobian, odd degree models
Jacobian via balanced divisors, even degree models
Infrastructure with JSS 2007 improvements, even degree models

The polynomial arithmetic underlying Cantor is somewhat slower for even
degree models (since deg(f ) is larger by one).

The Diffie-Hellman key agreement protocol for example requires the same
number of Cantor operations in all three settings.

However, implementation of DH using state-of-the-art explicit formulas
shows that

in genus 2, even degree is about 7-8% slower than odd degree;
in genus 3, even degree is about 19-20% slower than odd degree.

It may well be possible to improve the genus 3 formulas for even degree.
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