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Dynamical system

X : a set

f : X → X .

Study orbits x , f (x), f (f (x)), f (f (f (x))), . . .

When are these orbits finite? If so, x is said to be a preperiodic point. It is
periodic if some f n(x) = x .

Arithmetic dynamics: X = P1(Q) (or similar), f ∈ Q(z).
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Arithmetic dynamics and elliptic curves

Standard goal in arithmetic dynamics: convert standard theorems on
elliptic curves to (very hard) conjectures about dynamical systems

Torsion point on elliptic curve  (pre)periodic point of dynamical system

Typical example: Compare

Theorem (Mazur)

|E (Q)tors| ≤ 16.

Conjecture (Uniform Boundedness Conjecture)

There is a constant C (d) so that if f is any degree-d rational function,
then |PrePerf (Q)| ≤ C (d).
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Elliptic modular curves

Y ell
1 (n): parametrizes pairs (E ,P): E an elliptic curve, P ∈ E [n]

Y ell
0 (n): parametrizes elliptic curves together with cyclic isogenies of

degree n

What is a dynamical analogue?
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Iteration of quadratic polynomials

fc(x) = x2 + c

f nc (x) = fc(fc(· · · (fc(x)) · · · )), n times

x ∈ C is n-periodic if f nc (x) = x , or f nc (x)− x = 0.

Simon Rubinstein-Salzedo Reduction of Dynatomic Curves December 19, 2016 5 / 24



n-periodic points

If x is d-periodic and d | n, then x is also n-periodic.

Consequence: f nc (x)− x is reducible: (f dc (x)− x) | (f nc (x)− x).

Makes sense to filter out the points that are n-periodic but not d-periodic
for d a proper divisor of n.
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Dynatomic polynomials

f nc (x)− x : polynomial in x and polynomial in c  polynomial in both
variables.

Φn(x , c) = f nc (x)− x

Filter out points of exact period n: Φn(x , c) =
∏

d |n Ψn(x , c)

Möbius inversion: Ψn(x , c) =
∏

d |n Φn(x , c)µ(n/d)

Definition

Ψn(x , c) is the nth dynatomic polynomial
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Dynatomic and cyclotomic polynomials

Dynatomic = dynamical + cyclotomic

Dynatomic polynomials are analogous to cyclotomic polynomials:

c = 0: Ψn(x , 0) is a product of cyclotomic polynomials:

Ψn(x , 0) =
∏
d |n

(x2
d − x)µ(n/d).

Compare with cyclotomic polynomials:

Cn(x) =
∏
d |n

(xd − x)µ(n/d).
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Multiple roots

Idea: solutions to Ψn(x , c) = 0 “should be” pairs (x , c) so that x has
exact period n for fc(x).

Not quite true: there are points (x , c) where the period of x is a proper
divisor of fc(x), when f nc (x)− x has double (or higher) roots at x .
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Formal period

This happens at the bifurcation points and cusps of the Mandelbrot set

Definition

If Ψn(x , c) = 0, then we say that x has formal period n for fc(x).
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Dynatomic curves

Y1(n) = {(x , c) ∈ C2 : Ψn(x , c) = 0}: affine curve in C2

Action of (Z/nZ) on Y1(n): (1 ∈ Z/nZ) · (x , c) = (fc(x), c) ∈ Y1(n)

Y0(n) = Y1(n)/(Z/nZ), also an affine curve: Y1(n)→ Y0(n) is a Galois
cover with Galois group Z/nZ

X1(n),X0(n): (normalization of) projective closures of Y1(n),Y0(n):
curves in projective space

Theorem (Buff, Lei)

All these dynatomic curves (X0,X1,Y0,Y1) are smooth and irreducible
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Monodromy

Branch points of X0(n)→ P1 are some of the cusps of the
Mandelbrot set.

Branch points of X1(n)→ P1 are some of the cusps and bifurcation
points of the Mandelbrot set.

Fact: for X0(n)→ P1, monodromy around each branch point is a
transposition.
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Reduction

Ψn(x , c) ∈ Z[x , c]. So is the defining polynomial for X0(n).

Given h(x , c) ∈ Z[x , c]: can reduce modulo p to obtain a curve over Fp.

What can we say about its reduction? Good reduction: genus of curve in
characteristic p = genus of curve in characteristic 0.
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Bad reduction

Elliptic curve case: X ell
0 (n) has bad reduction at a prime p ⇐⇒ p | n.

Dynatomic case: more complicated!

Example

X0(5) has bad reduction at p iff p = 2 or 3701.
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X0 versus X1

How does reduction of X0(n) compare to reduction of X1(n)?

X0 has bad reduction at p ⇒ X1 has bad reduction at p.

Theorem

If n and p are distinct odd primes, then X0(n) has bad reduction at p
⇐⇒ X1(n) has bad reduction at p.

False if n is composite: X0(6) has good reduction at 67, whereas X1(6)
has bad reduction at 67.
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Discriminants and related objects

Want to construct discriminant-like object that measures (potential) bad
reduction for X0(n).

Definition

(Up to a factor of a unit)

∆n
n,n =

∏
α,β

(α− β),

where α and β have formal period n for fc(x) that lie in different orbits.

∆n,n ∈ Z[c]. Roots of ∆n,n: two orbits of formal period n collide, i.e.
certain cusps of the Mandelbrot set, which are also branch points of
X0(n)→ P1.
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Discriminant of ∆n,n

Disc(∆n,n) tells us about bad reduction of X0(n).

Theorem

If X0(n) has bad reduction at p, then p | Disc(∆n,n).

However, many primes dividing Disc(∆n,n) still have good reduction.
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Bad reduction and Disc(∆n,n)

Disc(∆5,5) = 2274 · 312 · 3127 · 37011 · 42173

Disc(∆6,6) =
2956 ·391 ·525 ·766 ·138 ·293 ·612 ·80291871 ·552187972 ·475485788430118672

Theorem

If vp(Disc(∆n,n)) = 1, then X0(n) has bad reduction at p.

But:

Theorem

If n is odd and vp(Disc(∆n,n)) = 1, then X0(n) has irreducible reduction at
p.
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Some of the primes dividing Disc(∆n,n)

c = 0: roots of Φn(x , 0) are (2n − 1)st roots of unity (and 0)

Roots of Ψn(x , 0) are (2n − 1)st roots of unity that are not (2d − 1)st roots
of unity for d | n, d 6= n.

Recall that there is only one (pk)th root of unity in Fp, but otherwise roots
of unity remain distinct modulo (primes above) p.

Thus: if p | 2n − 1, then many points above c = 0 in X0(n) or X1(n)
collide modulo p.

By monodromy considerations, there must be points of X0(n) or X1(n) in
characteristic 0 which reduce to c̄ = 0 upon reduction modulo p that
collide  p | Disc(∆n,n).
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Reduction and p | (2n − 1)

Example

n = 5. Roots of Ψn(x , 0) are ζ i , ζ = e2πi/31, 1 ≤ i ≤ 30.
6 orbits (in terms of i):

1, 2, 4, 8, 16

3, 6, 12, 24, 17

5, 10, 20, 9, 18

7, 14, 28, 25, 19

11, 22, 13, 26, 21

15, 30, 29, 27, 23

All collide modulo 31, remain distinct modulo all other primes
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Reduction and p | (2n − 1)

Example

n = 6. Roots of Ψn(x , 0) are ζ i , ζ = e2πi/63, 1 ≤ i ≤ 62, i 6≡ 0 (mod 21),
i 6≡ 0 (mod 9). 9 orbits:

1, 2, 4, 8, 16, 32

3, 6, 12, 24, 48, 33

5, 10, 20, 40, 17, 34

7, 14, 28, 56, 49, 35

11, 22, 44, 25, 50, 37

13, 26, 52, 41, 19, 38

15, 30, 60, 57, 51, 39

23, 46, 29, 58, 53, 43

31, 62, 61, 59, 55, 47

Modulo 7: Seven orbits collide (the ones that aren’t multiples of 3), and
two other orbits collide (the ones that are)  wild ramification!
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c = 0 and c = −2

Similarly, roots of Φn(x ,−2) are of the form ζ + ζ−1, ζ ∈ µ2n−1 ∪ µ2n+1.

Thus, except for certain small values of n: if p | (2n ± 1), then
p | Disc(∆n,n).

Necessary criterion for good reduction: contribution to ramification
divisors at c̄ = 0 and c̄ = −2 must be the same in characteristic 0 and
characteristic p.

In many cases e.g. (n, p) =
(6, 5), (6, 7), (6, 13), (7, 3), (7, 43), (7, 127), (8, 3), (8, 5), (8, 17), (8, 257),
the only contribution to the ramification divisor comes from c̄ = 0 and
c̄ = −2.
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c = 0 and reduction

So, to prove good reduction: suffices to check that contributions match up
at those two points.

Example

∆5,5 ≡ c5(c + 2)2h(c) (mod 31), where h is squarefree and not divisible
by c or c + 2 modulo 31. In the reduced curve, we have one six-cycle, so
contribution is 6− 1 = 5 (tame ramification). This matches the exponent
of c in ∆5,5, which is what we need.
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Thank you

Thank you for your attention!
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