
West Coast Number Theory, Pacific Grove, CA,
December 2016

Bisecting Binomial Coefficients
(Keeping things fair in a sequence)

Pante Stanica

Department of Applied Mathematics
Naval Postgraduate School

Monterey, CA 93943, USA; pstanica@nps.edu
*Also associated to IMAR (Institute of Mathematics of the Romanian Academy)



The history of a problem I

Motivated by an attempt to construct symmetric Boolean
functions with various cryptographic properties (resilience,
avalanche features), Mitchell (1990), Jefferies (1991),
Gopalakrishnan et al. (1993), von zur Gathen and
Roche (1997), Cusick & Li (2005), Castro-Medina
(2011–2016), among others, study a seemingly “innocent”
problem, namely the binomial coefficients bisection (BCB),
which we shall describe below.
The connection between symmetric Boolean functions and
binomial coefficients is rather immediate.
A Boolean function f : Vn → F2 is symmetric if its output
value f (x) only depends upon the (Hamming) weight of its
input, wt(x) (number of nonzero bits of x).



The history of a problem II

There are
(n

w

)
vector x of weight wt(x) = w , and f is

constant on each such set of vectors. Thus, f can be
“compressed” into an n + 1 vector of values corresponding
to each partition class of cardinality

(n
w

)
, 0 ≤ w ≤ n.

Now, if one further imposes balancedness on f (in addition
to symmetry), that is its weight is wt(f ) = 2n−1, so we have
a two set partition I, J, of the binomial coefficients

(n
w

)
so

that the function f has value b ∈ {0,1} on the vectors of
weight in I and value b̄ on vectors in J.

Thus, we are prompted in studying these splitting
(bisections) of binomial coefficients.



The history of a problem III

If
n∑

i=0

δi

(
n
i

)
= 0, δi ∈ {−1,1}, then we call (δ0, . . . , δn) a

solution of the equation
n∑

i=0

xi

(
n
i

)
= 0, xi ∈ {−1,1}.

Certainly, for such a solution, denoting by I = {i | δi = 1}
and J = {i | δi = −1}, we obtain a bisection∑
i∈I

(
n
i

)
=
∑
i∈J

(
n
i

)
= 2n−1.

Note (see also [Cusick & Li, 2005]): if n is even, then
±(1,−1,1,−1, . . . , ) and if n is odd then
(δ0, . . . , δ(n−1)/2,−δ(n−1)/2, . . . ,−δ0) are 2

n+1
2 solutions.

These are called trivial solutions.



The history of a problem IV

There are sporadic cases when non-trivial solutions do
appear. In general, when n ≡ 2 (mod 6), because of the
identity

( n
(n+1)/3

)
=
( n

(n+1)/3−1

)
+
( n

n−((n+1)/3−1)

)
, nontrivial

solutions always appear. Besides these results, all is
known about the bisection of binomial coefficients is mostly
computational.

E.g.: All known values of n for which non-trivial bisections
exist, n ≤ 128 (von zur Gathen and Roche, ’97); all
non-trivial bisections for n ≤ 28 (Jefferies, ’91);
rediscovered by Cusick et al. (2005).



Our approach to the problem I

The binomial coefficients bisection can be thought of as a
subset sum problem. The view we take is the following: a
binomial coefficients bisection

∑
i∈I
(n

i

)
=
∑

i∈Ī
(n

i

)
will

generate a solution to the Boolean equation

n∑
i=0

xi

(
n
i

)
= 2n−1, xi ∈ {0,1}

by taking xi = 1 for i ∈ I and xi = 0, for i ∈ Ī. Certainly, the
reciprocal is true, as well, and so, we have an equivalence
between these two problems.



Our approach to the problem II

Further, given a set of positive integers A = {a1, . . . ,aN}
and b ≤ 1

2
∑

i ai , b ∈ N, one investigates the Boolean
equation

N∑
i=1

xiai = b, xi ∈ {0,1}.

The advantage of this approach is that these equations
were studied before by analytical number theory methods
and much (well, some) is known.
In general, these problems are well known to be
NP-complete [Garey–Johnson, 1979] and have many
applications in cryptography, such as the Merkle-Hellman
cryptosystem (1978).



Our approach to the problem III

The density of a set S = {a1, . . . ,aN} is defined as

d(S) =
N

log2

(
max

1≤i≤N
ai

)
– in terms of knapsack cryptosystems,

d(S) =
bit size of the plaintext

average bit size of the cyphertext

For binomial coefficients Pn =

{(
n
0

)
,

(
n
1

)
, . . . ,

(
n
n

)}
,

using the well-known inequalities

4bn/2c

2bn/2c+ 1
≤
(

n
bn/2c

)
≤ 4bn/2c



Our approach to the problem IV

the density becomes

n + 1
2bn/2c − log2(2bn/2c+ 1)

≤ d(P) =
n + 1

log2(maxi
(n

i

)
)

=
n + 1

log2
( n
bn/2c

) ≤ n + 1
2bn/2c

,

and so,
d(P)→ 1, as n→∞.

Lagarias and Odlyzko (1985) showed that almost all the
subset sum problem with density d < 0.6463 . . . can be
solved in polynomial time with a single call to an oracle that
can find (in polynomial time with high probability) the
shortest vector in a special lattice.
Coster et al. (1992) improved the bound to d < 0.9408 . . ..
Since for the case of binomial coefficients, the density is
d → 1 (as n→∞), none of these methods are applicable.



The underlying method I

We recall here the following important result of
Freiman (1980) (see also [Buzytsky (1982), Chaimovich,
Freiman, Galil (1989)]).

Theorem (Freiman ’80)

Let A = {a1,a2, . . . ,aN} and b ≤ 1
2
∑N

i=1 ai . The number of
Boolean solutions for the equation

N∑
i=1

aixi = b, xi ∈ {0,1}

is precisely
∫ 1

0
e−2πixb

N∏
j=1

(
1 + e2πixaj

)
d x.



The underlying method II

Applying Freiman’s paradigm to the bisection of binomial
coefficients we immediately infer the next result.

Theorem (S., 2016)
The number of binomial coefficients bisections for fixed n is
exactly

Jn =

∫ 1

0
e−2nπix

n∏
j=0

(
1 + e2πix

(
n
j

))
d x = 2n+1

∫ 1

0

n∏
j=0

cos
(
πx
(n

j

))
d x .

We easily recovered the Jn data of [Jefferies (1991),
Cusick & Li (2005)] for 2 ≤ n ≤ 29: 2,4,2,8,2,16,6,
32,2,64,2, 144,14,256, 2, 512,2,1024, 6,2048, 2,4096,
50, 8192, 6,16384,2,34816.



First bound for the number of bisections I

Our next result gives the first nontrivial upper bound for the
number of bisections for odd n, in the literature.

Theorem (S., 2016)

The number Jn of binomial coefficients bisections for odd n is
upper bounded by

Jn ≤
(

n + 1
n+1

2

)
∼ 2n+1√

π(n + 1)/2
, as n→∞.

Proof.
Write Jn = 2n+1 ∫ 1

0
∏(n−1)/2

j=0 cos2
(
πx
(n

j

))
d x , n odd.



First bound for the number of bisections II

Set B := (n − 1)/2. By Hölder inequality,

∫ 1

0

B∏
j=0

cos2
(
πx
(n

j

))
d x ≤

 B∏
j=0

∫ 1

0
cos2(B+1)

(
πx
(n

j

))
d x

1/(B+1)

. (1)

Using ∫ cosm(ax)d x = 1
ma cosm−1(ax) sin(ax) + m−1

m

∫
cosm−2(ax)d x ,

then, with m = 2(B + 1), a = π
(n

j

)
, we compute

∫ 1

0
cos2(B+1)

(
πx
(n

j

))
d x =

1
2(B + 1)π

(n
j

) cos2B+1
(
πx
(n

j

))
sin
(
πx
(n

j

)) ∣∣1
0

+
2B + 1
2B + 2

∫ 1

0
cos2B

(
πx
(n

j

))
d x

= · · · · · ·

=
(2B + 1)(2B − 1) · · · 1

(2B + 2)2B · · · 2

=
(2B + 2)!

22(B+1)((B + 1)!)2
=

1
22(B+1)

(2(B + 1)

B + 1

)
.



First bound for the number of bisections III

Replacing this into the upper bound of (1) we get

Jn ≤ 2n+1

( B∏
k=0

1
22(B+1)

(2(B + 1)

B + 1

))1/(B+1)

=
(2(B + 1)

B + 1

)
=
(n + 1

n+1
2

)
∼

2n+1√
π(n + 1)/2

, as n→∞,

using Stirling’s n! ∼
(n

e

)n√2πn. 2



Better bound on Jn

Quite a bit more complicated to get a better bound.

Theorem (Ionascu-Martinsen-S. 2016)
Let αs = n

b n
2 c−s and bi =

(n
i

)
, n ≥ 5. Then

2−(n+2)Jn ≤

erf

 π

√(
2n
n

)
2
(

n
bn/2c

)


2
√
π
(2n

n

)
+

bn/2c−1∑
s=1

exp

(
−

π222n(H(αs)+o(1))

4(bn/2c+ 1)b2
bn/2c−s+1

)
s

(bn/2c − s + 1)bbn/2c−s+1
,

where H(α) = −α log2(α)− (1− α) log2(1− α) is the binary
entropy function and erf(z) = 2√

π

∫ z
0 e−t2

d t is the error function.

One can find that the expression above is O
(

2n

n

)
(in fact,

Jn ≤ 2n+2

n ).



Some exact counts I

f is SAC [Webster – Tavares (1985)]: complementing any
of the n input bits the output changes with probability 1/2.

f is SAC of order k (SAC(k)– [Forré (1988)],
0 ≤ k ≤ n − 2, if whenever k input bits are fixed, the
resulting function of n − k variables is SAC.

Theorem (I.M.S. 2016)

If p is a prime number, then Jp−1 = 2.

This implies conjecture Q2,Q4 of Cusick and Li (2005):
thus, there are only four symmetric SAC(k) functions for
infinitely many n.



Some exact counts II

Based upon our computational data, we conjecture:
J22k = 2, J22k+1 = 6, k ≥ 1.

Theorem (Ionascu-Martinsen-S., 2016)

We have:
1 If n = k2 − 2, k ≥ 4 even, then Jn ≥ 10,

Jn−1 ≥ 2
n+1

2 + 2
n+1

2 −3 (tight).
2 If k ≡ 0,1 (mod 3) and n = F4k+1+2F4k−6

5 , then
Jn ≥ 2

n+1
2 + 2

n−3
2 .

3 Let n = 4k2 + 16k + 13, k ≥ 0. Then, there are at least
2(n+1)/2−3 nontrivial bisections for the binomial coefficients{(n

j

)}
0≤j≤n

, and so, Jn ≥ 2
n+1

2 + 2
n−1

2 .



Table: Number of Binomial Coefficients Bisections

n Jn n Jn n Jn

1 2 18 2 35 218 + 24
2 2 19 210 36 2
3 22 20 6 37 219

4 2 21 211 38 38
5 23 22 2 39 220

6 2 23 212 40 2
7 24 24 50 41 221 + 15 · 211

8 6 25 213 42 2
9 25 26 6 43 222

10 2 27 214 44 134
11 26 28 2 45 223

12 2 29 215 + 211 46 2
13 27 + 24 30 2 47 224 + 220

14 14 31 216 + 5 · 27 48 4098
15 28 32 6 49 225

16 2 33 217 + 214 50 6
17 29 34 130 51 226



Are there 2k -sections? I

It is a natural question to ask whether a splitting of binomial
coefficients of size other than two do exist.
As for the bisection, we say that we have a 2k -section of a
set of integers A if there is a partition of the set A of
cardinality 2k such that the sum on each partition set is
1
2k

∑
x∈Aj

x , 1 ≤ j ≤ 2k .

Theorem (S., 2016©)

Let n ≥ 1. For k ≥ 2, there are no 2k -sections of binomial

coefficients
{(

n
j

)}
0≤j≤n

.

Skip2End!



Are there 2k -sections? II

Proof.
The result is easy to show for 1 ≤ n ≤ 10, so we assume
that n ≥ 10.
Freiman (1996) considered the system of equations

a11x1 + a12x2 + · · ·+ a1mxm = b1

a21x1 + a22x2 + · · ·+ a2mxm = b2

where (0,0) 6= (a1j ,a2,j) ∈ Z2, (b1,b2) ∈ Z2, and he
showed that the number of solutions xj ∈ {0,1} of the
above system is exactly

Jb1,b2 = 2m
∫

G

∫
e−2πi(xb1+yb2)

m∏
j=1

1
2

(
1 + e2πi(xa1j +ya2j )

)
d x d y ,

where G =
{

(x , y) | x , y ∈ R, |x | ≤ 1
2 , |y | ≤

1
2

}
.



Are there 2k -sections? III

Let n ≥ 10 be fixed, and assume ∃ 2k -section, k ≥ 2 (let k
largest with this property). We consider such a 2k -section
and partition the binomial coefficients

(n
j

)
in 2k (disjoint)

sets Ai s.t.
∑
j∈Ai

(
n
j

)
= 2n−k , 1 ≤ i ≤ 2k .

Since k is largest with this property (certainly, k < n), one
of the sets, w.l.o.g., say A1, cannot be bisected further. We
next consider the system

∑
j∈∪2k

i=2Ai

xj

(n
j

)
+
∑
j∈A1

xj · 0 = (2k − 1)2n−k

∑
j∈∪2k

i=2Ai

xj · 0 +
∑
j∈A1

xj

(n
j

)
= 2n−k ,

which must have a solution.



Are there 2k -sections? IV

By Freiman’s system paradigm the # of solutions is exactly

J(2k−1) 2n−k ,2n−k = 2n+1
∫ 1/2

−1/2

∫ 1/2

−1/2
e−2π2n−k ((2k−1)x+y)

·
∏

j∈∪2k
i=2Ai

1
2

(
1 + e2πix

(
n
j

)) ∏
j∈A1

1
2

(
1 + e2πiy

(
n
j

))
d x d y

= 2n+1
∫ 1/2

−1/2
e−(2k−1)π2n−k+1x

∏
j∈∪2k

i=2Ai

1
2

(
1 + e2πix

(
n
j

))

·
∫ 1/2

−1/2
e−π2n−k+1y

∏
j∈A1

1
2

(
1 + e2πiy

(
n
j

))

= 2n+1
∫ 1/2

−1/2

∏
j∈∪2k

i=2Ai

cos
(
πx
(n

j

))∫ 1/2

−1/2

∏
j∈A1

cos
(
πx
(n

j

))
.



Are there 2k -sections? V

We let 〈, 〉 be the regular Euclidean scalar product, and
observe that
∏
j∈A1

cos
(
πix
(n

j

))
=

1
2|A1|−1

∑
θ∈{−1,1}|A1|−1

cos
(
πix
〈

(1, θ), (
(n

j

)
)j∈A1

〉)
.

Note that
〈

(1, θ), (

(
n
j

)
)j∈A1

〉
≡
∑
j∈A1

(
n
j

)
= 2n−k ≡ 0

(mod 2), for all θ ∈ {−1,1}|A1|−1.

Moreover, the scalar product
〈

(1, θ), (

(
n
j

)
)j∈A1

〉
6= 0,

since we assumed that A1 cannot be bisected further.



Are there 2k -sections? VI

Therefore, the integral
∫ 1/2

−1/2

∏
j∈A1

cos
(
πx
(n

j

))

=
1

2|A1|−1

∫ 1/2

−1/2

∑
θ∈{−1,1}|A1|−1

cos
(
πx
〈

(1, θ), (
(n

j

)
)j∈A1

〉)

=
1

2|A1|−1

∑
θ∈{−1,1}|A1|−1

∫ 1/2

−1/2
cos

(
πx
〈

(1, θ), (
(n

j

)
)j∈A1

〉)

=
1

2|A1|−1π
〈

(1, θ), (
(n

j

)
)j∈A1

〉 ∑
θ∈{−1,1}|A1|−1

sin
(
πx
〈

(1, θ), (
(n

j

)
)j∈A1

〉) ∣∣1/2
−1/2

= 0,

since
〈

(1, θ), (
(n

j

)
)j∈A1

〉
≡ 0 (mod 2), which shows that our

assumption that, for k ≥ 2, there are 2k -sections of
binomial coefficients is false. The proof is done. 2



Theorem (Pante Stanica)

Thank you for your attention!

Proof.

None required! (Also, lunch time is almost upon us©)
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