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The history of a problem |

m Motivated by an attempt to construct symmetric Boolean
functions with various cryptographic properties (resilience,
avalanche features), Mitchell (1990), Jefferies (1991),

| Gopalakrishnan et al. (1993), von zur Gathen and

Roche (1997), Cusick & Li (2005), Castro-Medina

(2011-2016), among others, study a seemingly “innocent”

problem, namely the binomial coefficients bisection (BCB),

which we shall describe below.

m The connection between symmetric Boolean functions and
binomial coefficients is rather immediate.

m A Boolean function f : V,, — 5 is symmetric if its output
value f(x) only depends upon the (Hamming) weight of its

input, wt(x) (number of nonzero bits of x). rv
(x) =




The history of a problem |l

m There are () vector x of weight wt(x) = w, and f is
constant on each such set of vectors. Thus, f can be
= “‘compressed” into an n+ 1 vector of values corresponding
to each partition class of cardinality (), 0 < w < n.

m Now, if one further imposes balancedness on f (in addition
to symmetry), that is its weight is wt(f) = 2", so we have
a two set partition /, J, of the binomial coefficients () so
that the function f has value b € {0, 1} on the vectors of
weight in / and value b on vectors in J.

m Thus, we are prompted in studying these splitting
(bisections) of binomial coefficients.




The history of a problem |l

n
m If Zé,(';') =0, ;€ {—1,1}, then we call (dg,...,n) @
i=0

| n
- ’jf‘ solution of the equation Zx,(’;') =0,x¢€{-1,1}.
1 i=0
o Certainly, for such a solution, denoting by / = {i|é; =1}

and J = {i|0; = —1}, we obtain a bisection
n _ n _ on—1
()5 ()=
iel ied
m Note (see also [Cusick & Li, 2005]): if nis even, then
+(1,—-1,1,—1,...,) and if nis odd then

7‘1 (805 -+ 0(n=1)/2; —O(n—1)/25 - - - » —00) are 23" solutions.
ot These are called trivial solutions. S5



The history of a problem |V

m There are sporadic cases when non-trivial solutions do
appear. In general, when n=2 (mod 6), because of the
- identity ((n1y73) = ((n+1§7/3—1) + (n((n41)/3-1))> nontrivial

| solutions always appear. Besides these results, all is
Lo known about the bisection of binomial coefficients is mostly
computational.

m E.g.: All known values of n for which non-trivial bisections
exist, n < 128 (von zur Gathen and Roche, ’'97); all
non-trivial bisections for n < 28 (Jefferies, '91);
rediscovered by Cusick et al. (2005).




Our approach to the problem |

m The binomial coefficients bisection can be thought of as a
i subset sum problem. The view we take is the following: a
i binomial coefficients bisection 3";, (7) = 327 (7) will
generate a solution to the Boolean equation

n
Zx,-<7> =21 x;€{0,1}

i=0

by taking x; = 1 for i € / and x; = 0, for i € I. Certainly, the
i reciprocal is true, as well, and so, we have an equivalence
7‘1 between these two problems.
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Our approach to the problem Il

m Further, given a set of positive integers A= {ay,...,an}
and b < %Z, a;j, b € N, one investigates the Boolean
equation

N
> xiai=b, x €{0,1},

i=1
m The advantage of this approach is that these equations

were studied before by analytical number theory methods
and much (well, some) is known.

m In general, these problems are well known to be
NP-complete [Garey—Johnson, 1979] and have many
. applications in cryptography, such as the Merkle-Hellman
e cryptosystem (1978). (’
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m The density of a set S = {ay, ..., an} is defined as

N

lo max a,
92 1<i<N "

— in terms of knapsack cryptosystems,
d(S) bit size of the plaintext

- average bit size of the cyphertext

m For binomial coefficients P, = {<g>, <:7> o <Z> },

using the well-known inequalities

d(S) =

£

ik 4ln/2] n
oy < < 4ln/2] ==
o7 = im2y) <4 £k



Our approach to the problem IV

the density becomes

n+1 < d(P) = n+1 _ n+1 n+1
2|n/2] —logy(2[n/2] +1) ~ logp(max; (7))~ logz (|,)2)) ~ 2Ln/2)

and so,
d(P) — 1, as n — .

m Lagarias and Odlyzko (1985) showed that almost all the
subset sum problem with density d < 0.6463 ... can be
solved in polynomial time with a single call to an oracle that
can find (in polynomial time with high probability) the
shortest vector in a special lattice.

m Coster et al. (1992) improved the bound to d < 0.9408.. ..

Since for the case of binomial coefficients, the density is
d — 1 (as n — =), none of these methods are appllcab SRy




The underlying method |

m We recall here the following important result of

Freiman (1980) (see also [Buzytsky (1982), Chaimovich,
Freiman, Galil (1989)]).

Theorem (Freiman ’80)

LetA={ai,a,...,an} and b < 3 "N . a;. The number of
Boolean solutions for the equation

N
Za,-x,- = b, X € {0,1}
i=1

1 N )
is precisely / Caaad || (1 i eZW’X%') dx.
0 )
J=1




The underlying method |l

m Applying Freiman’s paradigm to the bisection of binomial
coefficients we immediately infer the next result.

Theorem (S., 2016)
The number of binomial coefficients bisections for fixed n is

exactly

1 n
Jn:/ e_zn”’XH(1+eZ"'X( )dx—2"+1/ Hcos(wx ))d :
0

j=0

m We easily recovered the J, data of [Jefferies (1991),
Cusick & Li (2005)]for2 < n<29:2,4,2,8,2,16,6,
32,2,64,2, 144,14, 256, 2, 512,2,1024, 6,2048, 2,4096
50, 8192, 6,16384,2,34816.




First bound for the number of bisections |

m Our next result gives the first nontrivial upper bound for the
number of bisections for odd n, in the literature.

B Theorem (S., 2016)

The number J,, of binomial coefficients bisections for odd n is
upper bounded by

n 1 2n+1
JnS( - )N—, asn— co.

ol r(n+1)/2

Proof.
. (n—1)/2
m Write J, = 2" [ H cos? (wx( )) dx, nodd. F=L




First bound for the number of bisections Il

m Set B:= (n— 1)/2. By Hdlder inequality,

/Hcos (mx(7) ) ax < (H/ cost®:1) (nx(") ) dx)wB“)- 1)

m Using [ cos™(ax)d x = ;1. cos™ ' (ax)sin(ax) + =1 [ cos™2(ax)d x

then, with m = 2(B + 1), a= (), we compute

/01 cos2Y (”(7)) 9= 2(B+1 2B+ () = (“(/)) Sm< (7>) :

2B+1 1 g n
d
+28+2 b cos (wx(j)) X

el (@B 1)(2B— 1)1

By © (2B+2)2B---2 =
i _ (2B+2) 1 2B+
h - 22(B+1)((B+1)!)2 - 22(B+1)( B+1 ) \\“/
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Replacing this into the upper bound of (1) we get

By )

e n+1
r 2 <kHO 22(B+1)( B+1 )>

_(2(B+1))_<”+1) A

U+t T\t )T a2 =

using Stirling’s n! ~ (2)" v2rn. O

T
:‘LS‘:‘? \'7



Better bound on J,

m Quite a bit more complicated to get a better bound.

Theorem (lonascu-Martinsen-S. 2016)
Letas = —"— and b; = (7), n > 5. Then
Si=s !

: 2n
- erf (2( (nn))>
i..;:q,\ 2_(n+2)Jn < Ln/2]
2y/m(%)
Ln/2] -1 202n(H(as)+0(1)) G
+ Y exp 5 b :
pa ~4(|n/2) + 1)b? Tnj2)—si1/) (In/2] =8+ 1)bnj2 st

where H(a) = —alog,(a) — (1 — a)log,(1 — «) is the binary

"4 entropy function and erf(z) = f fo e~ d't is the error function.

: i ; 2m\ =
m One can find that the expression above is O (7) (in fact, r’
Jn < 2. A2




Some exact counts |

m fis SAC [Webster — Tavares (1985)]: complementing any
of the n input bits the output changes with probability 1/2.
| m fis SAC of order k (SAC(k)— [Forré (1988)],
0 < k < n-2,if whenever k input bits are fixed, the
el resulting function of n — k variables is SAC.

K Theorem (I.M.S. 2016)

If p is a prime number, then J,_1 = 2.

m This implies conjecture Q2, Q4 of Cusick and Li (2005):
thus, there are only four symmetric SAC(k) functions for

infinitely many n. -
KNPS’
T &7




Some exact counts Il

m Based upon our computational data, we conjecture:
J22k == 2, J22k+1 = 6, k Z 1

J Theorem (lonascu-Martinsen-S., 2016)

We have:
die Ifn = k? — 2, k > 4 even, then J, > 10,
Jn_y > 2" 2% =3 (tight).
Ifk=0,1 (mod 3) and n = w, then
Jp> 2% 427
Letn = 4k?® + 16k + 13,k > 0. Then, there are at least
2(mt1)/2=3 nontrivial bisections for the binomial coefficients
{(")} ~ ,andso, J, >2"% +2"%

17 o<j<n




Table: Number of Binomial Coefficients Bisections

H n Jn n Jn n Jn H
1 2 18 2 35 218 1 24
B2 2 2 19 210 36 2
i 3 22 20 6 37 27
| 4 2 21 21 38 38
5 28 22 2 39 220
6 2 23 212 40 2
7 24 24 50 41 22T 15. 2™
8 6 25 213 42 2
9 25 26 6 43 222
10 2 27 274 44 134
11 26 28 2 45 228
12 2 29 2™ 4217 |46 2
13 27+2% 130 2 47 224 00
14 14 31 216415.27 |48 4098
15 28 32 6 49 2%
16 2 33 277 42™ |50 6
17 29 34 130 51 2%




Are there 2%-sections? |

m [t is a natural question to ask whether a splitting of binomial
coefficients of size other than two do exist.

m As for the bisection, we say that we have a 2X-section of a
‘ set of integers A if there is a partition of the set A of
cardinality 2% such that the sum on each partition set is

2% Lxen Xo 1< j< 2K

Theorem (S., 2016 ©)

Letn > 1. For k > 2, there are no 2k -sections of binomial

coefficients { (n) } .
17 Jo<j<n




Are there 2%-sections? |l

Proof.

m The result is easy to show for 1 < n < 10, so we assume
that n > 10.

m Freiman (1996) considered the system of equations

| ay Xy + ai2Xe + - + @ymXm = by
ap1X1 + @g2Xo + -+ + @mXm = b

where (0,0) # (ayj, @) € Z2, (by, b2) € Z2, and he
showed that the number of solutions x; € {0,1} of the
above system is exactly

7...!1 Jb1,b2 _ 2m/ / —27r/(xb1 +ybo) H ( + 627” xa1,+ya2,)) dxdy,

h where G = {(x,y)|x,y € R,|x| < 3,ly| < }}. b

R
=l =
““i')'



Are there 2%-sections? Il

m Let n > 10 be fixed, and assume 3 2X-section, k > 2 (let k
largest with this property). We consider such a 2X-section
and partition the binomial coefficients (7) in 2k (disjoint)

= sets Aist. (”) =2k 1 <j<2k

: JEA /

m Since k is largest with this property (certainly, k < n), one
of the sets, w.l.o.g., say Ay, cannot be bisected further. We
next consider the system

g Z X (n) 4 Z X - 0= (2k _ 1)2n—k
NE /‘EU,{(ZA/' J JEA
g > x50+ Z X; (n) =2k,
'_"ju‘.fh /‘EU,{ZAI' JEA /
E NP5

ﬁ which must have a solution. ‘v
-



Are there 2X-sections? IV

m By Freiman’s system paradigm the # of solutions is exactly

12 /2
Jiok _1y on—k on— k*2”+1// // 22" K(@ = 1)xty)
@=1 12J-1)2

1 ix (" 1 iy ("
H 5(1+92 ’X(’))_H§(1+ez ’y(ln))dxdy
£ /eulszA €A

1/2 K n—k+1 1 2 ix(’.’)
:2n+1/ o~ (2K —1)m2 x 1 (1 + & )
—1/2 H 2

ok
JEUZ,A;

1/2 n—k+1 o2 (”))
. w2 y y
Lo g (14

16A1

12 N
2"*‘/ [ cos(x >/ ||cos(x )
1/2 zk . 1/2 jea, . (/>

A ==
@ S




Are there 2%-sections? V

m We let (,) be the regular Euclidean scalar product, and
observe that

I cos (wix('])) = 2|A11ﬁ > cos (fo <(1,9), ((7))/€A1 >) )

JEA oe{—1,1}1A11-1

m Note that <(1,9),(<7> )jeA1> =) (7) =2"k=90

JEA
(mod 2), forall § € {—1,1}1Al-1,

m Moreover, the scalar product <(1 , 9),((;’) )j€A1> # 0,

:‘1 since we assumed that A; cannot be bisected further.

b o s

" >
o



Are there 2X-sections? VI

m Therefore, the integral

[ = (=)

JEA

‘- :m/\jﬁ/_:/; > Cos<wx<(1,e),(('j7)),€,41>)

oe{—1,1}M 11

& _ 2|A11ﬁ 3 /j; cos (ﬂx<(1,9),((7))jeA1>)

oe{—1,1}1A11-1
_ 1 ; 1/2
- olAy|—1 <(1 0), ((" ))IGA1> ee{_1§A171S|n( <(1 0), ((j))/eA1>) |_1/2
=0,

”«‘1 since <(1,0),((;’) ),6A1> =0 (mod 2), Which shows that our
1 5-» assumption that, for k > 2, there are 2k_sections of

H binomial coefficients is false. The proof is done.
i
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(=l Theorem (Pante Stanica

Thank you for your attention!

Proof.

None required! (Also, lunch time is almost upon us @)
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