

The Average Number of Divisors of the Euler Function

Sungjin Kim

Santa Monica College/Concordia University Irvine
Department of Mathematics
i707107@math.ucla.edu

Dec 17, 2016

Euler Function, Carmichael Function - Definitions and Notations

Let $n \geq 1$ be an integer. Denote by $\phi(n)$, $\lambda(n)$, the Euler Phi function and the Carmichael Lambda function, which output the order and the exponent of the group $(\mathbb{Z}/n\mathbb{Z})^*$ respectively.

Euler Function, Carmichael Function - Definitions and Notations

Let $n \geq 1$ be an integer. Denote by $\phi(n)$, $\lambda(n)$, the Euler Phi function and the Carmichael Lambda function, which output the order and the exponent of the group $(\mathbb{Z}/n\mathbb{Z})^*$ respectively.

Let $n = p_1^{e_1} \cdots p_r^{e_r}$ be a prime factorization of n , then we can compute $\phi(n)$ and $\lambda(n)$ as follows:

$$\phi(n) = \prod_{i=1}^r \phi(p_i^{e_i}), \text{ and } \lambda(n) = \text{lcm}(\lambda(p_1^{e_1}), \dots, \lambda(p_r^{e_r}))$$

where $\phi(p_i^{e_i}) = p_i^{e_i-1}(p_i - 1)$ and $\lambda(p_i^{e_i}) = \phi(p_i^{e_i})$ if $p_i > 2$ or $p_i = 2$ and $e_i = 1, 2$, and $\lambda(2^e) = 2^{e-2}$ if $e \geq 3$.

Definitions and Notations

We write $P_z = \prod_{p \leq z} p$. We also use the following restricted divisor functions:

$$\tau_z(n) := \prod_{\substack{p^e \mid\mid n \\ p > z}} \tau(p^e), \quad \tau_{z,w}(n) := \prod_{\substack{p^e \mid\mid n \\ z < p \leq w}} \tau(p^e), \quad \text{and} \quad \tau'_z(n) := \prod_{\substack{p^e \mid\mid n \\ p \leq z}} \tau(p^e).$$

Moreover, for $n > 1$, denote by $p(n)$ the smallest prime factor of n .

Previous Results

Previous Results

- Luca, Pomerance (LP, 2007): As $x \rightarrow \infty$,

$$\begin{aligned} x \exp \left(\frac{1}{7} e^{-\frac{\gamma}{2}} \sqrt{\frac{\log x}{\log \log x}} \left(1 + O \left(\frac{\log \log \log x}{\log \log x} \right) \right) \right) &\leq \sum_{n \leq x} \tau(\lambda(n)) \\ &\leq \sum_{n \leq x} \tau(\phi(n)) \leq x \exp \left(2\sqrt{2} e^{-\frac{\gamma}{2}} \sqrt{\frac{\log x}{\log \log x}} \left(1 + O \left(\frac{\log \log \log x}{\log \log x} \right) \right) \right). \end{aligned}$$

Previous Results

- Luca, Pomerance (LP, 2007): As $x \rightarrow \infty$,

$$\begin{aligned} x \exp \left(\frac{1}{7} e^{-\frac{\gamma}{2}} \sqrt{\frac{\log x}{\log \log x}} \left(1 + O \left(\frac{\log \log \log x}{\log \log x} \right) \right) \right) &\leq \sum_{n \leq x} \tau(\lambda(n)) \\ &\leq \sum_{n \leq x} \tau(\phi(n)) \leq x \exp \left(2\sqrt{2} e^{-\frac{\gamma}{2}} \sqrt{\frac{\log x}{\log \log x}} \left(1 + O \left(\frac{\log \log \log x}{\log \log x} \right) \right) \right). \end{aligned}$$

- Luca, Pomerance (LP, 2007): As $x \rightarrow \infty$,

$$\frac{1}{x} \sum_{n \leq x} \tau(\lambda(n)) = o \left(\max_{y \leq x} \frac{1}{y} \sum_{n \leq y} \tau(\phi(n)) \right).$$

F. Luca, C. Pomerance, *On the Average Number of Divisors of the Euler Function*, Publ. Math. Debrecen, 70/1-2 (2007), pp 125-148.

Main Results

- (Theorem 1.1) As $x \rightarrow \infty$, we have

$$\sum_{n \leq x} \tau(\phi(n)) \geq \sum_{n \leq x} \tau(\lambda(n)) \geq x \exp \left(2e^{-\frac{\gamma}{2}} \sqrt{\frac{\log x}{\log \log x}} (1 + o(1)) \right).$$

Main Results

- (Theorem 1.1) As $x \rightarrow \infty$, we have

$$\sum_{n \leq x} \tau(\phi(n)) \geq \sum_{n \leq x} \tau(\lambda(n)) \geq x \exp \left(2e^{-\frac{\gamma}{2}} \sqrt{\frac{\log x}{\log \log x}} (1 + o(1)) \right).$$

- (Theorem 1.2) As $x \rightarrow \infty$,

$$\sum_{n \leq x} \tau(\lambda(n)) = o \left(\sum_{n \leq x} \tau(\phi(n)) \right).$$

Heuristics

(Conjecture 1.1) As $x \rightarrow \infty$, we have

$$\sum_{n \leq x} \tau(\lambda(n)) = x \exp \left(2\sqrt{2}e^{-\frac{\gamma}{2}} \sqrt{\frac{\log x}{\log \log x}} (1 + o(1)) \right).$$

Thus, it is expected that both sums $\sum_{n \leq x} \tau(\phi(n))$ and $\sum_{n \leq x} \tau(\lambda(n))$ satisfy

$$x \exp \left(2\sqrt{2}e^{-\frac{\gamma}{2}} \sqrt{\frac{\log x}{\log \log x}} (1 + o(1)) \right).$$

The Method - Theorem 1.1

- (Lemma 5 in LP) Let $A > 0$ and $1 < z \leq A \frac{\log x}{\log_2^4 x}$. Then

$$S_z(x) := \sum_{p \leq x} \frac{\tau_z(p-1)}{p} = c_1 \frac{\log x}{\log z} + O\left(\frac{\log x}{\log^2 z}\right).$$

The Method - Theorem 1.1

- (Lemma 5 in LP) Let $A > 0$ and $1 < z \leq A \frac{\log x}{\log_2^4 x}$. Then

$$S_z(x) := \sum_{p \leq x} \frac{\tau_z(p-1)}{p} = c_1 \frac{\log x}{\log z} + O\left(\frac{\log x}{\log^2 z}\right).$$

- (Corollary 2.1) Let $A > 1$ and $\log^{\frac{1}{A}} x \leq z \leq \log^A x$. Then as $x \rightarrow \infty$,

$$S_z(x) = c_1 \frac{\log x}{\log z} (1 + o(1)).$$

The Method - Theorem 1.1

- We use p_1, p_2, \dots, p_v to denote prime numbers. We define the following multiple sums for $2 \leq v \leq x$:

$$\mathfrak{T}_{v,z}(x) := \sum_{p_1 p_2 \cdots p_v \leq x} \frac{\tau_z(p_1 - 1) \tau_z(p_2 - 1) \cdots \tau_z(p_v - 1)}{p_1 p_2 \cdots p_v},$$

and for $\mathbf{u} = (u_1, \dots, u_v)$ with $1 \leq u_i \leq x$,

$$\mathfrak{T}_{\mathbf{u},v,z}(x) := \sum_{\substack{p_1 p_2 \cdots p_v \leq x \\ \forall i, p_i \equiv 1 \pmod{u_i}}} \frac{\tau_z(p_1 - 1) \tau_z(p_2 - 1) \cdots \tau_z(p_v - 1)}{p_1 p_2 \cdots p_v},$$

Define $\mathbb{T}_v := \{(t_1, \dots, t_v) : \forall i, t_i \in [0, 1], t_1 + \cdots + t_v \leq 1\}$. We adopt the idea from Gauss' Circle Problem.

$$p_1 p_2 \cdots p_v \leq x \iff \frac{\log p_1}{\log x} + \frac{\log p_2}{\log x} + \cdots + \frac{\log p_v}{\log x} \leq 1.$$

The Method - Theorem 1.1

- Let $v = \left\lfloor c\sqrt{\frac{\log x}{\log_2 x}} \right\rfloor$ for some positive constant c to be determined.

Use $\text{vol}(\mathbb{T}_v) = \frac{1}{v!}$ to approximate

$$\mathfrak{T}_{v,z}(x) := \sum_{p_1 p_2 \cdots p_v \leq x} \frac{\tau_z(p_1 - 1)\tau_z(p_2 - 1) \cdots \tau_z(p_v - 1)}{p_1 p_2 \cdots p_v},$$

by

$$\frac{1}{v!} S_z(x)^v (1 + o(1))^v.$$

The Method - Theorem 1.1

- Let $v = \left\lfloor c \sqrt{\frac{\log x}{\log_2 x}} \right\rfloor$ for some positive constant c to be determined.

Use $\text{vol}(\mathbb{T}_v) = \frac{1}{v!}$ to approximate

$$\mathfrak{T}_{v,z}(x) := \sum_{p_1 p_2 \cdots p_v \leq x} \frac{\tau_z(p_1 - 1) \tau_z(p_2 - 1) \cdots \tau_z(p_v - 1)}{p_1 p_2 \cdots p_v},$$

by

$$\frac{1}{v!} S_z(x)^v (1 + o(1))^v.$$

This approximation allows a lower bound of

$$\sum_{n \leq x} \frac{\tau(\lambda(n))}{n} \gg \exp \left(\sqrt{\frac{\log x}{\log_2 x}} (2c + c \log c_1 - 2c \log c + o(1)) \right).$$

Maximizing above by the first derivative, the optimal choice for c is $e^{-\frac{\gamma}{2}}$.
This proves Theorem 1.1.

The Method - Theorem 1.2

- (Lemma 4.1) For any $2 \leq y \leq x$, we have

$$\sum_{n \leq \frac{x}{y}} \frac{\tau(\phi(n))}{n} \ll \frac{\log^5 x}{x} \sum_{n \leq x} \tau(\phi(n)).$$

The Method - Theorem 1.2

- (Lemma 4.1) For any $2 \leq y \leq x$, we have

$$\sum_{n \leq \frac{x}{y}} \frac{\tau(\phi(n))}{n} \ll \frac{\log^5 x}{x} \sum_{n \leq x} \tau(\phi(n)).$$

Define $\mathcal{E}_1(x)$, $\mathcal{E}_2(x)$ and $\mathcal{E}_3(x)$:

$$\mathcal{E}_1(x) := \{n \leq x : 2^k | n \text{ or there is a prime } p | n \text{ with } p \equiv 1 \pmod{2^k}\},$$

$$\mathcal{E}_2(x) := \{n \leq x : \omega(n) \leq \omega\},$$

and

$$\mathcal{E}_3(x) := \{n \leq x\} - (\mathcal{E}_1(x) \cup \mathcal{E}_2(x)).$$

Use Lemma 4.1 to estimate sums $\sum \tau(\lambda(n))$ over the above three sets and obtain the estimate in Theorem 1.2.

The Binomial Model

For $z = \sqrt{\log x}$, let

$$\frac{\tau_{z,z^2}(\text{lcm}(p_1 - 1, p_2 - 1, \dots, p_v - 1))}{\tau_{z,z^2}(p_1 - 1)\tau_{z,z^2}(p_2 - 1) \cdots \tau_{z,z^2}(p_v - 1)}.$$

Let the number X_q of primes p_1, \dots, p_v such that $q|p_i - 1$. We model X_q by a binomial distribution with parameters v (number of trials), $\frac{2}{q}$ (probability of success).

The Binomial Model

For $z = \sqrt{\log x}$, let

$$\frac{\tau_{z,z^2}(\text{lcm}(p_1 - 1, p_2 - 1, \dots, p_v - 1))}{\tau_{z,z^2}(p_1 - 1)\tau_{z,z^2}(p_2 - 1) \cdots \tau_{z,z^2}(p_v - 1)}.$$

Let the number X_q of primes p_1, \dots, p_v such that $q|p_i - 1$. We model X_q by a binomial distribution with parameters v (number of trials), $\frac{2}{q}$ (probability of success).

- A Difficulty: Achieving "independence" of X_q with various primes q .

The Binomial Model

For $z = \sqrt{\log x}$, let

$$\frac{\tau_{z,z^2}(\text{lcm}(p_1 - 1, p_2 - 1, \dots, p_v - 1))}{\tau_{z,z^2}(p_1 - 1)\tau_{z,z^2}(p_2 - 1) \cdots \tau_{z,z^2}(p_v - 1)}.$$

Let the number X_q of primes p_1, \dots, p_v such that $q|p_i - 1$. We model X_q by a binomial distribution with parameters v (number of trials), $\frac{2}{q}$ (probability of success).

- A Difficulty: Achieving "independence" of X_q with various primes q .
- A Direction: Assuming the EH to prove the heuristics.

The Binomial Model

For $z = \sqrt{\log x}$, let

$$\frac{\tau_{z,z^2}(\text{lcm}(p_1 - 1, p_2 - 1, \dots, p_v - 1))}{\tau_{z,z^2}(p_1 - 1)\tau_{z,z^2}(p_2 - 1) \cdots \tau_{z,z^2}(p_v - 1)}.$$

Let the number X_q of primes p_1, \dots, p_v such that $q|p_i - 1$. We model X_q by a binomial distribution with parameters v (number of trials), $\frac{2}{q}$ (probability of success).

- A Difficulty: Achieving "independence" of X_q with various primes q .
- A Direction: Assuming the EH to prove the heuristics.

Thank you for listening!