

Formulation and Proof of the Tagiuri Conjecture

Russell Jay Hendel
Towson University
RHendel@Towson.Edu

[West Coast Number Theory Conference](#)
[WCNT Dec. 2017](#)

Tagiuri:

- $F_{n+a} F_{n+b} = F_n F_{n+a+b} + (-1)^n F_a F_b$
-
- Tagiuri: $F_{n+a} F_{n+b} = F_n F_{n+a+b} + (-1)^n F_a F_b$
- Catalan: $F_{n+a} F_{n-a} = F_n F_n + (-1)^{n+a+1} F_a F_a$
- Cassini: $F_{n+1} F_{n-1} = F_n^2 + (-1)^n$

Intro: Tagiuri Identities (Caen)

- 1) $P = F_{n+a} F_{n+b} F_{n+c} F_{n+d} F_{n+e} F_{n+f}$
- 2) Trivial Identity: $P = P$
- 3) For each 'pair': (a,b), (c,d), (e,f) on RHS
- 4) Apply Tagiuri
- e.g. $F_{n+a} F_{n+b} \rightarrow F_n F_{n+a+b} + (-1)^n F_a F_b$
- 5) Substitute: (a,b,c,d,e,f)=(-3,-2,-1,1,2,3)
- Seek Patterns in result

Result

- $F_{n-3} F_{n-2} F_{n-1} F_{n+1} F_{n+2} F_{n+3}$
- =
- $F_{n-5} F_n^4 F_{n+5} +$
- $2F_{n-5} F_n - 4F_n^2 - 2F_n F_{n+5} +$
- $(-1)^n [F_{n-5} F_n^4 F_{n+5} + 2F_{n-5} F_n^3 -$
- $2F_n^3 F_{n+5} - 4]$
- Pattern?

Idea Of Theorem

- Patterns in distribution of indices on RHS
- $F_{n-5} F_n^4 F_{n+5} +$
- $2F_{n-5} F_n - 4F_n^2 - 2F_n F_{n+5} +$
- $(-1)^n [F_{n-5} F_n^2 F_{n+5} + 2F_{n-5} F_n^3 -$
- $2F_n^3 F_{n+5} - 4]$
- $n +/- 5 \rightarrow$ Count of 4
- $n \rightarrow$ Count of 16
- Distribution of (4,16,4)

Rules for Counting Indices

- Ignore numerical coefficients
- Ignore $(-1)^n$
- Count multiplicities
- Assume all parenthetical expansions done

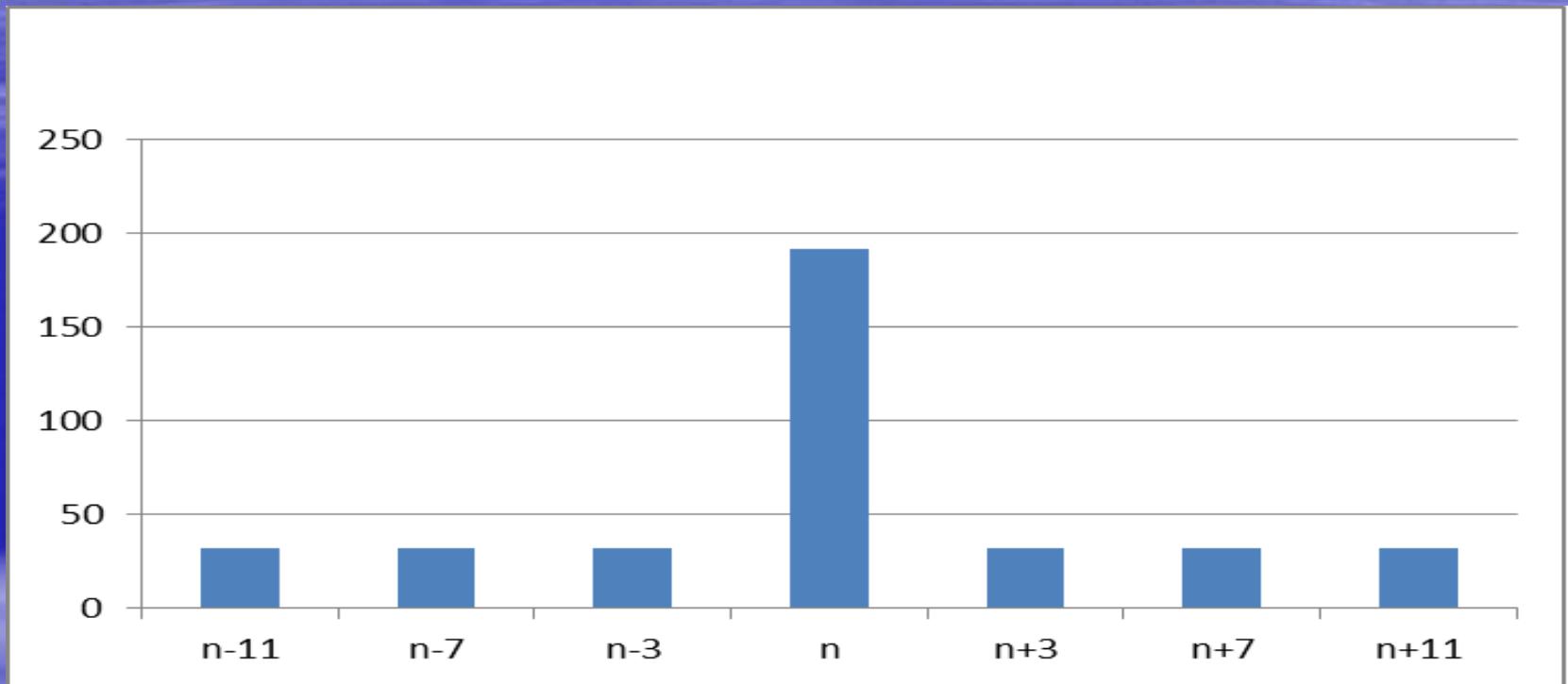
Further Study of Patterns

- Previous slides were for
 - Initial Products of length 6 with
 - Tagiuri applied to all consecutive pairs
- Can generalize to initial product of
- Length = $2q$, $q=1,2,3,\dots$
- Obtain *family* of Tagiuri generated identities

$q=3$ and General q

- 0) Let $q=3$
- 1) $P = F_{n+a_1} \dots F_{n+a_6}$; General case $2q$
- 2) Trivial identity: $P = P$
- 3) Tagiuri: $(1,2; 3,4; \dots; 2q-1, q)$
- RESULTS ON c , COUNT of INDICES
- F_{n+a} , q odd, $|a| \equiv 3 \pmod{4}$, $|a| < 2q \Rightarrow c = 2^{q-1}$
- F_{n+a} , q even, $|a| \equiv 5(4)$, $5 \leq |a| < 2q \Rightarrow c = 2^{q-1}$
- F_n : $c = q2^{q-1}$ (q even); $c = (q+1)2^{q-1}$ (q odd)

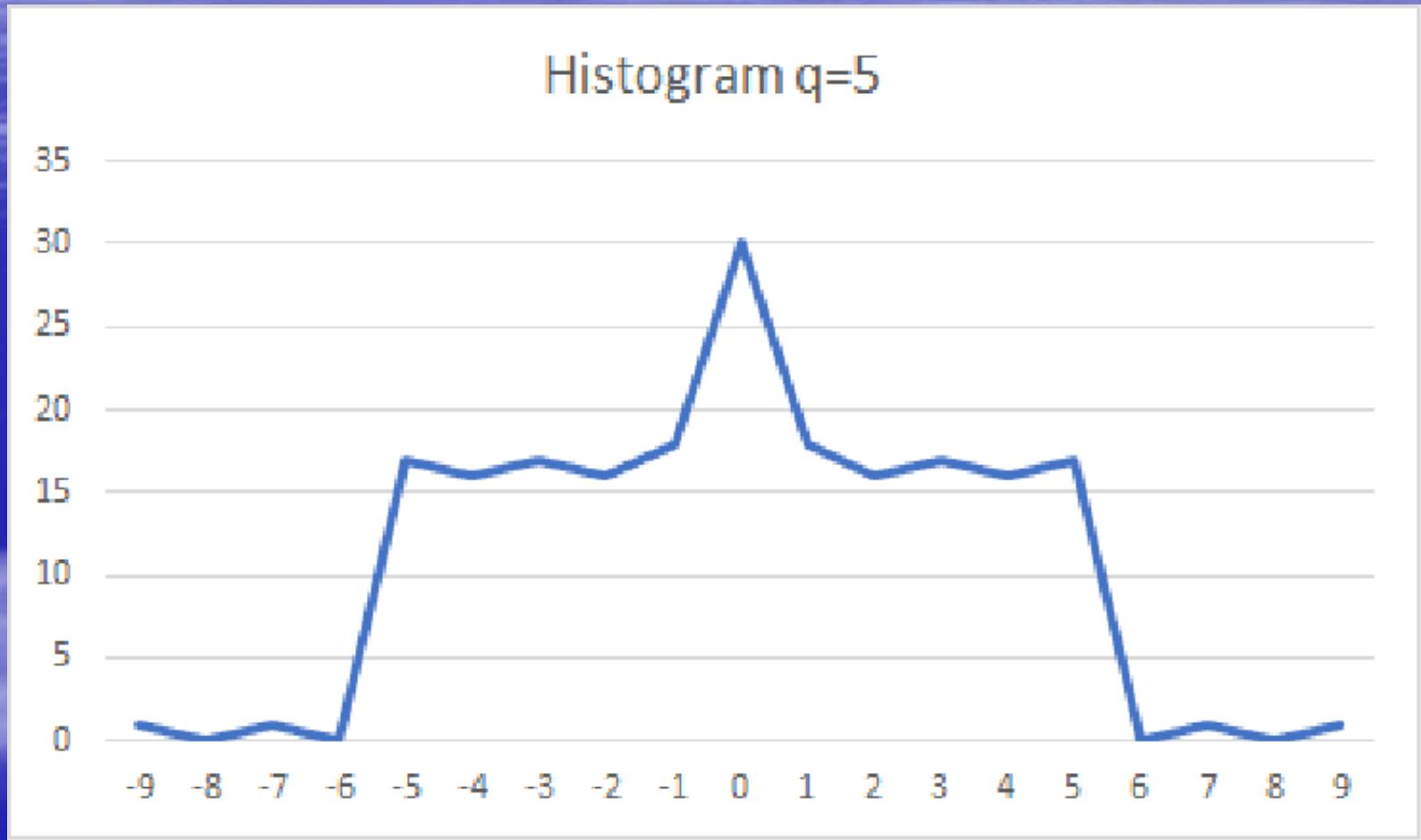
Example 1 ($q=6$)



Ex 2: Submitted Fib. Quar

- 0) $q=2$
- 1) $P=F_{n+a} F_{n+b} F_{n+c} F_{n+d} F_{n+e}$, $2q+1$ indices
- 2) Trivial eq: $3P$ ($q+1$ positive) - $2P$ (q neg)
- 3,4) Tagiuri: $(1,2), (2,3), (3,4), (4,5), (5,1)$
- 5) Substitutions: $(1,2,3,4,5) \Rightarrow (-2, -1, 0, 1, 2)$
- RESULTS: F_n weight $6q$
- F_{n+e} , Weight $4q-3$; F_{n+o} Weight $4q-2$
- F_{n+x} , x in $\pm (q+1, q+2, \dots, 2q-1)$ Weight 1

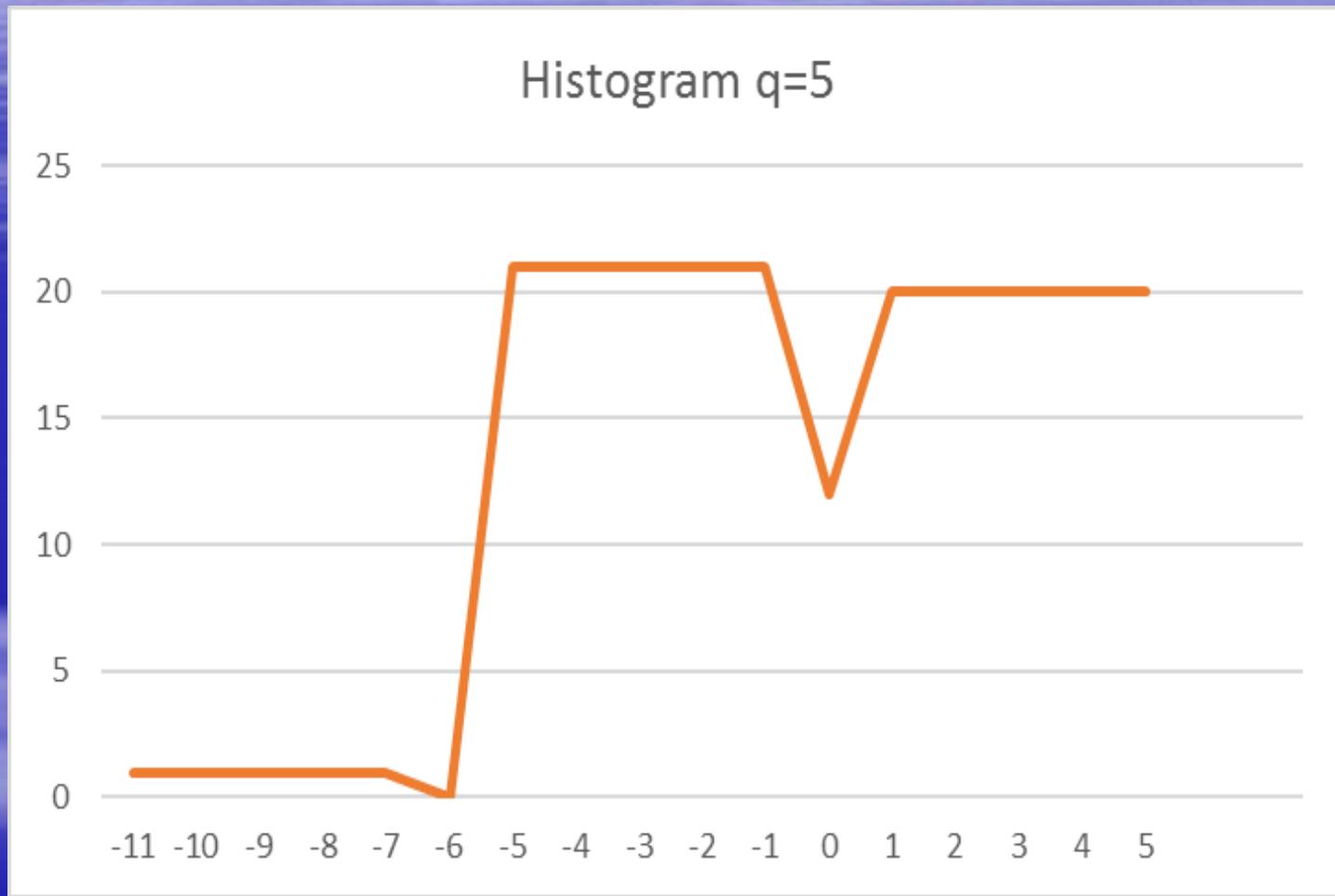
Example 2 (Sub. Fib. Quar)



Example 3 (WCNT 17)

- 0) $q=1:1) P = F_{n+a} F_{n+b} F_{n+c} F_{n+d}, 2q+2$ in product
- 3) Trivial Identity: $P = P + P - P (q+1, +; q, -)$
- 4) Tagiuri: (1,2), (1,3), (1,4)
- In general: (1,2), (1,3), ..., (1,2q+2)
- -----
- RESULTS: $n (F_n) \rightarrow$ Weight $2q+2$
- $n+: 1, 2, 3, \dots, q \rightarrow$ Weight $4q$
- $n-: 1, 2, 3, \dots, q \rightarrow$ Weight $4q+1$
- $n-: (q+2), (q+3), \dots, (2q+1) \rightarrow$ Weight 1

Example 3 (WCNT)



PROOFS - Needed Definition#1

- $(1,2), (2,3), \dots, (q,1) \Rightarrow$ Each indice OCCUR 2ice
- $(1,2), (1,3), \dots, (1,2q+2) \Rightarrow$ "1" OCCUR Q times
others OCCUR 1nce
- Definition: Occurrence number of indice $O(a)$
- Definition: Occurrence set of family: Collection of $O(a)$ all a

PROOFS - Needed Definitions#2

- FAMILY of identities
- (1,2),(1,3), (1,4)
- (1,2),(1,3), (1,4), (1,5), (1,6)
- (1,2), (1,3), (1,4), (1,5),(1,6), (1,7), (1,8)
- FAMILY \Leftrightarrow Substitution String describing any member are prefixes of successor

PROOFS - Needed Definition

- Oops
- $(1,2), (1,3), (3,1)$
- $(1,2), (1,3), (3,4), (4,5), (5,1)$ $\Leftarrow\Rightarrow$ Not prefix
- ----- Reinterpret modularly -----
- $(1,2), (1,3), (3,4)$ $\Leftarrow\Rightarrow$ Only 3 indices so $4=1(3)$
- $(1,2), (1,3), (3,4), (4,5), (5,6)$ $\Leftarrow\Rightarrow$ $6=1 \pmod{5}$
- String prefix definition stands with use of modular interpretation.

PROOFS - ISSUES

- Trivial identity: $E(q)$ summands total
- There are $P(q)$ multiplicands per identity
- Assume 1 Tagiuri application per summand
- I: For each pair $(n+a, n+b)$ in each P ,
 - get $F_{n+a} F_{n+b} \Rightarrow F_n F_{n+a+b} + (-1)^n F_a F_b$
 - So $2E(q)$ occurrences of each index
- II: But each index occurs $O(a)$ times
 - Subtract $2O(a)$ from $2E(q)$
- III: Add “1” for each possible “ $a+b$ ”

PROOFS - ISSUES

- IV) Suppose 0 in (a, b) . Then
 - $F_{n+a} F_{n+b} = F_n F_{n+a+b} + (-1)^n F_a F_b$
 - But $F_0 = 0$. So we lose summand,
- So Subtract $O(0)$
- V): Add back if $\mathcal{O}(a)$ intersect $\mathcal{O}(0)$ non empty
- Why? Because I took off twice and should have taken off only once

PROOFS - THEOREM

- Consider a Tagiuri Generated Identity with one substitution per summand in the trivial equation. Let $n+a$, $a \neq 0$, be any index. Then the histogram count, $H(a)$, of $n+a$ equals
- $H(a) = 2E(q) - 2O(a) - O(0) + \#(\mathcal{O}(a) \cap \mathcal{O}(0)) + \dot{\epsilon}_a$
- Where \mathcal{O} represents the underlying set, $\#$ represents cardinality and $\dot{\epsilon}_a$ is the number of occurrences of a in the sums a_i+a_j where (i,j) are members of the Tagiuri substitution instructions.

Main Theorem: Illustrate X3 $q=2$

$n-3$ $n-2$ $n-1$ $n+1$ $n+2$ $n+3$	#	$n-1$ $n+1$ $n+2$ $n+3$
<u>$n-3$</u> $n-2$ <u>$n-1$</u> $n+1$ $n+2$ $n+3$	#	$n-2$ $n+1$ $n+2$ $n+3$
$n-3$ <u>$n-2$</u> $n-1$ <u>$n+1$</u> $n+2$ $n+3$	#	$n-2$ $n-1$ $n+2$ $n+3$
$n-3$ <u>$n-2$</u> $n-1$ $n+1$ <u>$n+2$</u> $n+3$	#	$n-2$ $n-1$ $n+1$ $n+3$
$n-3$ <u>$n-2$</u> $n-1$ $n+1$ $n+2$ <u>$n+3$</u>	#	$n-2$ $n-1$ $n+1$ $n+2$

- Look at $n-2$. There are $2q+1 \times 2 = 5 \times 2 = 10$
- But $O(2) = 1$ so take away 2 (r1), leaving $4q$
- Ditto for $n-1$ but get 1 back from $F_{n-3} F_{n+2}$

Main Theorem illustrated: X3

- Example 3: Review slides 12, 13
- Apply theorem: $E(q) = 2q+1$
- $\bigcirc(0) = \text{empty } (a_1, a_2, \dots, a_{2q+1}) = (-q, \dots, -1, 1, \dots, q)$
- Sums of pairs are $2q-1, 2q-3, \dots, 7, 5, 3, 1$
- ----- Add 1 Add 1
- $O(1) = 2q+1; O(\text{not } 1) = 1$
- $H(\text{not } 1) = 2E(q) - 2O(\text{not } 1) + \dot{\epsilon}_{\text{not } 1} = 2(2q+1) - 2 + \dot{\epsilon}_{\text{not } 1} = 4q, \text{ or } 4q+1.$
- *Can be seen on slide 13 (or 12)*

Main Theorem: Illustrate X2 $q=2$

<u>$n-2$</u>	<u>$n-1$</u>	n	$n+1$	$n+2$	#	n	$n+1$	$n+2$
$n-2$	<u>$n-1$</u>	n	$n+1$	$n+2$	#	$n-2$	$n+1$	$n+2$
$n-2$	$n-1$	<u>n</u>	<u>$n+1$</u>	$n+2$	#	$n-2$	$n-1$	$n+2$
$n-2$	$n-1$	n	<u>$n+1$</u>	<u>$n+2$</u>	#	$n-2$	$n-1$	n
<u>$n-2$</u>	$n-1$	n	$n+1$	<u>$n+2$</u>	#	$n-1$	n	$n+1$

- Review slides 10,11
- Look at $n-2$. $(2Q+1)^*2 = 5 \times 2 = 10$ occurrences
- But $O(n-2)=2$. So remove 2×2 ; r1,r5. Left w 6
- Also remove RHS row w Fn Row 2,3: Left 4
- So $2^*P(q)=2^*(2q+1)-2^*2-2 = 4Q-4$ as required

Corollary

- With assumptions as in the main theorem. Assume further that the total number of occurrence numbers is bounded by f , *finite*, for the entire family. *Then*
- *The non zero range of the histogram (that is the distinct number of numbers counting indices) is finite and in fact*
- *Bounded by $4f+1$.*
- *Corollary 2: if $O(a)=c \rightarrow \# \text{ in range} \leq 5 \circ\circ$*