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Practical numbers
A positive integer n is called practical if all smaller positive integers
can be represented as sums of distinct divisors of n.

12 is practical:

The sequence of practical numbers:

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, ...
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Characterization of practical numbers

Stewart (1954) and Sierpinski (1955) showed that an integer n ≥ 2
with prime factorization n = pα1

1 · · · p
αk
k , p1 < p2 < . . . < pk, is

practical if and only if

pj ≤ 1 + σ
(

pα1
1 · · · p

αj−1
j−1

)
(1 ≤ j ≤ k),

where σ(n) denotes the sum of the divisors of n.

For example, 364 = 22 · 7 · 13 is practical because

2 ≤ 1 + σ(1) = 2, 7 ≤ 1 + σ(22) = 8, 13 ≤ 1 + σ(22 · 7) = 57.
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Counting practical numbers up to x

Let P(x) be the number of practical numbers in the interval [1, x].
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x
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Counting practical numbers up to x

Srinivasan (1948): lim
x→∞

P(x) =∞.

Erdős (1950): lim
x→∞

P(x)
x

= 0.

Saias (1997): 0 < c1 <
P(x)

x/ log x
< c2

W. (2015): lim
x→∞

P(x)
x/ log x

= c for some constant c > 0.



Counting practical numbers up to x

Srinivasan (1948): lim
x→∞

P(x) =∞.
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What is the value of c?

W. (2015): P(x) =
c x

log x

(
1 + O

(
log log x

log x

))
for some c > 0.

W. (2017):

c =
1

1− e−γ
∑
n∈P

1
n

( ∑
p≤σ(n)+1

log p
p− 1

− log n

) ∏
p≤σ(n)+1

(
1− 1

p

)

I P is the set of practical numbers
I σ(n) is the sum of the positive divisors of n
I p runs over primes
I γ is Euler’s constant

Corollary: The constant c satisfies 1.311 < c < 1.697.
Corollary: Practicals are at least 31% more numerous than primes.
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Derivation of the formula for c for practical numbers:

Functional equation from reordering natural numbers:

∑
m≥1

1
ms =

∑
n∈P

1
ns

∏
p>σ(n)+1

(
1− 1

ps

)−1

(Re(s) > 1)

Divide both sides by ζ(s):

1 =
∑
n∈P

1
ns

∏
p≤σ(n)+1

(
1− 1

ps

)
(Re(s) > 1)

Differentiate with respect to s:

0 =
∑
n∈P

1
ns

( ∑
p≤σ(n)+1

log p
ps − 1

−log n

) ∏
p≤σ(n)+1
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With s = 1 + 1/ log2 N and N →∞, the contribution from n ≤ N is

o(1) +
∑
n∈P

1
n
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log p
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As N →∞, the contribution from n > N is

o(1) +
∫ ∞

N

c
ys log y

(
1− y1−s

s− 1
− log y

)
e
−γ+

(s−1) log y∫
0

(1−e−t) dt
t

log y
dy

=o(1) + c(e−γ − 1)
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Variation 1: Integers with dense divisors

The divisors of 20 are 1, 2, 4, 5, 10, 20.
Each divisor is at most twice the next smaller divisor.

We say n has dense divisors if this is the case.

Let D(x) be the number of integers up to x with dense divisors.

Tenenbaum (1986):
1

(log log x)4.21 <
D(x)

x/ log x
< log log x

Saias (1997): 0 < C1 <
D(x)

x/ log x
< C2

W. (2015): lim
x→∞

D(x)
x/ log x

= c2.
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What is the value of c2?

W. (2015): D(x) =
c2 x
log x

(
1 + O

(
1

log x

))
for some c2 > 0.

W. (2017):

c2 =
1

1− e−γ
∑
n∈D

1
n

(∑
p≤2n

log p
p− 1

− log n

) ∏
p≤2n

(
1− 1

p

)
where D is the set of integers with dense divisors.

Corollary: The constant c2 is given by c2 = 1.2248....

Corollary: Integers with dense divisors are about 22.5% more
numerous than primes.



What is the value of c2?

W. (2015): D(x) =
c2 x
log x

(
1 + O

(
1

log x

))
for some c2 > 0.

W. (2017):

c2 =
1

1− e−γ
∑
n∈D

1
n

(∑
p≤2n

log p
p− 1

− log n

) ∏
p≤2n

(
1− 1

p

)
where D is the set of integers with dense divisors.

Corollary: The constant c2 is given by c2 = 1.2248....

Corollary: Integers with dense divisors are about 22.5% more
numerous than primes.



What is the value of c2?

W. (2015): D(x) =
c2 x
log x

(
1 + O

(
1

log x

))
for some c2 > 0.

W. (2017):

c2 =
1

1− e−γ
∑
n∈D

1
n

(∑
p≤2n

log p
p− 1

− log n

) ∏
p≤2n

(
1− 1

p

)
where D is the set of integers with dense divisors.

Corollary: The constant c2 is given by c2 = 1.2248....

Corollary: Integers with dense divisors are about 22.5% more
numerous than primes.



What is the value of c2?

W. (2015): D(x) =
c2 x
log x

(
1 + O

(
1

log x

))
for some c2 > 0.

W. (2017):

c2 =
1

1− e−γ
∑
n∈D

1
n

(∑
p≤2n

log p
p− 1

− log n

) ∏
p≤2n

(
1− 1

p

)
where D is the set of integers with dense divisors.

Corollary: The constant c2 is given by c2 = 1.2248....

Corollary: Integers with dense divisors are about 22.5% more
numerous than primes.



Variation 2: ϕ-practical numbers

The integer n is called ϕ-practical if Xn − 1 ∈ Z[X] has a divisor of
every degree up to n.

Let Pϕ(x) be the number of ϕ-practical integers up to x.

Thompson (2012): For some constants C1, C2,

0 < C1 <
Pϕ(x)

x/ log x
< C2.

Pomerance, Thompson, W. (2016):

Pϕ(x) =
Cx

log x

{
1 + O

(
1

log x

)}
for some constant C > 0.

W. (2017): The constant C = . . . and satisfies 0.945 < C < 0.967.
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Pϕ(x) =
Cx

log x

{
1 + O

(
1

log x

)}
for some constant C > 0.

W. (2017): The constant C = . . .

and satisfies 0.945 < C < 0.967.
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Variation 3: Polynomials of degree n over Fq with a divisor
of every degree up to n

W. (2016): The proportion of polynomials of degree n over Fq, which
have a divisor of every degree up to n, is given by

Cq

n

(
1 + O

(
1
n

))
.

W. (2017): The factor Cq is given by

Cq =
1

1− e−γ
∑
n≥0

fq(n)

(
n+1∑
k=1

kIk

qk − 1
− n

)
n+1∏
k=1

(
1− 1

qk

)Ik

,

where Ik is the number of monic irreducible polynomials of degree k
over Fq and fq(n) is the proportion in question.
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Variation 3: Polys over Fq with a divisor of every degree

q Cq

2 3.400335...
3 2.801735...
4 2.613499...
5 2.523222...
7 2.436571...
8 2.412648...
9 2.394991...

For example, the proportion of polynomials of degree n over F2
having a divisor of every degree up to n is

3.400335...
n

(
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(
1
n
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.

We have

Cq =
1

1− e−γ
+ O

(
1
q

)
.
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