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The sequence of practical numbers:

1,2, 4, 6,8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, ...



Characterization of practical numbers

Stewart (1954) and Sierpinski (1955) showed that an integer n > 2
with prime factorization n = p{" - - pt*, p1 < pr < ... < pg, is
practical if and only if
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Stewart (1954) and Sierpinski (1955) showed that an integer n > 2
with prime factorization n = p{" - - pt*, p1 < pr < ... < pg, is
practical if and only if

p o (piep)  (1<i<n,
where o(n) denotes the sum of the divisors of n.

For example, 364 = 2% - 7 - 13 is practical because

2<1+0(1)=2, 7<1+0(2*)=8, 13<140(2%-7)=5T7.
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What is the value of ¢?

log1
W. (2015): P(x) = lc—x <1 +0 < o8 ng)) for some ¢ > 0.

ogx log x
W. (2017):
_ 1 1 logp 1
= (X ) T (1))
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v

o(n) is the sum of the positive divisors of n
> p runs over primes

> ~ is Euler’s constant

Corollary: The constant c satisfies 1.311 < ¢ < 1.697.
Corollary: Practicals are at least 31% more numerous than primes.
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What is the value of ¢,?

1
W. (2015): D(x) = % <1 +0 <logx>> for some ¢y > 0.

W. (2017):

1 1 1 1
) = 1_6—7271(2;%]71 —logﬂ) H (1_]7)

neD p<2n p<2n

where D is the set of integers with dense divisors.

Corollary: The constant c; is given by ¢, = 1.2248....

Corollary: Integers with dense divisors are about 22.5% more
numerous than primes.
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Variation 2: (p-practical numbers
The integer n is called p-practical if X" — 1 € Z[X] has a divisor of
every degree up to n.
Let P (x) be the number of ¢-practical integers up to x.

Thompson (2012): For some constants Cy, Co,

Ps@(x)

0<C <
! x/logx

Pomerance, Thompson, W. (2016):

0= g+ ()

for some constant C > 0.

W. (2017): The constant C = ... and satisfies 0.945 < C < 0.967.
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W. (2017): The factor C, is given by
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where I, is the number of monic irreducible polynomials of degree k
over I, and f,(n) is the proportion in question.
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