

S-Euclidean Imaginary Quadratic Fields

Kyle Hammer (joint work with Skip Moses)
California State University, Chico

Imaginary quadratic number field

An imaginary quadratic number field is an extension of the rational numbers of degree 2 with negative discriminant. In general it is given by $K = \{a + b\sqrt{-d} \mid a, b \in \mathbb{Q}\}$

Ring of integers

In the imaginary quadratic case, the ring of integers is given by

$\mathcal{O}_K = \{x + y\sqrt{-d} \mid x, y \in \mathbb{Z}\}$ when $-d \equiv 2, 3 \pmod{4}$ or

$\mathcal{O}_K = \{x + y\frac{1+\sqrt{-d}}{2} \}$ when $-d \equiv 1 \pmod{4}$

The norm map

In the imaginary quadratic setting, the norm is given by

$$N(x + y\sqrt{-d}) = x^2 + dy^2.$$

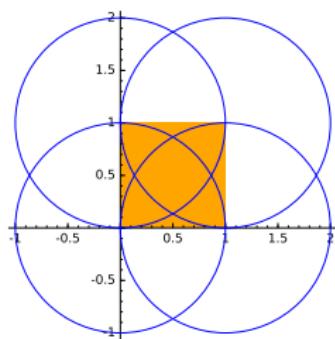
Euclidean number field

A number field is said to be Euclidean if for all $\xi \in K$, there exists $\gamma \in \mathcal{O}_K$ such that the $N(\xi - \gamma) < 1$

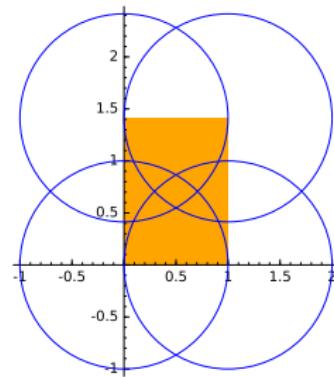
If K is Euclidean, then it has class number one. However, the converse is not true.

Examples of Euclidean Fields

$\mathbb{Q}(\sqrt{-1})$

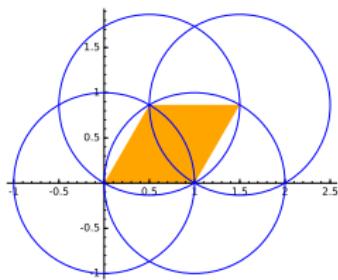


$\mathbb{Q}(\sqrt{-2})$

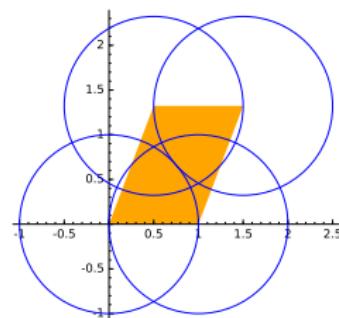


More Examples

$$\mathbb{Q}(\sqrt{-3})$$



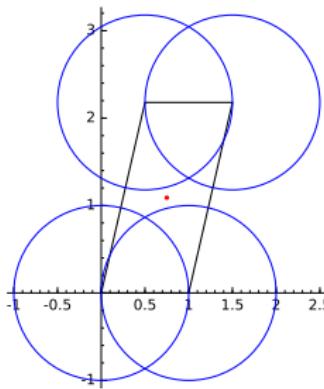
$$\mathbb{Q}(\sqrt{-7})$$



Failing to be Euclidean

When K fails to be Euclidean there exists some $\xi \in K$ such that for all $\alpha \in \mathcal{O}_K$ $N(\xi - \alpha) \geq 1$. For example if $d = -19$ and $\xi = \frac{3+\sqrt{-19}}{4}$ and we let $\alpha = a + b\left(\frac{1+\sqrt{-19}}{2}\right)$ be arbitrary. Then

$$N(\xi - \alpha) = \frac{(3 + 4a + 2b)^2 + 19(1 - 2b)^2}{4} > \frac{19}{4} > 1$$



S -Integers

Let S be a finite set of rational primes containing 2. Let S_K denote the set of primes in K lying above primes in S , together with the infinite primes. The ring of S -integers is defined as

$$\mathcal{O}_{K,S} = \{\xi \in K \mid v(\xi) \geq 0 \ \forall v \notin S_K\}.$$

In our setting, we have

$$\mathcal{O}_{K,S} = \left\{ \frac{x + y\sqrt{-d}}{\tau} \mid x, y \in \mathbb{Z} \right\},$$

where τ is a product of primes in S .

S-Norm

We define the S norm as $N_S(x) = N(x) \prod_{v \in S_K \setminus S_\infty} |x|_v$.

This has the effect of deleting the primes in S from $N(x)$.

Example

Take $K = \mathbb{Q}(\sqrt{-10})$ with $S = \{2, 3\}$. Then the

$N\left(\frac{4+6\sqrt{-10}}{7}\right) = \frac{376}{49} = \frac{2^3 * 47}{7 * 7}$. Now the $N_S\left(\frac{4+6\sqrt{-10}}{7}\right) = \frac{47}{49} = \frac{47}{7 * 7}$.

S-Euclidean

We say that K is S -Euclidean if for all $\xi \in K$ there exists $\gamma \in \mathcal{O}_{K,S}$ such that $N_S(\xi - \gamma) < 1$.

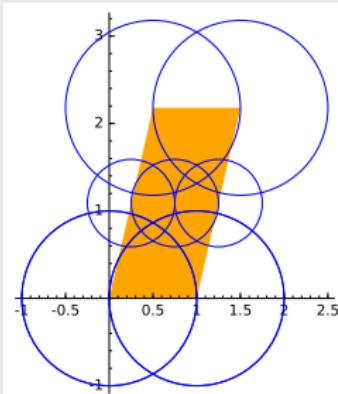
Lemma

Let $K = \mathbb{Q}(\sqrt{-d})$ be an imaginary quadratic field. If $\xi \in K$ and $\gamma \in \mathcal{O}_{K,S}$ such that $\gamma = \frac{a+b\sqrt{-d}}{\tau}$ where $a, b \in \mathbb{Z}$ and τ is a product of primes in S then

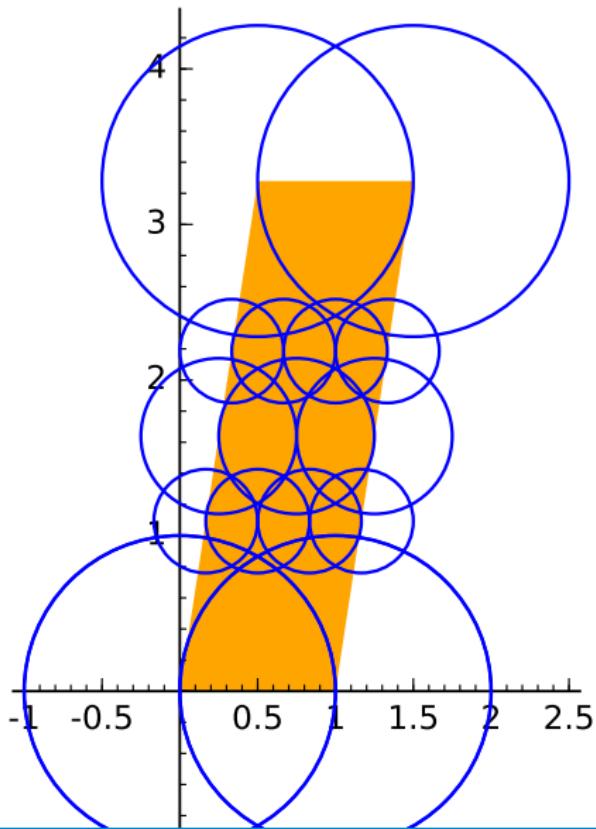
$$N_S(\xi - \gamma) \leq \tau^2 N(\xi - \gamma).$$

This allows us to draw circles of radius $\frac{1}{\tau}$, with centers at $\frac{a+b\sqrt{-d}}{\tau}$.

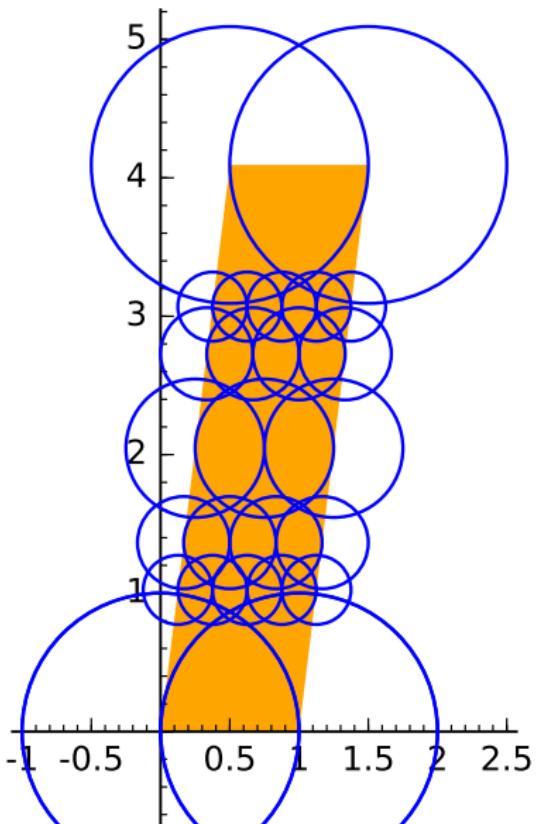
$K = \mathbb{Q}(\sqrt{-19})$ is S -Euclidean for $S = \{2\}$



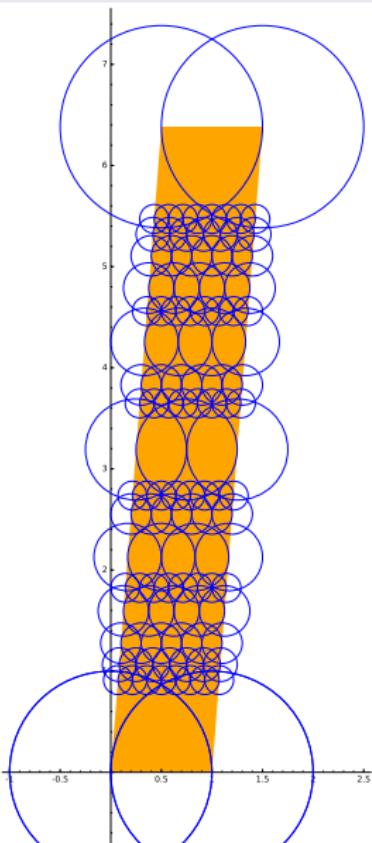
$K = \mathbb{Q}(\sqrt{-43})$ is S -Euclidean for $S = \{2, 3\}$



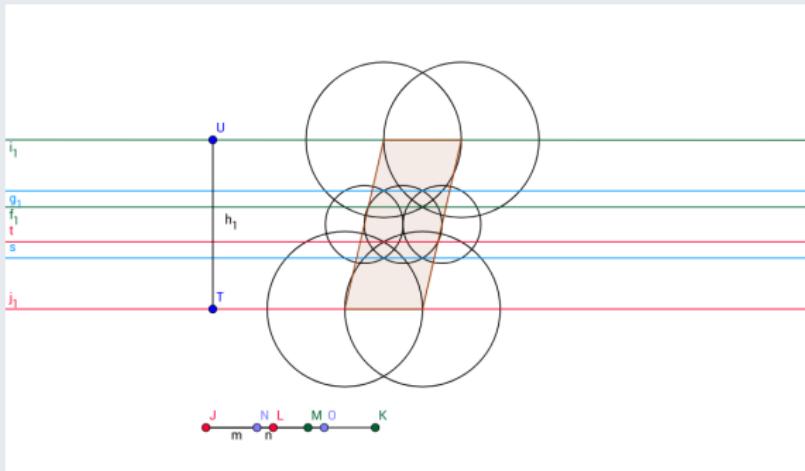
$K = \mathbb{Q}(\sqrt{-67})$ is S -Euclidean for $S = \{2, 3\}$



$K = \mathbb{Q}(\sqrt{-163})$ is S -Euclidean for $S = \{2, 3, 5, 7\}$



Algorithm



- ① Instead of the whole circle create intervals from the points where neighboring circles of the same radius intersect.
- ② If the intervals cover then the field is S-Euclidean.

Some S-Euclidean Fields found with the Algorithm

$S = \emptyset$:

$-1, -2, -3, -7, -11$

$S = \{2\}$:

$-5, -6, -15, -19, -23$

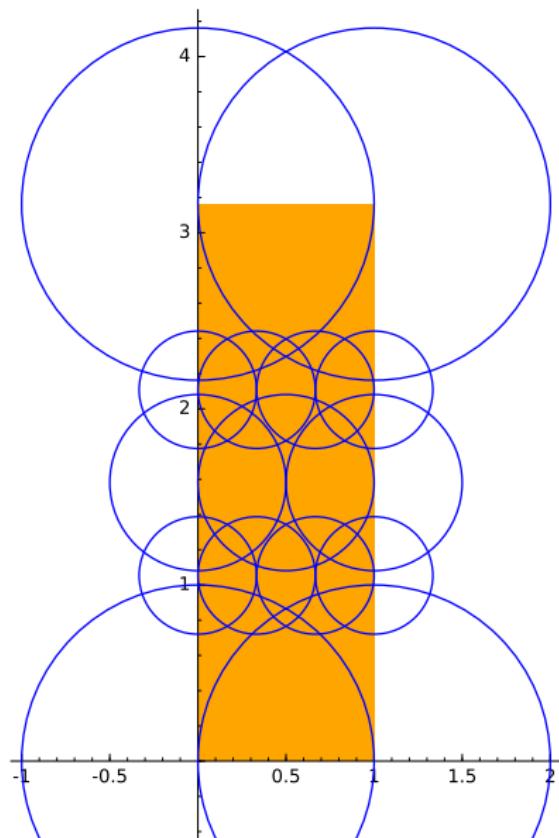
$S = \{2, 3\}$:

$-10, -13, -14, -17, -31, -35, -39, -43, -47, -51, -55, -59,$
 $-67, -71$

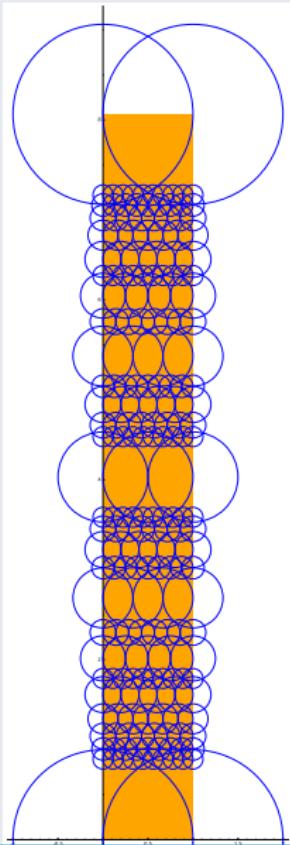
$S = \{2, 3, 5\}$:

$-21, -22, -26, -29, -30, -33, -34, -79, -83, -87, -91, -95,$
 $-103, -107, -111, -115, -119, -123, -127, -131, -139, -143$

$$\mathbb{Q}(\sqrt{-10}) \ S = \{2, 3\}$$



$$\mathbb{Q}(\sqrt{-65}) \ S = \{2, 3, 5, 7\}$$



Theorem (H. – Moses)

Let K be an imaginary quadratic field with discriminant D and S be a set of rational primes. If S contains all the primes up to \sqrt{D} , then K is S -Euclidean.

Proof

We need to show that for all $x \in [0, \frac{\sqrt{D}}{2}]$ there exist an $a, z \in \mathbb{Z}$ where $(a, z) = 1$ and $1 \leq a \leq z$ such that $|x - \frac{a\sqrt{D}}{2z}| < \frac{\sqrt{3}}{2z}$.

Manipulating this inequality we get $|zy - a| < \frac{\sqrt{3}}{\sqrt{D}}$. Therefore, It suffices to show that for all $y \in [0, 1)$, there exists a $z \in \mathbb{Z}^+$ such that $\{yz\} < \frac{\sqrt{3}}{\sqrt{D}}$. Now we can run through

$\{0y\}, \{y\}, \dots \{(\lceil \frac{\sqrt{D}}{\sqrt{3}} \rceil + 1)y\}$. and see where these land in our interval. We can rewrite the interval

$$[0, 1) = [0, \frac{\sqrt{3}}{\sqrt{D}}) \cup [\frac{\sqrt{3}}{\sqrt{D}}, \frac{2\sqrt{3}}{\sqrt{D}}) \dots [1 - \frac{\sqrt{3}}{\sqrt{D}}, 1).$$

Theorem (H. – Moses)

Let K be an imaginary quadratic field with discriminant D and S be a set of rational primes. If S contains all the primes up to \sqrt{D} , then K is S -Euclidean.

Proof (continued)

We now have $\lceil \frac{\sqrt{D}}{\sqrt{3}} \rceil + 1$ items and only $\lceil \frac{\sqrt{D}}{\sqrt{3}} \rceil$ intervals. This implies that there must exist an $s, t \in \mathbb{Z}$ satisfying

$1 \leq s < t \leq \lceil \frac{\sqrt{D}}{\sqrt{3}} \rceil$ such that $\{sy\}, \{ty\}$ differ by less than $\frac{\sqrt{3}}{\sqrt{D}}$.

This means that if we let $z \geq \lceil \frac{\sqrt{D}}{\sqrt{3}} \rceil + 1$ we get what we wanted to show. Now this implies that inverting all primes up to or beyond

$\lceil \frac{\sqrt{D}}{\sqrt{3}} \rceil + 1$ the field will become S -Euclidean. Since

$\lceil \frac{\sqrt{D}}{\sqrt{3}} \rceil + 1 \leq \sqrt{D}$ for $D \geq 7$, we get that inverting all primes up to \sqrt{D} the field is S -Euclidean. ■

Special Thanks

Thank you to

- ① Kevin McGown.
- ② National Science Foundation DMS Award 1559788 for providing the funding for our REU.