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Imaginary quadratic number field

An imaginary quadratic number field is an extension of the rational
numbers of degree 2 with negative discriminant. In general it is
given by K = {a + b

√
−d | a, b ∈ Q}

Ring of integers

In the imaginary quadratic case, the ring of integers is given by
OK = {x + y

√
−d | x , y ∈ Z} when −d ≡ 2, 3 (mod 4) or

OK = {x + y 1+
√
−d

2 } when −d ≡ 1 (mod 4)



The norm map

In the imaginary quadratic setting, the norm is given by
N(x + y

√
−d) = x2 + dy2.

Euclidean number field

A number field is said to be Euclidean if for all ξ ∈ K , there exists
γ ∈ OK such that the N(ξ − γ) < 1

If K is Euclidean, then it has class number one. However, the
converse is not true.



Examples of Euclidean Fields
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More Examples
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Failing to be Euclidean

When K fails to be Euclidean there exists some ξ ∈ K such that
for all α ∈ OK N(ξ − α) ≥ 1. For example if d = −19 and

ξ = 3+
√
−19
4 and we let α = a + b(1+

√
−19
2 ) be arbitrary. Then

N(ξ − α) =
(3 + 4a + 2b)2 + 19(1− 2b)2
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S-Integers

Let S be a finite set of rational primes containing 2. Let SK
denote the set of primes in K lying above primes in S , together
with the infinite primes. The ring of S-integers is defined as

OK ,S = {ξ ∈ K | v(ξ) ≥ 0 ∀v /∈ SK} .

In our setting, we have

OK ,S =

{
x + y

√
−d

τ
| x , y ∈ Z

}
,

where τ is a product of primes in S .



S-Norm

We define the S norm as NS(x) = N(x)
∏

v∈SKrS∞

|x |v .

This has the effect of deleting the primes in S from N(x).

Example

Take K = Q(
√
−10) with S = {2, 3}. Then the

N(4+6
√
−10

7 ) = 376
49 = 23∗47

7∗7 . Now the NS(4+6
√
−10

7 ) = 47
49 = 47

7∗7 .

S-Euclidean

We say that K is S-Euclidean if for all ξ ∈ K there exists γ ∈ OK ,S

such that NS(ξ − γ) < 1.



Lemma

Let K = Q(
√
−d) be an imaginary quadratic field. If ξ ∈ K and

γ ∈ OK ,S such that γ = a+b
√
−d

τ where a, b ∈ Z and τ is a
product of primes in S then

NS(ξ − γ) ≤ τ2N(ξ − γ).

This allows us to draw circles of radius 1
τ , with centers at a+b

√
−d

τ .



K = Q(
√
−19) is S-Euclidean for S = {2}

-1 -0.5 0.5 1 1.5 2 2.5

-1

1

2

3



K = Q(
√
−43) is S-Euclidean for S = {2, 3}
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K = Q(
√
−67) is S-Euclidean for S = {2, 3}
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K = Q(
√
−163) is S-Euclidean for S = {2, 3, 5, 7}

Q(
√
−163)

-1 -0.5 0.5 1 1.5 2 2.5

-1

1

2

3

4

5

6

7



Algorithm

1 Instead of the whole circle create intervals from the points
where neighboring circles of the same radius intersect.

2 If the intervals cover then the field is S-Euclidean.



Some S-Euclidean Fields found with the Algorithm

S = ∅ :
−1, −2, −3, −7, −11
S = {2} :
−5, −6, −15, −19, −23
S = {2, 3} :
−10, −13, −14, −17, −31, −35, −39, −43, −47, −51, −55, −59,
−67, −71
S = {2, 3, 5} :
−21, −22, −26, −29, −30, −33, −34, −79, −83, −87, −91, −95,
−103, −107, −111, −115, −119, −123, −127, −131, −139, −143
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Theorem (H. – Moses)

Let K be an imaginary quadratic field with discriminant D and S
be a set of rational primes. If S contains all all the primes up to√
D, then K is S-Euclidean.

Proof

We need to show that for all x ∈ [0,
√
D
2 ] there exist an a, z ∈ Z

where (a, z) = 1 and 1 ≤ a ≤ z such that |x − a
√
D

2z | <
√
3

2z .

Manipulating this inequality we get |zy − a| <
√
3√
D

. Therefore, It

suffices to show that for all y ∈ [0, 1), there exists a z ∈ Z+ such

that {yz} <
√
3√
D

. Now we can run through

{0y}, {y}, . . . {(d
√
D√
3
e+ 1)y}. and see where these land in our

interval. We can rewrite the interval
[0, 1) = [0,

√
3√
D

) ∪ [
√
3√
D
, 2
√
3√
D

) . . . [1−
√
3√
D
, 1).



Theorem (H. – Moses)

Let K be an imaginary quadratic field with discriminant D and S
be a set of rational primes. If S contains all all the primes up to√
D, then K is S-Euclidean.

Proof (continued)

We now have d
√
D√
3
e+ 1 items and only d

√
D√
3
e intervals. This

implies that there must exist an s, t ∈ Z satisfying

1 ≤ s < t ≤ d
√
D√
3
e such that {sy}, {ty} differ by less than

√
3√
D

.

This means that if we let z ≥ d
√
D√
3
e+ 1 we get what we wanted to

show. Now this implies that inverting all primes up to or beyond

d
√
D√
3
e+ 1 the field will become S-Euclidean. Since

d
√
D√
3
e+ 1 ≤

√
D for D ≥ 7, we get that inverting all primes up to

√
D the field is S-Euclidean. �
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