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Rewording the Question

Given some prime p we want to find N such that if n > N,
P(n2 + c) > p.

In other words, we want to show that there are finitely many
numbers of the form n2 + c with all primes in the prime
factorization p or smaller.

In other words, we want to look at n2 + c = pb11 · ... · p
bj
j and show

that b1, ..., bj are all bounded.



Right off the bat...

Some primes may not divide n2 + c ever

p | n2 + c

n2 + c ≡ 0 (mod p)

n2 ≡ −c (mod p)(−c
p

)
= 1



Basic Idea

We pull out all the squares

n2 + c = p1
d1+2a1 · ... · pkdk+2ak

where di ∈ {0, 1}

n2 + c = D(p1
a1 · ... · pkak )2

where D = p1
d1 · ... · pkdk

And so we have 2k possible D. Now we examine each case of D.



Pell Equation

Given some D, we let y = p1
a1 · ... · pkak and we let x = n

n2 + c = D(p1
a1 · ... · pkak )2

x2 + c = Dy2

x2 − Dy2 = −c

Wow! A Pell Equation! I know how to solve those.



Eligible D Values for the Pell Equation

To find solutions to this Pell equation, we must look to how −c
factors in Q(

√
D), the quadratic field generated by a specific D

value

If −c does factor, it must be of the form:

−c = (x + y
√
D)(x − y

√
D)

We now must turn to factoring ideals



Eligible D Values for the Pell Equation

3 possibilities for an ideal of OQ(
√
D), the ring of integers in the

quadratic field:

(−c) = pp (split) (1)

(−c) = p2 (ramified) (2)

(−c) = p (inert) (3)

A solution to the Pell equation will only arise in the first situation,
because that is when −c factors into conjugates

In particular, a solution exists when p is split and when p is
principal ideal, α

Then,
α = (x + y

√
D), *N(α) = ±c

*N(α) = α · α = (x + y
√
D)(x − y

√
D) = x2 − Dy2 = −c



Eligible D Values for the Pell Equation

Solutions to our Pell equation are then found by multiplying
powers of ε, the fundamental unit in Q(

√
D), by α

I ε is found by taking a convergent of the continued fraction of
√
D

In order to be a solution though, N(α · εn) = −c

Since N(ε) can be ±1, we have 4 situations to consider:

i. N(α) = −c , N(ε) = 1

ii. N(α) = −c , N(ε) = −1

iii. N(α) = c , N(ε) = −1

iv. N(α) = c , N(ε) = 1



Recurrence Relation From the Pell Equation

Solutions to Pell equation follow recurrence pattern
I Generated by multiplying intitial solution, α, by powers of

fundamental unit, ε

For each equation, we are able to find order 2 recurrence relation
for just y solutions of the form:

yn+2 = kyn+1 − yn

The coefficient k is always 2 times the rational component of ε (or
ε2), and coefficient of yn is always −1

This sequence of y solutions (yn) modulo any number is purely
periodic because of this −1 coefficient (Engstrom)



Subcases for each D

So the idea is now to look at this sequence mod a bunch of
numbers, and try to get some contradiction.

We want to find something like:

y = p1
a1 · p2a2 · p3a3 · ... ≡ k11, k12, k13, ... (mod m1)

y = p1
a1 · p2a2 · p3a3 · ... ≡ k21, k22, k23, ... (mod m2)

y = p1
a1 · p2a2 · p3a3 · ... ≡ k31, k32, k33, ... (mod m3)

...

The problem is we usually can’t generate a strong enough system
to have no solutions. So we go deeper... We add even more
subcases.



Subcases

To get extra information, we will look at subcases of which primes
do and do not divide y.

For example if we have y = p1
a1 · p2a2 · p3a3 for one case we say p1

and p2 divide y and p3 does not.

So in this case y = p1
a1 · p2a2 and also y ≡ 0 (mod p1 · p2)

The nice thing about these subcases is that if we include few
primes, we have a strong condition on the prime factorization of y ,
and if we include many primes we have a strong condition on the
congruency to 0.



Example: c = 3, p < 19, D = 7, IN: 2, 7 OUT: 13

We assume 14 divides y .
We look at the period of ys mod 14, and try to find primes that
give ys a period that is a multiple of the period mod 14.
This way the periods fit together, and we can use the ”zeros” in
the period mod 14 to easily see what ys can be congruent to for
these primes.

2a · 7b = 1 (mod 13)
2a · 7b = 14, 15 (mod 29)
2a · 7b = 14, 35, 78, 99 (mod 113)
2a · 7b = 14, 183 (mod 197)

Solutions:
21 · 71
22339 · 72339



Example: c = 3, p < 19, D = 7, IN: 2, 7 OUT: 13

So how do we deal with the fact that 2a · 7b has an actual
solution? Simple! We just look at two new subcases, where y is
divisible by 2 · 72, and where y is divisible by 22 · 7.

For y divisible by 2 · 72:

2a1 · 7b2 ≡ 448, 925 (mod 1373)

2a1 · 7b2 ≡ 128, 333, 413, 791, 824, 1322, 1335, 1531, 1606,

1802, 1815, 2313, 2346, 2724, 2804, 3009 (mod 3137)

2a1 · 7b2 ≡ 361, 395, 734, 770, 771, 851, 1095, 1246, 1541, 1988,

2283, 2434, 2678, 2758, 2759, 2795, 3134, 3168 (mod 3529)

has no solutions.

For y divisible by 22 · 7, it actually turns out that 4 never divides y .
So we are done.



Showing the System Has No Solutions

p1
a1 · p2a2 · p3a3 · ... ≡ k11, k12, k13, ... (mod m1)

p1
a1 · p2a2 · p3a3 · ... ≡ k21, k22, k23, ... (mod m2)

p1
a1 · p2a2 · p3a3 · ... ≡ k31, k32, k33, ... (mod m3)

...

Let ri be a primitive root mod m1.

Let hij be defined such that r
hij
i ≡ pj mod (mi ).

Let `ij be defined such that r
`ij
i ≡ kij mod (mi ).

Then:

h11 · a1 + h12 · a2 + h13 · a3 + ... ≡ `11, `12, `13, ... (mod φ(m1))

h21 · a1 + h22 · a2 + h23 · a3 + ... ≡ `21, `22, `23, ... (mod φ(m2))

h31 · a1 + h32 · a2 + h33 · a3 + ... ≡ `31, `32, `33, ... (mod φ(m3))

...



Showing the System Has No Solutions
Now we just have to check for all possible combinations of `.

h11 · a1 + h12 · a2 + h13 · a3 + ... ≡ `1 (mod φ(m1))

h21 · a1 + h22 · a2 + h23 · a3 + ... ≡ `2 (mod φ(m2))

h31 · a1 + h32 · a2 + h33 · a3 + ... ≡ `3 (mod φ(m3))

...

We can solve this first by converting each line to the same
modulus:

Let w := lcm(φ(m1), φ(m2), φ(m3), ...)
Let wi := w

φ(mi )

w1 · (h11 · a1 + h12 · a2 + h13 · a3 + ...) ≡ w1 · k1 (mod w)

w2 · (h21 · a1 + h22 · a2 + h23 · a3 + ...) ≡ w2 · k2 (mod w)

w3 · (h31 · a1 + h32 · a2 + h33 · a3 + ...) ≡ w3 · k3 (mod w)

...



Solutions!

All the solutions for P(n2 + 3) < 19 are:
12 + 3 = 1 · (2)2

02 + 3 = 3
32 + 3 = 3 · (2)2

122 + 3 = 3 · (7)2

452 + 3 = 3 · (2 · 13)2

22 + 3 = 7
52 + 3 = 7 · (2)2

372 + 3 = 7 · (2 · 7)2

72 + 3 = 13 · (2)2

92 + 3 = 21 · (2)2

62 + 3 = 39
3062 + 3 = 39 · (72)2

192 + 3 = 91 · (2)2

1242 + 3 = 91 · (13)2

332 + 3 = 273 · (2)2

So when n > 306, P(n2 + 3) ≥ 19.



Solutions!

We also found all the solutions for P(n2 + 5) < 23:
22 + 5 = 1 · (3)2

02 + 5 = 5
202 + 5 = 5 · (32)2

102 + 5 = 105
8302 + 5 = 105 · (34)2

32 + 5 = 14
112 + 5 = 14 · (3)2

1012 + 5 = 14 · (33)2

252 + 5 = 70 · (3)2

12 + 5 = 6
72 + 5 = 6 · (3)2

172 + 5 = 6 · (7)2

52 + 5 = 30
1152 + 5 = 30 · (3 · 7)2

So when n > 830, P(n2 + 5) ≥ 23.



Subleties of choosing moduli

There are 3 forces fighting against each other:

I We actually need to find useful moduli, which is easier if we
relax the restriction that y has few congruences.

I We want to find as many moduli as possible, because the
more we have to more likely the system has no solutions.

I As we increase the moduli and increase the congruences the
difficulty of solving the system grows exponentially.



Improvements
It is possible that our algorithm would run faster if we allowed
primes, qi that were not multiples of the period of z , or at least
had gcd(period(qi ), period(z)) > 1, provided that they had very
short periods. The idea is that adding a line to the system of linear
congruences with few k’s on the right hand side would be
beneficial, even if it does not use any information from requiring y
is divisible by z . Provided there are no solutions for y , it may be
even possible to prove so without using any z divisibility
information for any k . We tried to do this and were not able to.
Of course if y does have solutions, it is impossible to go without
information from z divisibility. We need that information to rule
out actual solutions of y . It seems reasonable that using a
combination of k , some with very short periods, and others with
periods that are multiples of z , may lead to better results.

Our algorithm is written to only deal with prime values of c .
Considering composite values would mean much more extensive
algebraic number theory in that we would have to reevaluate the
ideal factoring in the quadratic field.



Special Thanks

Thank you to Kevin McGown for hosting the REU at CSU Chico
and inviting me to be a part of it.

Thank you to the National Science Foundation for funding the
Chico REU. (NSF grant DMS-1559788)


