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The Modular Group and H∗

Let

Γ = PSL2(Z) = SL2(Z)/{±1},

H = {x + iy ∈ C | y > 0}.

Γ acts on H∗ = H ∪Q ∪ {i∞} as linear fractional transformations,

((
a b
c d

)
, τ

)
∈ Γ×H∗ 7→ aτ+b

cτ+d ∈ H∗.
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Modular Curves

Let G ≤ Γ, [Γ : G ] <∞.

The quotient G\H∗ has the structure of a compact Riemann surface, the
modular curve associated to G .

The genus of G is the genus of G\H∗, i.e. the number of “holes” in the
underlying surface.
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Examples

Γ has genus zero, i.e. Γ/H∗ is the Riemann sphere:

Γ\H∗
genus zero
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Examples

The commutator subgroup Γ′ of Γ has index 6 in Γ and genus one:

Γ′\H∗
genus one
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Cusp forms for G

The holomorphic 1-forms on G\H∗ are the weight two cusp forms for
G .

These are holomorphic functions f : H→ C such that f (τ)dτ is invariant
under the action of G on H.

Since the derivative of τ 7→ aτ+b
cτ+d is (cτ + d)−2, this invariance is

equivalent to f satisfying

f

(
aτ + b

cτ + d

)
= f (τ)(cτ + d)2.

We also require that f vanishes at the cusps of G , which are the orbits
G\(Q ∪ {i∞}).

These functions form a C-linear space S2(G ), whose dimension is the
genus of G .
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Homology of G\H∗

Fix the base point i∞ for H1(G\H∗,Z). Each “hole” in G\H∗ has an
“A-cycle” and a “B-cycle” associated to it, for a total of 2g independent
closed paths where g ≥ 1 is the genus of G :

·i∞

A-cycle and B-cycle for Γ′\H∗.
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Periods of G\H∗

Let {f1 · · · , fg} be a basis for S2(G ).

The theory of modular symbols, due to Manin and (independently)
Birch, implies that there are hyperbolic matrices γj ∈ G , 1 ≤ j ≤ 2g ,
such that H1(G\H∗,Z) is generated by the paths {i∞, γj(i∞)}.

(Recall that γ ∈ SL2(R) is hyperbolic iff |tr(γ)| > 2.)

The periods of G\H∗ are the complex numbers

ωjk =

∫ γj (i∞)

i∞
fk(τ) dτ, 1 ≤ j ≤ 2g , 1 ≤ k ≤ g .

These numbers span a full rank lattice Λ in Cg (i.e. a free Z-module of
rank 2g), and Cg/Λ is an abelian variety called the Jacobian of the
modular curve G\H∗.
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Computing the periods of G\H∗

These periods can be very difficult to compute!

The theory of vector-valued modular forms gives a nice way to do this.

Suppose for simplicity that G E Γ.

In this case, the map

(γ, f ) ∈ Γ× S2(G ) 7→ f |2γ ∈ S2(G )

defines a linear action of Γ on S2(G ).

Here for γ =

(
a b
c d

)
∈ Γ we set

f |2γ(τ) = f

(
aτ + b

cτ + d

)
(cτ + d)−2.

Consequently, the vector F = (f1, · · · , fg )t is a weight two

vector-valued cusp form for a representation ρ0 : Γ→ GLg (C).

Thus for each γ ∈ Γ we have F |2γ = ρ0(γ)F .
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Computing the periods of G\H∗

For 1 ≤ j ≤ g let

uj(τ) =

∫ τ

i∞
fj(z) dz .

Using the theory of Fuchsian ODEs and the modular derivative, one
finds that U = (u1 · · · , ug , 1)t is a weight zero vector-valued modular
form for a representation ρ : Γ→ GLg+1(C) such that for each γ ∈ Γ we
have

ρ(γ) =

(
ρ(γ) Ω(γ)

0 1

)
.

Since

U(γ(i∞)) = ρ(γ)U(i∞) = ρ(γ)(0, · · · , 0, 1)t = (Ω(γ), 1)t

we see that the vectors Ω(γk) span the period lattice Λ for G\H∗, where
{γk}2gk=1 gives the homology group for G\H∗ as above.
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Examples

There is an infinite family of genus one subgroups

Γ′′ < Gp,m,d ≤ Γ′ = G1,0,1

that are normal in Γ, where p,m, d ∈ N and m2 + m + 1 ≡ 0 (mod d).

Gp,m,d = 〈A = apbmp, B = bdp〉 where

a =

(
2 1
1 1

)
, b =

(
1 1
1 2

)
.

For each such G = Gp,m,d , S2(G ) = Cη4 where η denotes Dedekind’s eta
function.

Setting u(τ) =
∫ τ
i∞ η4(z) dz , the period ratio of G\H∗ is

u(A(i∞))

u(B(i∞))
=

e
(
1
6

)
+ m

d

Thus each such G defines an elliptic curve with complex multiplication.
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CM Jacobians

By computing explicitly the period lattice Λ of a modular curve G\H∗,
one may deduce in certain cases (e.g. in the last slide) that the
associated Jacobian Cg/Λ has complex multiplication.

By a theorem of Shiga, it suffices to prove that the lattice points in Λ are
algebraic numbers.

Almost no examples of this are known for genus greater than 4, so the
method outlined in this talk may soon provide many new CM Jacobians!

This is ongoing work with Luca Candelori.
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Thanks very much!
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