

Geometric representations of triangular squares

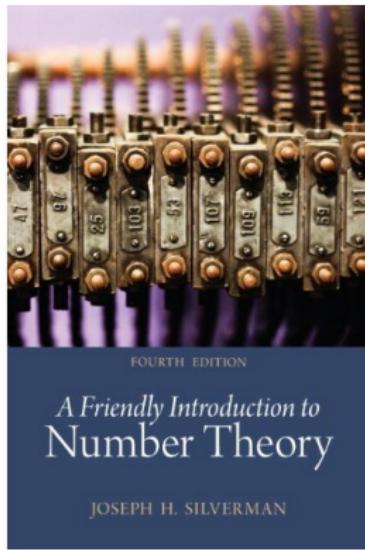
Mits Kobayashi

(Joint work with Berit Givens)

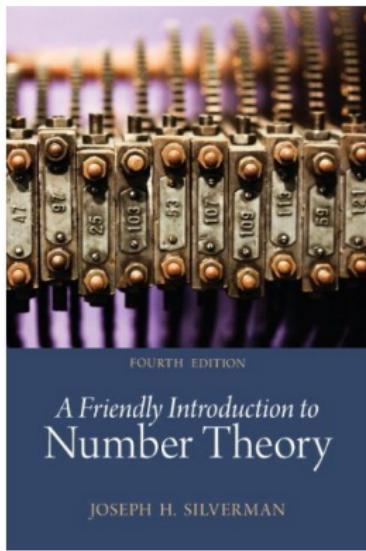
Cal Poly Pomona
Pomona, CA

December 17, 2017

The Book and Author



The Book and Author



“An introductory undergraduate text designed to entice non-math majors into learning some mathematics, while at the same time teaching them how to think mathematically.”

Chapter 1: What is Number Theory?

- ▶ Defines number theory

Chapter 1: What is Number Theory?

- ▶ Defines number theory
- ▶ Introduces a selection of number theoretic questions

Chapter 1: What is Number Theory?

- ▶ Defines number theory
- ▶ Introduces a selection of number theoretic questions
- ▶ Illustrates number shapes (e.g., triangular numbers and square numbers)

Chapter 1: What is Number Theory?

- ▶ Defines number theory
- ▶ Introduces a selection of number theoretic questions
- ▶ Illustrates number shapes (e.g., triangular numbers and square numbers)

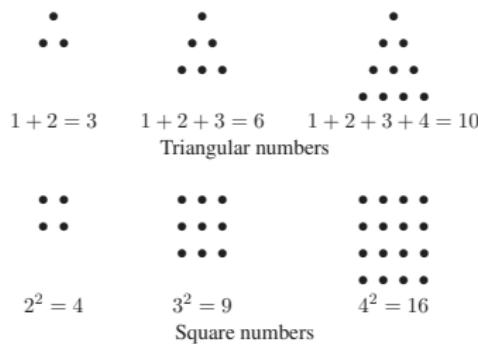


Figure 1.1: Numbers That Form Interesting Shapes

Chapter 1: What is Number Theory?

- ▶ Defines number theory
- ▶ Introduces a selection of number theoretic questions
- ▶ Illustrates number shapes (e.g., triangular numbers and square numbers)

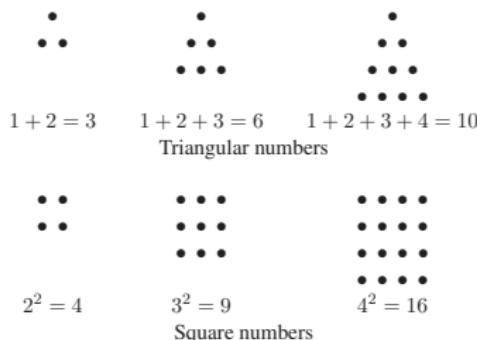


Figure 1.1: Numbers That Form Interesting Shapes

What do the problems look like?

Problem 1

Problem

The first two numbers that are both squares and triangles are 1 and 36. Find the next one and, if possible, the one after that. Can you figure out an efficient way to find triangular-square numbers? Do you think that there are infinitely many?

How hard could it be?

Square numbers: 1, 4, 9, 16, 25, **36**, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, **1225**, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721,...

Triangular numbers: 1, 3, 6, 10, 15, 21, 28, **36**, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, **1225**, 1275, 1326, 1378, 1431, 1485, 1540, 1596, 1653, 1711, 1770, 1830, 1891, 1953, 2016, 2080, 2145, 2211, 2278, 2346, 2415, 2485, 2556, 2628, 2701, 2775, 2850, 2926, 3003, 3081, 3160, 3240, 3321, 3403, 3486, 3570, 3655, 3741,...

The “right way” to solve this

$$m^2 = \frac{n(n+1)}{2}$$

The “right way” to solve this

$$m^2 = \frac{n(n+1)}{2}$$

After completing the square, this becomes

$$(2n+1)^2 - 2(2m)^2 = 1$$

which is a Pell's equation, an advanced topic in the book.

The “right way” to solve this

$$m^2 = \frac{n(n+1)}{2}$$

After completing the square, this becomes

$$(2n+1)^2 - 2(2m)^2 = 1$$

which is a Pell's equation, an advanced topic in the book.
Is this a fair problem?

The “right way” to solve this

$$m^2 = \frac{n(n+1)}{2}$$

After completing the square, this becomes

$$(2n+1)^2 - 2(2m)^2 = 1$$

which is a Pell's equation, an advanced topic in the book.
Is this a fair problem?

- ▶ Student: No.

The “right way” to solve this

$$m^2 = \frac{n(n+1)}{2}$$

After completing the square, this becomes

$$(2n+1)^2 - 2(2m)^2 = 1$$

which is a Pell's equation, an advanced topic in the book.
Is this a fair problem?

- ▶ Student: No.
- ▶ Instructor: Yes.

The “right way” to solve this

$$m^2 = \frac{n(n+1)}{2}$$

After completing the square, this becomes

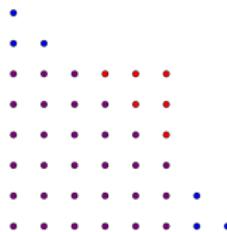
$$(2n+1)^2 - 2(2m)^2 = 1$$

which is a Pell's equation, an advanced topic in the book.
Is this a fair problem?

- ▶ Student: No.
- ▶ Instructor: Yes.
- ▶ Mits wearing student's hat: Maybe, if you can solve it using only material in chapter 1.

A first attempt

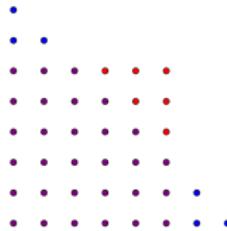
Manipulating dots, we can overlap equal square and triangle:



$$S_6 = T_8$$

A first attempt

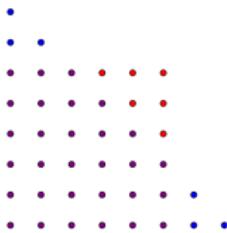
Manipulating dots, we can overlap equal square and triangle:



$$S_6 = T_8 \iff 2T_2 = T_3$$

A first attempt

Manipulating dots, we can overlap equal square and triangle:



$$S_6 = T_8 \iff 2T_2 = T_3$$

So whenever a triangle equals a square, we also have $2T_m = T_n$ for some m and n , and vice versa.

Let's run with this...

Even triangular numbers: **6**, 10, 28, 36, 66, 78, 120, 136, 190, **210**, 276, 300, 378, 406, 496, 528, 630, 666, 780, 820, 946, 990, 1128, 1176, 1326, 1378, 1540, 1596, 1770, 1830, 2016, 2080, 2278, 2346, 2556, 2628, 2850, 2926, 3160, 3240, 3486, 3570, 3828, 3916, 4186, 4278, 4560, 4656, 4950, 5050, 5356, 5460, 5778, 5886, 6216, 6328, 6670, 6786, **7140**, 7260, 7626, 7750,...

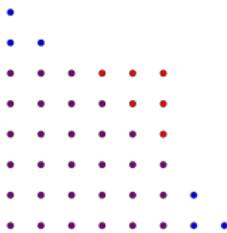
Double-triangular numbers: 2, **6**, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, **210**, 240, 272, 306, 342, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450, 2550, 2652, 2756, 2862, 2970, 3080, 3192, 3306, 3422, 3540, 3660, 3782, 3906, 4032, 4160, 4290, 4422, 4556, 4692, 4830, 4970, 5112, 5256, 5402, 5550, 5700, 5852, 6006, 6162, 6320, 6480, 6642, 6806, 6972, **7140**, 7310, 7482, 7656, 7832,...

$$7140 = 2T_m = T_n$$

where $m = 84, n = 119$.

$$7140 = 2T_m = T_n$$

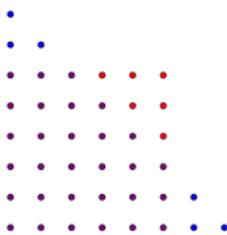
where $m = 84, n = 119$.



Another triangular square!

$$7140 = 2T_m = T_n$$

where $m = 84, n = 119$.



This means $S_{84+119+1} = 204^2 = 41616$ is a triangular-square number.

A related idea

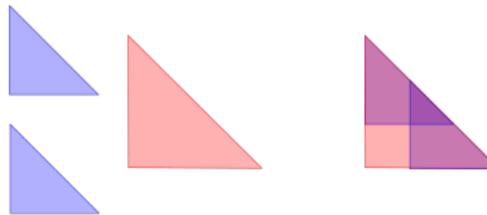
We just started with an example of a triangular-square number and “reduced” it to an example of a (smaller) triangular-double triangular number.

What if we start with a triangular-double triangular number?

A related idea

We just started with an example of a triangular-square number and “reduced” it to an example of a (smaller) triangular-double triangular number.

What if we start with a triangular-double triangular number?



Combined

$$S_{m_1} = T_{n_1} \Rightarrow 2T_a = T_b \Rightarrow S_{m_2} = T_{n_2}$$

Combined

$$S_{m_1} = T_{n_1} \Rightarrow 2T_a = T_b \Rightarrow S_{m_2} = T_{n_2}$$

$$m_{k+1} = 3m_k + 2n_k + 1$$

$$n_{k+1} = 4m_k + 3n_k + 1$$

Combined

$$S_{m_1} = T_{n_1} \Rightarrow 2T_a = T_b \Rightarrow S_{m_2} = T_{n_2}$$

$$m_{k+1} = 3m_k + 2n_k + 1$$

$$n_{k+1} = 4m_k + 3n_k + 1$$

$$m_1 = 1, n_1 = 1, \quad S_1 = T_1 = 1$$

$$m_2 = 6, n_2 = 8, \quad S_6 = T_8 = 36$$

$$m_3 = 35, n_3 = 49, \quad S_{35} = T_{49} = 1225$$

$$m_4 = 204, n_4 = 288, \quad S_{204} = T_{288} = 41616$$

$$m_5 = 1189, n_5 = 1681, \quad S_{1189} = T_{1681} = 1413721$$

Is there any more to this?

How could we generalize the $S_m = T_n$ problem?

Is there any more to this?

How could we generalize the $S_m = T_n$ problem?

$$aS_m = bT_n$$

Is there any more to this?

How could we generalize the $S_m = T_n$ problem?

$$aS_m = bT_n$$

Let $g = \gcd(a, b)$, $a = a'g$, $b = b'g$.

$$a'm^2 = b'T_n$$

Is there any more to this?

How could we generalize the $S_m = T_n$ problem?

$$aS_m = bT_n$$

Let $g = \gcd(a, b)$, $a = a'g$, $b = b'g$.

$$a'm^2 = b'T_n$$

Since $\gcd(a', b') = 1$, $b' \mid m^2$.

Is there any more to this?

How could we generalize the $S_m = T_n$ problem?

$$aS_m = bT_n$$

Let $g = \gcd(a, b)$, $a = a'g$, $b = b'g$.

$$a'm^2 = b'T_n$$

Since $\gcd(a', b') = 1$, $b' \mid m^2$. Let $b' = s^2t$, t squarefree, so $m = stm'$.

$$a'tm'^2 = T_n.$$

Is there any more to this?

How could we generalize the $S_m = T_n$ problem?

$$aS_m = bT_n$$

Let $g = \gcd(a, b)$, $a = a'g$, $b = b'g$.

$$a'm^2 = b'T_n$$

Since $\gcd(a', b') = 1$, $b' \mid m^2$. Let $b' = s^2t$, t squarefree, so $m = stm'$.

$$a'tm'^2 = T_n.$$

Thus, it suffices to study

$$kS_m = T_n.$$

A simple subcase

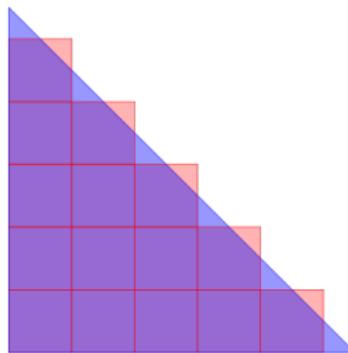
$$T_k S_m = T_n$$

E.g., $k = 5$.

A simple subcase

$$T_k S_m = T_n$$

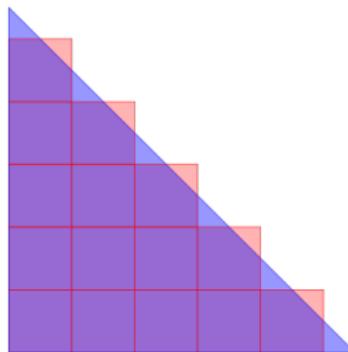
E.g., $k = 5$.



A simple subcase

$$T_k S_m = T_n$$

E.g., $k = 5$.



$$(k+1)T_a = kT_b$$

An alternative derivation

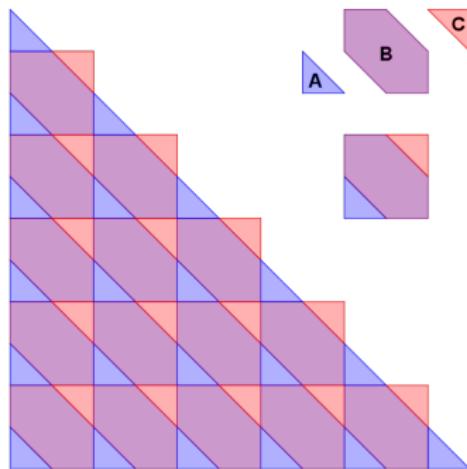
$$T_5 S = T$$

An alternative derivation

$$T_5 S = T$$

$$S = A + B + C$$

$$T = T_6 A + T_5 B + T_4 C$$



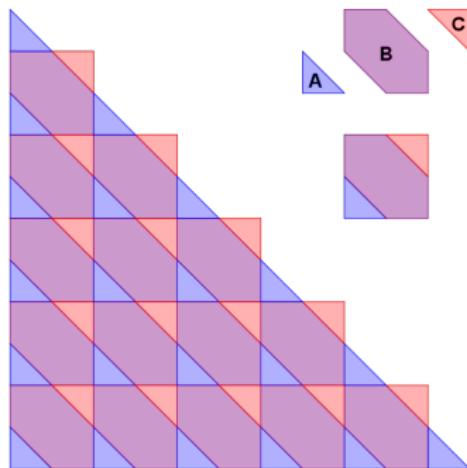
An alternative derivation

$$T_5 S = T$$

$$S = A + B + C$$

$$T = T_6 A + T_5 B + T_4 C$$

Note that this generalizes.



An alternative derivation

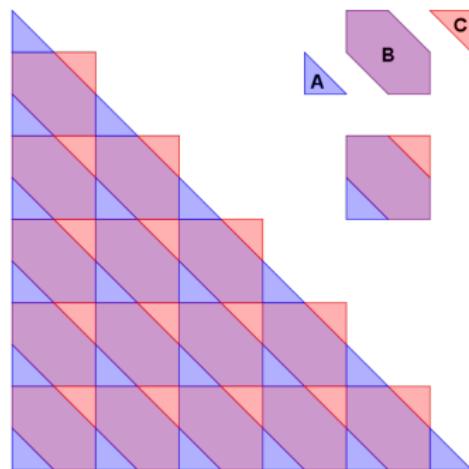
$$T_5 S = T$$

$$S = A + B + C$$

$$T = T_6 A + T_5 B + T_4 C$$

Note that this generalizes.

$$T_5 A + T_5 B + T_5 C = T_6 A + T_5 B + T_4 C$$



An alternative derivation

$$T_5 S = T$$

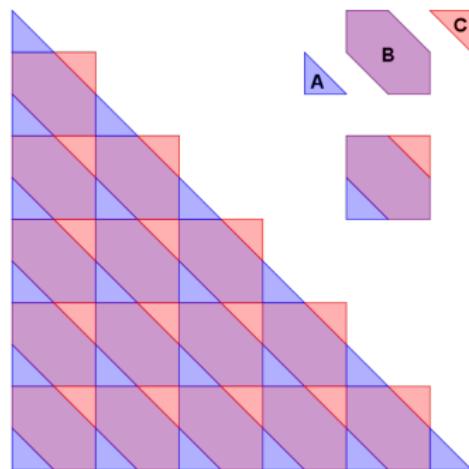
$$S = A + B + C$$

$$T = T_6 A + T_5 B + T_4 C$$

Note that this generalizes.

$$T_5 A + T_5 B + T_5 C = T_6 A + T_5 B + T_4 C$$

$$(T_5 - T_4)C = (T_6 - T_5)A$$



An alternative derivation

$$T_5 S = T$$

$$S = A + B + C$$

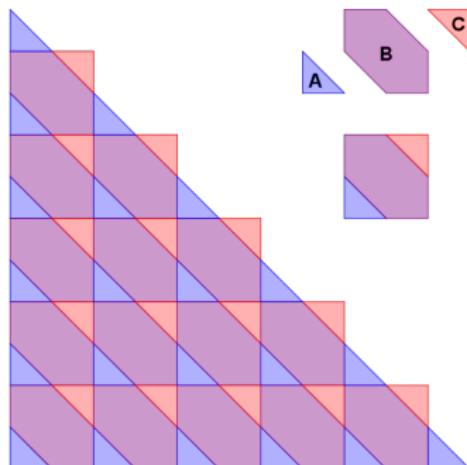
$$T = T_6 A + T_5 B + T_4 C$$

Note that this generalizes.

$$T_5 A + T_5 B + T_5 C = T_6 A + T_5 B + T_4 C$$

$$(T_5 - T_4)C = (T_6 - T_5)A$$

$$5C = 6A \quad \text{"horizontal move"}$$



An alternative derivation

$$T_5 S = T$$

$$S = A + B + C$$

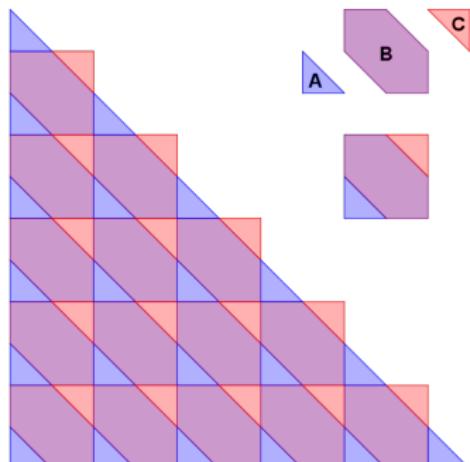
$$T = T_6 A + T_5 B + T_4 C$$

Note that this generalizes.

$$T_5 A + T_5 B + T_5 C = T_6 A + T_5 B + T_4 C$$

$$(T_5 - T_4)C = (T_6 - T_5)A$$

$$5C = 6A \quad \text{"horizontal move"}$$



$$T_k S = T \Leftrightarrow kC = (k+1)A$$

Existence

$$(k+1)T_{2k} = kT_{2k+1}$$

Existence

$$(k+1)T_{2k} = kT_{2k+1}$$

$$(k+1)\frac{(2k)(2k+1)}{2} = k\frac{(2k+1)(2k+2)}{2}$$

Existence

$$(k+1)T_{2k} = kT_{2k+1}$$

$$(k+1)\frac{(2k)(2k+1)}{2} = k\frac{(2k+1)(2k+2)}{2}$$

Can we use this identity as a “seed” to generate infinitely many $(k+1)T_a = kT_b$?

Existence

$$(k+1)T_{2k} = kT_{2k+1}$$

$$(k+1)\frac{(2k)(2k+1)}{2} = k\frac{(2k+1)(2k+2)}{2}$$

Can we use this identity as a “seed” to generate infinitely many $(k+1)T_a = kT_b$?

We will need the related identities

$$(k+1)T_{2k+1} - kT_{2k+2} = k+1$$

$$(k+1)T_{2k} - kT_{2k+1} = 0$$

$$(k+1)T_{2k-1} - kT_{2k} = -k$$

Let $A_1 = T_{2k}$, $C_1 = T_{2k+1}$, then the identities are

$$\begin{cases} (k+1)A_1^+ - kC_1^+ = k+1 \\ (k+1)A_1^- - kC_1^- = -k \end{cases}$$

Ascent

Let $A_1 = T_{2k}$, $C_1 = T_{2k+1}$, then the identities are

$$\begin{cases} (k+1)A_1^+ - kC_1^+ = k+1 \\ (k+1)A_1 - kC_1 = 0 \\ (k+1)A_1^- - kC_1^- = -k \end{cases}$$

Given $(k+1)A = kC$, and implied B , define

$$\begin{cases} A' = A_1^+ A + A_1 B + A_1^- C \\ C' = C_1^+ A + C_1 B + C_1^- C \end{cases}$$

Let $A_1 = T_{2k}$, $C_1 = T_{2k+1}$, then the identities are

$$\begin{cases} (k+1)A_1^+ - kC_1^+ = k+1 \\ (k+1)A_1 - kC_1 = 0 \\ (k+1)A_1^- - kC_1^- = -k \end{cases}$$

Given $(k+1)A = kC$, and implied B , define

$$\begin{cases} A' = A_1^+ A + A_1 B + A_1^- C \\ C' = C_1^+ A + C_1 B + C_1^- C \end{cases}$$

Observe that both A' and C' are triangles (larger than A and C).

Let $A_1 = T_{2k}$, $C_1 = T_{2k+1}$, then the identities are

$$\begin{cases} (k+1)A_1^+ - kC_1^+ = k+1 \\ (k+1)A_1 - kC_1 = 0 \\ (k+1)A_1^- - kC_1^- = -k \end{cases}$$

Given $(k+1)A = kC$, and implied B , define

$$\begin{cases} A' = A_1^+ A + A_1 B + A_1^- C \\ C' = C_1^+ A + C_1 B + C_1^- C \end{cases}$$

Observe that both A' and C' are triangles (larger than A and C).

Claim: $(k+1)A' = kC$.

$$\begin{cases} (k+1)A_1^+ - kC_1^+ = k+1 \\ (k+1)A_1 - kC_1 = 0 \\ (k+1)A_1^- - kC_1^- = -k \end{cases}$$

$$(k+1)A = kC$$

$$\begin{aligned} (k+1)A' &= (k+1)A_1^+ A + (k+1)A_1 B + (k+1)A_1^- C \\ kC' &= kC_1^+ A + kC_1 B + kC_1^- C \end{aligned}$$

Ascent

$$\begin{cases} (k+1)A_1^+ - kC_1^+ = k+1 \\ (k+1)A_1 - kC_1 = 0 \\ (k+1)A_1^- - kC_1^- = -k \end{cases}$$

$$(k+1)A = kC$$

$$\begin{aligned} (k+1)A' &= (k+1)A_1^+ A + (k+1)A_1 B + (k+1)A_1^- C \\ kC' &= kC_1^+ A + kC_1 B + kC_1^- C \end{aligned}$$

This implies $(k+1)A' = kC'$.

$$\begin{cases} (k+1)A_1^+ - kC_1^+ = k+1 \\ (k+1)A_1 - kC_1 = 0 \\ (k+1)A_1^- - kC_1^- = -k \end{cases}$$

$$(k+1)A = kC$$

$$\begin{aligned} (k+1)A' &= (k+1)A_1^+ A + (k+1)A_1 B + (k+1)A_1^- C \\ kC' &= kC_1^+ A + kC_1 B + kC_1^- C \end{aligned}$$

This implies $(k+1)A' = kC'$.

Theorem

For each k , there are infinitely many S, T satisfying $T_k S = T$.

What's next?

What's next?

- ▶ What about $kS = T$, general k ?

What's next?

- ▶ What about $kS = T$, general k ?
- ▶ How does this relate to...?