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The Book and Author

“An introductory undergraduate text designed to entice non-math
majors into learning some mathematics, while at the same time
teaching them how to think mathematically.”
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Chapter 1: What is Number Theory?

I Defines number theory

I Introduces a selection of number theoretic questions

I Illustrates number shapes (e.g., triangular numbers and square
numbers)

• • •
• • • • • •

• • • • • •
• • • •

1 + 2 = 3 1 + 2 + 3 = 6 1 + 2 + 3 + 4 = 10
Triangular numbers

• • • • • • • • •
• • • • • • • • •

• • • • • • •
• • • •

22 = 4 32 = 9 42 = 16
Square numbers

Figure 1.1: Numbers That Form Interesting Shapes

What do the problems look like?
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Problem 1

Problem
The first two numbers that are both squares and triangles are 1
and 36. Find the next one and, if possible, the one after that. Can
you figure out an efficient way to find triangular-square numbers?
Do you think that there are infinitely many?
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How hard could it be?

Square numbers: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144,
169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625,
676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369,
1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209,
2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249,
3364, 3481, 3600, 3721,. . .

Triangular numbers: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91,
105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351,
378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780,
820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275,
1326, 1378, 1431, 1485, 1540, 1596, 1653, 1711, 1770, 1830,
1891, 1953, 2016, 2080, 2145, 2211, 2278, 2346, 2415, 2485,
2556, 2628, 2701, 2775, 2850, 2926, 3003, 3081, 3160, 3240,
3321, 3403, 3486, 3570, 3655, 3741,. . .
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The “right way” to solve this

m2 =
n(n + 1)

2

After completing the square, this becomes

(2n + 1)2 − 2(2m)2 = 1

which is a Pell’s equation, an advanced topic in the book.
Is this a fair problem?

I Student: No.

I Instructor: Yes.

I Mits wearing student’s hat: Maybe, if you can solve it using
only material in chapter 1.
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A first attempt

Manipulating dots, we can overlap equal square and triangle:

S6 = T8

⇐⇒ 2T2 = T3

So whenever a triangle equals a square, we also have 2Tm = Tn

for some m and n, and vice versa.
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Let’s run with this. . .

Even triangular numbers: 6, 10, 28, 36, 66, 78, 120, 136, 190,
210, 276, 300, 378, 406, 496, 528, 630, 666, 780, 820, 946, 990,
1128, 1176, 1326, 1378, 1540, 1596, 1770, 1830, 2016, 2080,
2278, 2346, 2556, 2628, 2850, 2926, 3160, 3240, 3486, 3570,
3828, 3916, 4186, 4278, 4560, 4656, 4950, 5050, 5356, 5460,
5778, 5886, 6216, 6328, 6670, 6786, 7140, 7260, 7626, 7750,. . .

Double-triangular numbers: 2, 6, 12, 20, 30, 42, 56, 72, 90, 110,
132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 552,
600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260,
1332, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070,
2162, 2256, 2352, 2450, 2550, 2652, 2756, 2862, 2970, 3080,
3192, 3306, 3422, 3540, 3660, 3782, 3906, 4032, 4160, 4290,
4422, 4556, 4692, 4830, 4970, 5112, 5256, 5402, 5550, 5700,
5852, 6006, 6162, 6320, 6480, 6642, 6806, 6972, 7140, 7310,
7482, 7656, 7832,. . .
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Another triangular square!

7140 = 2Tm = Tn

where m = 84, n = 119.

This means S84+119+1 = 2042 = 41616 is a triangular-square
number.
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Another triangular square!

7140 = 2Tm = Tn

where m = 84, n = 119.

This means S84+119+1 = 2042 = 41616 is a triangular-square
number.
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A related idea

We just started with an example of a triangular-square number and
“reduced” it to an example of a (smaller) triangular-double
triangular number.

What if we start with a triangular-double triangular number?
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Combined

Sm1 = Tn1 ⇒ 2Ta = Tb ⇒ Sm2 = Tn2

mk+1 = 3mk + 2nk + 1

nk+1 = 4mk + 3nk + 1

m1 = 1, n1 = 1, S1 = T1 = 1

m2 = 6, n2 = 8, S6 = T8 = 36

m3 = 35, n3 = 49, S35 = T49 = 1225

m4 = 204, n4 = 288, S204 = T288 = 41616

m5 = 1189, n5 = 1681, S1189 = T1681 = 1413721
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Is there any more to this?

How could we generalize the Sm = Tn problem?

aSm = bTn

Let g = gcd(a, b), a = a′g , b = b′g .

a′m2 = b′Tn

Since gcd(a′, b′) = 1, b′ | m2. Let b′ = s2t, t squarefree, so
m = stm′.

a′tm′2 = Tn.

Thus, it suffices to study

kSm = Tn.
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A simple subcase

TkSm = Tn

E.g., k = 5.

(k + 1)Ta = kTb
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An alternative derivation

T5S = T

S = A + B + C

T = T6A + T5B + T4C

Note that this generalizes.

T5A+T5B+T5C = T6A+T5B+T4C

(T5 − T4)C = (T6 − T5)A

5C = 6A “horizontal move”

TkS = T ⇔ kC = (k + 1)A
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Existence

(k + 1)T2k = kT2k+1

(k + 1)
(2k)(2k + 1)

2
= k

(2k + 1)(2k + 2)

2

Can we use this identity as a “seed” to generate infinitely many
(k + 1)Ta = kTb?

We will need the related identities

(k + 1)T2k+1 − kT2k+2 = k + 1

(k + 1)T2k − kT2k+1 = 0

(k + 1)T2k−1 − kT2k = −k
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Ascent

Let A1 = T2k ,C1 = T2k+1, then the identities are
(k + 1)A+

1 − kC+
1 = k + 1

(k + 1)A1 − kC1 = 0

(k + 1)A−1 − kC−1 = −k

Given (k + 1)A = kC , and implied B, define{
A′ = A+

1 A + A1B + A−1 C

C ′ = C+
1 A + C1B + C−1 C

Observe that both A′ and C ′ are triangles (larger than A and C ).

Claim: (k + 1)A′ = kC .
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What’s next?

I What about kS = T , general k?

I How does this relate to. . . ?

Mits Kobayashi Geometric representations of triangular squares



What’s next?

I What about kS = T , general k?

I How does this relate to. . . ?

Mits Kobayashi Geometric representations of triangular squares



What’s next?

I What about kS = T , general k?

I How does this relate to. . . ?

Mits Kobayashi Geometric representations of triangular squares


