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Number Theory

JOSEPH H. SILVE

“An introductory undergraduate text designed to entice non-math
majors into learning some mathematics, while at the same time
teaching them how to think mathematically.”
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Chapter 1: What is Number Theory?

» Defines number theory
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Figure 1.1: Numbers That Form Interesting Shapes
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What do the problems look like?
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Problem 1

Problem

The first two numbers that are both squares and triangles are 1
and 36. Find the next one and, if possible, the one after that. Can
you figure out an efficient way to find triangular-square numbers?
Do you think that there are infinitely many?
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How hard could it be?

Square numbers: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144,
169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625,
676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369,
1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209,
2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249,

3364, 3481, 3600, 3721,...

Triangular numbers: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91
105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351,
378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780,
820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275
1326, 1378, 1431, 1485, 1540, 1596, 1653, 1711, 1770, 1830,
1891, 1953, 2016, 2080, 2145, 2211, 2278, 2346, 2415, 2485,
2556, 2628, 2701, 2775, 2850, 2926, 3003, 3081, 3160, 3240,
3321, 3403, 3486, 3570, 3655, 3741,. ..
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The “right way" to solve this

1
m? n(n+1)
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The “right way" to solve this

> n(n+1)
m 2

After completing the square, this becomes
(2n+1)> —2(2m)* =1

which is a Pell's equation, an advanced topic in the book.
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The “right way” to solve this

> _ n(n+1)
m 2
After completing the square, this becomes
(2n+1)> —2(2m)* =1

which is a Pell's equation, an advanced topic in the book.
Is this a fair problem?

» Student: No.

> Instructor: Yes.

» Mits wearing student’s hat: Maybe, if you can solve it using
only material in chapter 1.
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A first attempt

Manipulating dots, we can overlap equal square and triangle:

o o o o o o o o
o o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o

Se = Ts
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A first attempt

Manipulating dots, we can overlap equal square and triangle:
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A first attempt

Manipulating dots, we can overlap equal square and triangle:

o o o o o o o o
o o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o

56:T3 <— 2T, =T3

So whenever a triangle equals a square, we also have 27, = T,
for some m and n, and vice versa.
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Let's run with this. ..

Even triangular numbers: 6, 10, 28, 36, 66, 78, 120, 136, 190
210, 276, 300, 378, 406, 496, 528, 630, 666, 780, 820, 946, 990,
1128, 1176, 1326, 1378, 1540, 1596, 1770, 1830, 2016, 2080,
2278, 2346, 2556, 2628, 2850, 2926, 3160, 3240, 3486, 3570,
3828, 3916, 4186, 4278, 4560, 4656, 4950, 5050, 5356, 5460
5778, 5886, 6216, 6328, 6670, 6786, 7140, 7260, 7626, 7750,. ..

Double-triangular numbers: 2, 6, 12, 20, 30, 42, 56, 72, 90, 110
132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 552,
600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260,
1332, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070,
2162, 2256, 2352, 2450, 2550, 2652, 2756, 2862, 2970, 3080,
3192, 3306, 3422, 3540, 3660, 3782, 3906, 4032, 4160, 4290
4422, 4556, 4692, 4830, 4970, 5112, 5256, 5402, 5550, 5700,
5852, 6006, 6162, 6320, 6480, 6642, 6806, 6972, 7140, 7310,
7482, 7656, 7832,. ..
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7140 =2T,, =T,

where m = 84, n = 119.
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where m = 84, n = 119.

7140 =2T,, =T,
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Another triangular square!

7140 =2T,, =T,
where m = 84, n = 119.

This means Sgq411941 = 2042 = 41616 is a triangular-square
number.
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A related idea

We just started with an example of a triangular-square number and
“reduced” it to an example of a (smaller) triangular-double
triangular number.

A

What if we start with a triangular-double triangular number?
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A related idea

We just started with an example of a triangular-square number and
“reduced” it to an example of a (smaller) triangular-double
triangular number.

A

What if we start with a triangular-double triangular number?
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Combined

Sy =T =2T,=Tp= Sm, = Th,
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Sy =T =2T,=Tp= Sm, = Th,

M1 =3mMg +2n, +1
Nk41 =4myg +3n, +1
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Sy =T =2T,=Tp= Sm, = Th,

M1 =3mMg +2n, +1
Nk41 =4myg +3n, +1

m1:1,n1:1, 51:T1:1
m2:6,n2:8, 56:T8:36
m3 = 357 n3 = 49, 535 = T49 = 1225
my = 204, ng = 288, 5204 == ngg = 41616
my = 1189, ng = 1681, 51189 = T1631 = 1413721
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Is there any more to this?

How could we generalize the S,, = T, problem?
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How could we generalize the S,, = T, problem?

aS,, = bT,
Let g = ged(a, b),a = 3d'g,b=bg.

am? =b'T,
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Is there any more to this?

How could we generalize the S,, = T, problem?

aS,, = bT,
Let g = ged(a, b),a = 3d'g,b=bg.

am? =b'T,

Since gcd(a’,b') =1, b’ | m?.
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Is there any more to this?

How could we generalize the S,,, = T, problem?
aSn, = bT,
Let g = ged(a, b),a = 3d'g,b=bg.

am? =b'T,

Since ged(a’, b') =1, b’ | m?.  Let b’ = s°t, t squarefree, so
m = stm’.
atm? = Th.
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Is there any more to this?

How could we generalize the S,,, = T, problem?
aSn, = bT,
Let g = ged(a, b),a = 3d'g,b=bg.

am? =b'T,

Since ged(a’, b') =1, b’ | m?.  Let b’ = s°t, t squarefree, so
m = stm’.
atm? = Th.

Thus, it suffices to study
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A simple subcase

Tksm = 7—n
E.g., k=05.
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A simple subcase

TkSm = Tn

Eg., k=05.
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A simple subcase

TkSm = Tn

Eg., k=05.

(k+1)T,= kT
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An alternative derivation

TsS5=T
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An alternative derivation

TsS5=T

S=A+B+C

T = TeA+ TsB + TuC m@
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An alternative derivation

TsS5=T

S=A+B+C

T = TeA+ TsB + TuC m@

Note that this generalizes.

TsA+TsB+T5C = TgA+TsB+T4C

(Ts — T4)C = (Te— Ts5)A
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An alternative derivation

TsS5=T

S=A+B+C

T = TeA+ TsB + TuC m@

Note that this generalizes.

TsA+TsB+T5C = TgA+TsB+T4C

(Ts — T4)C = (Te— Ts5)A

5C =6A “horizontal move”
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An alternative derivation

TsS5=T

S=A+B+C

T = TeA+ TsB + TuC m@

Note that this generalizes.

TsA+TsB+T5C = TgA+TsB+T4C

(Ts — T4)C = (Te— Ts5)A

5C =6A “horizontal move”

7,5 =T < kC = (k +1)A
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(k+1)Tox = kTok41
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Existence

(k+1)Tox = kTok41

(26)(2k +1) _ | (2k+1)(2k +2)
2 2

(k+1)
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Existence

(k+1)Tox = kTok41

(26)(2k +1) _ | (2k+1)(2k +2)
2 2

Can we use this identity as a “seed” to generate infinitely many
(k+1)T, = kTp?

(k+1)
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Existence

(k+1)Tok = kToky1

(26)(2k +1) _ | (2k+1)(2k +2)
2 2

Can we use this identity as a “seed” to generate infinitely many
(k+1)T, = kTp?

(k+1)

We will need the related identities

(k+1)Tokp1 — kTopyo =k +1
(k + 1)T2k — kT2k+1 =0
(k —+ 1)T2k_1 — kTZk = —k
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Let Ay = Tok, C1 = Tok1, then the identities are

(k+1)Af —kCH=k+1
(k+1)A1—kC1:O
(k+1)A] — kC[ = —k
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Let Ay = Tok, C1 = Tok1, then the identities are

(k+1)Af —kCH=k+1
(k+1)A1—kC1:O
(k+1)A] — kC[ = —k

Given (k + 1)A = kC, and implied B, define

A =ATA+AB+A; C
C=CGA+GB+( C
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Let Ay = Tok, C1 = Tok1, then the identities are

(k+1)Af —kCH=k+1
(k+1)A1—kC1:O
(k+1)A] — kC[ = —k

Given (k + 1)A = kC, and implied B, define

A =ATA+AB+A; C
C=CGA+GB+( C

Observe that both A" and C’ are triangles (larger than A and C).
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Let Ay = Tok, C1 = Tok1, then the identities are

(k+1)Af —kCH=k+1
(k+1)A1—kC1:O
(k+1)A] — kC[ = —k

Given (k + 1)A = kC, and implied B, define

A =ATA+AB+A; C
C=CGA+GB+( C

Observe that both A" and C’ are triangles (larger than A and C).

Claim: (k + 1)A’ = kC.
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(k+1)Af — kG =k+1
(k+1)A; — kG, =0
(k+1)A] —kC; = —k

(k+1)A=kC

(k+1)A = (k+ 1)ATA+ (k+ 1)AiB + (k+1)A; C
kC' = kCf A+ kCiB + kC; C
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(k+1)Af — kG =k+1
(k+1)A; — kG, =0
(k+1)A] —kC; = —k

(k+1)A=kC

(k+1)A = (k+ 1)ATA+ (k+ 1)AiB + (k+1)A; C
kC' = kCf A+ kCiB + kC; C

This implies (k + 1)A" = kC'.
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(k+1)Af — kG =k+1
(k+1)A; — kG, =0
(k+1)A] —kC; = —k

(k+1)A=kC

(k+1)A = (k+ 1)ATA+ (k+ 1)AiB + (k+1)A; C
kC' = kCf A+ kCiB + kC; C

This implies (k + 1)A" = kC'.

Theorem
For each k, there are infinitely many S, T satisfying TxS=T.
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What's next?
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What's next?

» What about kS = T, general k7
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What's next?

» What about kS = T, general k7

» How does this relate to...?

Mits Kobayashi Geometric representations of triangular squares



