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Modular Forms for (/)

The congruence subgroup g(N) C SLy(Z) is

ro(N)::{(i Z) <3 i) (modN)}.

A function f : H — C is a modular form of weight k for ['o(N) if

[1 f is holomorphic,

O f(z) = (cz + d)kf (—jg) for all v € Fo(N),

[J f is holomorphic at the cusps: the orbits of P1(Q) under
Fo(N).
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Elliptic Curves are Modular

[0 Consider z = x + iy € H where H = {z € C|y > 0}
[J Any elliptic curve E/Q has associated weight 2 newform

fe(z) =) ae(n)g”  ag(1)=1,q=e""
n=1

[J fe a modular form for 'g(Ng), Ng conductor of E

[J Modularity Theorem + Eichler-Shimura Theory (Taylor,
Wiles, Conrad, et al.)

O p prime: ag(p) = p+1—#E(F))
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n=1
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Preliminaries

Shifted Convolution L-series

[0 Modular form: fg(z) = > 77 ag
[ 1 Dirichlet L-series:

(n)q”

oo

L(E,s) = L(fe,s) =)

[] Shifted convolution L-series:

[J Generating function (s = 1):

n=1

aE(n)

Le(2) = Z Dr (h; 1)qh
h=1
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Previous Work

[1 Shifted convolution L-series defined by Hoffstein, Hulse,
Reznikov (generalized Rankin-Selberg convolutions)

[1 Values are essentially coefficients of mixed mock modular
forms; recent work on p-adic properties and asymptotic
behavior (Beckwith, Bringmann, Mertens, Ono)
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Goals

[ Given E/Q, we have weight 2 newform:

fe = ZaE(n)q”, ag(l) =1
n=1

[J Understand variants of L(fg,s) ats=1
[J Closed form for Dy_(h; 1) values for some E/Q
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Weierstrass (-function

0 E ~ C/Ag, where Ag a 2-dimensional complex lattice

[1 Weierstrass (-function:

O £C(Aerz) = —p(Ae; 2)
[J (Eisenstein) Lattice-invariant function 3£(2)

3e(z) = C(Ne;z) — S(Ne)z — voIET/\E)?

WE/\E\{O}
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Weierstrass Mock Modular Form

[1 Eichler integral of associated newform fg:

Er(2) =) aE,Sn) q"
n=1

O] Harmonic MaaB form 3£(2):
36(2) = 36(£r(2))

O Can split 3£(2): 3£(2) = 3£(2) + 32(2)
O If genus(Xo(N)) = 1, 3£(2) is holomorphic; called the
Weierstrass mock modular form

356k (2)) = (Mg Er(2)) — S(NE)ER(2)
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Example (N = 27)

O N=27and Ex; : y>+y=x3-7
[1 Weight 2 modular form associated with Ej7:

fe, = q—2q* — ¢’ +5¢" +44¢'° — 7¢'° + 0(¢*).

[0 Weight 0 mock modular form :3\‘,:527(2) associated to fg,,:

- 1, 1, 3 6 1
+ S R ST P R BRI § B LSO Yo I
3, (2)=a "+ 30"+ @+ 76— 79 — 507 +0(q7)
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Main Results

Elliptic Curves

[0 E/Q is a strong WEeil elliptic curve
] If E has conductor NEg, then

genus(Xo(Ng)) =1

[1 Two situations:
1. Ng is squarefree

N € {11,14,15,17,19,21}

2. E has complex multiplication

N € {27,32, 36,49}
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Theorem 1

[0 E strong Weil curve, genus(Xo(N)) = 1, N squarefree
O Recall L (z) = 325, Dr(h; 1)g"

Theorem (A-M '17)

VO|(/\E)

Lr(z1) = <(f (2) - 3£(2)) — afe(2) - ZFNz Z))

O Fy°%5(z) is the Eisenstein series for ['o(N) nonvanishing only at
the cusp oo

0 a = (fe - 35)[1] — 5= Dr(1:1) — FR&[]
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Main Results

Theorem 2

[1 E is a strong WEeil elliptic curve with complex multiplication
where genus(Xog(N)) =1

O Recall Le(z) = 3252, Dr(h; 1)g"

[ FN° is the Eisenstein series for ['o(/V) nonvanishing only at
the cusp oo

Theorem (A-M '17)
With LL¢_(z) defined as above,

VO|(/\E)

Le(z:1) = ((fe(2) - 3E)(2) — Fia(2))-
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Proof Idea: Holomorphic Projection

Motivation

[] Consider f : H — C continuous, transforms like a modular
form for I'o(N) of weight k > 2, has moderate growth at cusps

[] Induces a linear functional based on the Petersson Inner
Product

g — (g,f)
for g € Sk(To(N))
[0 = There is some f € Sk(To(N)) such that (-, f) = (-, )

O fis essentially the holomorphic projection of f
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Holomorphic Projection

[0 If f(z) is holomorphic, mhof = f(2)

M (To(N)) k> 2
O mhol(f(2)) € {MQ(FO(N)) BCE k=2
O (g, f) = (g, moif) for g € Sk(To(N))
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Proof Idea: Holomorphic Projection

Holomorphic Projection

[0 Consider a weight 2 newform fg € S>(Ig(/N)) associated to an
elliptic curve E and the Weierstrass mock modular form 3+

The holomorphic projection is given by

R T WOWE O (e

DfE(h;l)

\

and Who/(gi_-_ . fE) S Mz(ro(/V)) ® CE,.
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Examples

Example [Holomorphic Projection] (CM Curves)

N Thol (+)
1 oo
o7 || 2 (1 — 24 2 a(3n)q® ) 1+12 z Sod| ¢+ (1 +33 a(n)q3”>
36 =1 36 n=1 \d|3n,3 /d n=1
1 00 4 47 S 4
32 —(1-24% o(4n)g™" |+ <= (1+24 > >od| gt
48 = 48 n=1 \d|4n2 fd
7 0 15 24
SlesS (= d)ar) -5 (145 £ otam)
2 n=1 \d|4n,4 Jd 2 7 n=1
1 e 1 =
36 —<1—24Za(6n)q6n)—— 1+243 [ Y d]q°
72 =1 36 n=1 \ d|6n,2 d
1 85 24
(1S (2 d)er) B (147 S o)
6 n=1 \d|6n,3 /d 72 5 p21
1 o 2\ 55
49 —(1=24> o(7n)q"" ) + —= 1+4Z S d]q'"
56 =1 56 n=1 \d[7n,7 Jd
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Examples

Example (N = 11)

[0 Modular curve Xp(11), dim(Xp(11)) = 1:

E:y?>+y=x3—x?-10x— 20.

[0 S(Ag) =0.38124 ... gives
35(z) =q 1 +1+09520...g+ 1.547...¢° +0.3493...¢°
+1.976...94% —2.609...¢° + O(q°).
[J 10° coefficients of fg to compute L¢ (z) = >0 | Dr.(h; 1)g"

Ls(z) = 0.7063...q + 1.562...¢*> + 0.0944 ... q°
+1.237...4% —2.026...¢° + O(q°)
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Example (N = 11)

O dim(Ma(To(11)) @ CEz) = 2 with basis F{) 5, F{Ty:

1 3 4 7 6 12
Foo 14 = S i B U N R VO
1172 LA A M A M U (q")
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Example (N = 11)

O dim(Ma(To(11)) @ CEz) = 2 with basis F{) 5, F{Ty:

1 3 4 7 6 12
Fo 142223425 6 1 O(a’
e =1+ gd+cq +¢@ + 6"+ ¢+ 9" +0(q')
[1 Apply Theorem 1 with o« =.0016 ~ 0,81 = 1,6, = 0:

VO|(/\E)

T

((fE .3F) —afe - Fff,z)
—0.706...9+1.562...q9%> +0.0930...q°

+1.234...¢* —2.024...¢° + 0(¢")
— IL’fE(Z)
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[0 Strong Weil curve with Ne =27: Ex; =y° +y =x3—T7.
[1 Weight 2 newform:
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[0 Strong Weil curve with Ne =27: Ex; =y° +y =x3—T7.
[1 Weight 2 newform:

fe, = q—2q* — q" +5¢" +44¢'° — 7¢'° + 0(¢*).

[1 Mock modular form:
3g 6 43 144

~ 1 1
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Example (N = 27)

[0 Strong Weil curve with Ne =27: Ex; =y° +y =x3—T7.
[1 Weight 2 newform:

fe, = q—2q* — q" +5¢" +44¢'° — 7¢'° + 0(¢*).

[1 Mock modular form:

~ 1 1 3 6 1
+ _ 1,2 -5, 28 11 _ 2% 1 0(a'7).
3, (2)=q +30 @ +,0 — 79 — 59 +0(q)

[1 Holomorphic projection:
Thol(fe - 3£, )(2) = 1+3¢° +9¢™° — 1277 . ...

[ Normalized F37,:

F59o =1+3¢° +9¢"° — 12¢°7 ...
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Conclusion

Summary

[] For nice elliptic curves E, give an explicit characterization of
shifted convolution L-series values Dy (h; 1) using elliptic
curve invariants.

[

Enable fast computation of LL¢. (z) coefficients.

[]

Understand properties of Weierstrass mock modular form
3£(z) in terms of fg, invariants of E/Q.

U Understand support, arithmetic properties of Fourier
coefficients of fE,B‘E for CM curves E

[J Future work: generalize to other elliptic curves E, understand
other L-series values + interesting variants.
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