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Modular Forms for Γ0(N)

Definition

The congruence subgroup Γ0(N) ⊆ SL2(Z) is

Γ0(N) :=

{(
a b
c d

)
≡
(

∗ ∗
0 ∗

)
(mod N)

}
.

Definition

A function f : H → C is a modular form of weight k for Γ0(N) if

□ f is holomorphic,

□ f (z) = (cz + d)−k f
(
az+b
cz+d

)
for all γ ∈ Γ0(N),

□ f is holomorphic at the cusps: the orbits of P1(Q) under
Γ0(N).
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Elliptic Curves are Modular

□ Consider z = x + iy ∈ H where H = {z ∈ C|y > 0}
□ Any elliptic curve E/Q has associated weight 2 newform

fE (z) =
∞∑
n=1

aE (n)q
n aE (1) = 1, q = e2πiz

□ fE a modular form for Γ0(NE ), NE conductor of E

□ Modularity Theorem + Eichler-Shimura Theory (Taylor,
Wiles, Conrad, et al.)

□ p prime: aE (p) = p + 1−#E (Fp)
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Shifted Convolution L-series

□ Modular form: fE (z) =
∑∞

n=1 aE (n)q
n

□ Dirichlet L-series:

L(E , s) = L(fE , s) =
∞∑
n=1

aE (n)

ns

□ Shifted convolution L-series:

DfE (h; s) =
∞∑
n=1

aE (n + h)aE (n)

(
1

(n + h)s
− 1

ns

)

□ Generating function (s = 1):

LfE (z) =
∞∑
h=1

DfE (h; 1)q
h
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Previous Work

□ Shifted convolution L-series defined by Hoffstein, Hulse,
Reznikov (generalized Rankin-Selberg convolutions)

□ Values are essentially coefficients of mixed mock modular
forms; recent work on p-adic properties and asymptotic
behavior (Beckwith, Bringmann, Mertens, Ono)
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Goals

□ Given E/Q, we have weight 2 newform:

fE =
∞∑
n=1

aE (n)q
n, aE (1) = 1

□ Understand variants of L(fE , s) at s = 1

□ Closed form for DfE (h; 1) values for some E/Q
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Weierstrass ζ-function

□ E ≃ C/ΛE , where ΛE a 2-dimensional complex lattice

□ Weierstrass ζ-function:

ζ(ΛE ; z) =
1

z
+

∑
w∈ΛE\{0}

(
1

z − w
+

1

w
+

z

w2

)

□ d
dz ζ(ΛE ; z) = −℘(ΛE ; z)

□ (Eisenstein) Lattice-invariant function ZE (z)

ZE (z) = ζ(ΛE ; z)− S(ΛE )z −
π

vol(ΛE )
z

S(ΛE ) = lim
s→0

∑
w∈ΛE\{0}

1

w2|w |2s
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Weierstrass Mock Modular Form

□ Eichler integral of associated newform fE :

EfE (z) =
∞∑
n=1

aE (n)

n
qn

□ Harmonic Maaß form ẐE (z):

ẐE (z) = ZE (EfE (z))

□ Can split ẐE (z): ẐE (z) = Ẑ+
E (z) + Ẑ−

E (z)

□ If genus(X0(N)) = 1, Ẑ+
E (z) is holomorphic; called the

Weierstrass mock modular form

Z+
E (EfE (z)) = ζ(ΛE ; EfE (z))− S(ΛE )EfE (z)
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E (z) + Ẑ−
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Example (N = 27)

□ N = 27 and E27 : y
2 + y = x3 − 7

□ Weight 2 modular form associated with E27:

fE27 = q − 2q4 − q7 + 5q13 + 4q16 − 7q19 + O(q20).

□ Weight 0 mock modular form Ẑ+
E27

(z) associated to fE27 :

Ẑ+
E27

(z) = q−1 +
1

2
q2 +

1

5
q5 +

3

4
q8 − 6

11
q11 − 1

2
q14 +O(q17)
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Main Results
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Elliptic Curves

□ E/Q is a strong Weil elliptic curve

□ If E has conductor NE , then

genus(X0(NE )) = 1

□ Two situations:

1. NE is squarefree

N ∈ {11, 14, 15, 17, 19, 21}

2. E has complex multiplication

N ∈ {27, 32, 36, 49}



Preliminaries Main Results Proof Idea: Holomorphic Projection Examples Conclusion Questions?

Elliptic Curves

□ E/Q is a strong Weil elliptic curve

□ If E has conductor NE , then

genus(X0(NE )) = 1

□ Two situations:

1. NE is squarefree

N ∈ {11, 14, 15, 17, 19, 21}

2. E has complex multiplication

N ∈ {27, 32, 36, 49}



Preliminaries Main Results Proof Idea: Holomorphic Projection Examples Conclusion Questions?

Elliptic Curves

□ E/Q is a strong Weil elliptic curve

□ If E has conductor NE , then

genus(X0(NE )) = 1

□ Two situations:

1. NE is squarefree

N ∈ {11, 14, 15, 17, 19, 21}

2. E has complex multiplication

N ∈ {27, 32, 36, 49}



Preliminaries Main Results Proof Idea: Holomorphic Projection Examples Conclusion Questions?

Theorem 1

□ E strong Weil curve, genus(X0(N)) = 1, N squarefree

□ Recall LfE (z) =
∑∞

h=1DfE (h; 1)q
h

Theorem (A-M ’17)

LfE (z ; 1) =
vol(ΛE )

π

(
(fE (z) · Ẑ+

E (z))− αfE (z)−
∑
i

F∞
N,2(z)

)

□ F∞
N,2(z) is the Eisenstein series for Γ0(N) nonvanishing only at

the cusp ∞
□ α = (fE · Ẑ+

E )[1]−
π

vol ΛE
DfE (1; 1)− F∞

N,2[1]
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Theorem 2

□ E is a strong Weil elliptic curve with complex multiplication
where genus(X0(N)) = 1

□ Recall LfE (z) =
∑∞

h=1DfE (h; 1)q
h

□ F∞
N,2 is the Eisenstein series for Γ0(N) nonvanishing only at

the cusp ∞

Theorem (A-M ’17)

With LfE (z) defined as above,

LfE (z ; 1) =
vol(ΛE )

π

(
(fE (z) · Ẑ+

E )(z)− F∞
N,2(z)

)
.
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Proof Idea: Holomorphic Projection
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Motivation

□ Consider f : H → C continuous, transforms like a modular
form for Γ0(N) of weight k ≥ 2, has moderate growth at cusps

□ Induces a linear functional based on the Petersson Inner
Product

g → ⟨g , f ⟩

for g ∈ Sk(Γ0(N))

□ =⇒ There is some f̃ ∈ Sk(Γ0(N)) such that ⟨·, f ⟩ = ⟨·, f̃ ⟩
□ f̃ is essentially the holomorphic projection of f
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Holomorphic Projection

□ If f (z) is holomorphic, πholf = f (z)

□ πhol(f (z)) ∈

{
Mk(Γ0(N)) k > 2

M2(Γ0(N))⊕ CE2 k = 2

□ ⟨g , f ⟩ = ⟨g , πholf ⟩ for g ∈ Sk(Γ0(N))
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Holomorphic Projection

□ Consider a weight 2 newform fE ∈ S2(Γ0(N)) associated to an
elliptic curve E

and the Weierstrass mock modular form Ẑ+
E

Proposition

The holomorphic projection is given by

πhol(Ẑ
+
E · fE ) = Ẑ+

E fE −
∞∑
h=1

qh
∞∑
n=1

aE (n + h)aE (n)

(
1

(n + h)
− 1

n

)
︸ ︷︷ ︸

DfE
(h;1)

and πhol(Ẑ
+
E · fE ) ∈ M2(Γ0(N))⊕ CE2.
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E

Proposition

The holomorphic projection is given by

πhol(Ẑ
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Example [Holomorphic Projection] (CM Curves)

N π̂hol(·)

27
1

36

(
1− 24

∞∑
n=1

σ(3n)q3n
)
− 1

36

(
1 + 12

∞∑
n=1

( ∑
d |3n,3̸ |d

d

)
q3n

)
+

(
1 + 3

∞∑
n=1

σ(n)q3n
)

32
1

48

(
1− 24

∞∑
n=1

σ(4n)q4n
)
+

47

48

(
1 + 24

∞∑
n=1

( ∑
d |4n,2̸ |d

d

)
q4n

)

−7

2

(
1 + 8

∞∑
n=1

( ∑
d |4n,4̸ |d

d

)
q4n

)
− 15

2

(
1 +

24

7

∞∑
n=1

σ(n)q4n
)

36
1

72

(
1− 24

∞∑
n=1

σ(6n)q6n
)
− 1

36

(
1 + 24

∞∑
n=1

( ∑
d |6n,2̸ |d

d

)
q6n

)

−1

6

(
1 + 12

∞∑
n=1

( ∑
d |6n,3̸ |d

d

)
q6n

)
+

85

72

(
1 +

24

5

∞∑
n=1

σ(n)q6n
)

49
1

56

(
1− 24

∞∑
n=1

σ(7n)q7n
)
+

55

56

(
1 + 4

∞∑
n=1

( ∑
d |7n,7 ̸ |d

d

)
q7n

)
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Example (N = 11)

□ Modular curve X0(11), dim(X0(11)) = 1:

E : y2 + y = x3 − x2 − 10x − 20.

□ S(ΛE ) = 0.38124 . . . gives

Ẑ+
E (z) = q−1 + 1 + 0.9520 . . . q + 1.547 . . . q2 + 0.3493 . . . q3

+ 1.976 . . . q4 − 2.609 . . . q5 + O(q6).

□ 105 coefficients of fE to compute LfE (z) =
∑∞

n=1DfE (h; 1)q
h

LfE (z) = 0.7063 . . . q + 1.562 . . . q2 + 0.0944 . . . q3

+ 1.237 . . . q4 − 2.026 . . . q5 + O(q6)
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Example (N = 11)

□ dim(M2(Γ0(11))⊕ CE2) = 2 with basis F 0
11,2, F

∞
11,2:

F∞
11,2 = 1 +

1

5
q +

3

5
q2 +

4

5
q3 +

7

5
q4 +

6

5
q5 +

12

5
q6 + O(q7)

□ Apply Theorem 1 with α = .0016 ≈ 0, β1 = 1, β2 = 0:

vol(ΛE )

π

(
(fE · Ẑ+

E )− αfE − F∞
11,2

)
= 0.706 . . . q + 1.562 . . . q2 + 0.0930 . . . q3

+ 1.234 . . . q4 − 2.024 . . . q5 + O(q6)

= LfE (z)
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Example (N = 27)

□ Strong Weil curve with NE = 27: E27 = y2 + y = x3 − 7.

□ Weight 2 newform:

fE27 = q − 2q4 − q7 + 5q13 + 4q16 − 7q19 + O(q20).

□ Mock modular form:

Ẑ+
E27

(z) = q−1 +
1

2
q2 +

1

5
q5 +

3

4
q8 − 6

11
q11 − 1

2
q14 +O(q17).

□ Holomorphic projection:

π̂hol(fE · Ẑ+
E27

)(z) = 1 + 3q9 + 9q18 − 12q27 . . . .

□ Normalized F∞
27,2:

F∞
27,2 = 1 + 3q9 + 9q18 − 12q27 . . .
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Ẑ+
E27

(z) = q−1 +
1

2
q2 +

1

5
q5 +

3

4
q8 − 6

11
q11 − 1

2
q14 +O(q17).

□ Holomorphic projection:

π̂hol(fE · Ẑ+
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Summary

□ For nice elliptic curves E , give an explicit characterization of
shifted convolution L-series values DfE (h; 1) using elliptic
curve invariants.

□ Enable fast computation of LfE (z) coefficients.

□ Understand properties of Weierstrass mock modular form
Ẑ+
E (z) in terms of fE , invariants of E/Q.

□ Understand support, arithmetic properties of Fourier
coefficients of fE , Ẑ

+
E for CM curves E

□ Future work: generalize to other elliptic curves E , understand
other L-series values + interesting variants.
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