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Concatenations as perfect squares I

In 1998, Sastry noticed that 183184 = 4282 and asked if
there are other examples of positive integers a such that
concatenating a with a + 1 (from left to right) in base 10
results in a perfect square.
Let n be the number of digits of a+ 1; the question reduces
to finding other instances when

10na + (a + 1) = x2 (1)

with positive integers a, x , 10n−1 ≤ a < 10n − 1.
Equivalently,

a(10n + 1) = x2 − 1 = (x − 1)(x + 1).



Concatenations as perfect squares II

The arithmetic of 10n + 1 plays a role: if 10n + 1 is a prime,
then the above equation implies that 10n + 1 divides one of
x − 1 or x + 1. Thus, x + 1 ≥ 10n + 1, so x2 ≥ 102n is a
number with at least 2n + 1 digits; a contradiction with the
fact that it should have exactly 2n digits.
10n + 1 (n > 1) is never a perfect power (shown easily in
an elementary way or invoking known facts about Catalan’s
equation); it follows that if 10n + 1 is not prime, then it has
at least two distinct prime factors.
Now, we write 10n + 1 = A1A2 and a = a1a2 and try to
solve

x + 1 = A1a1 and x − 1 = A2a2,

implying
A1a1 − A2a2 = 2. (2)



Concatenations as perfect squares III

Since A1,A2 are odd (as divisors of 10n + 1), we deduce
from (2) that they must be coprime and (from the previous
argument) none of A1,A2 can be 1. Given A1,A2, equation
(2) has infinitely many solutions (a1,a2), coming from the
minimal one, let’s call it (a1,0,a2,0), via

a1 = a1,0 + A2m and a2 = a2,0 + A1m,m ∈ Z.

Since a1a2 = a < 10n − 1 < A1A2, then
(a1,a2) = (a1,0,a2,0). If a0 = a1,0a2,0 has n digits, we found
a convenient solution to our problem.



Concatenations as perfect squares IV

Sometimes, a0 is “too short”. For example, taking
m = 3, A1 = 11, A2 = 91, the minimal solution of the
equation

11a1 − 91a2 = 2

is (a1,0,a2,0) = (25,3) for which a0 = 75 has only two
digits.

If we pretend that it has three digits, namely that it is 075,
then indeed concatenating a0 with a0 + 1 results in the
perfect square

075076 = 2742.



Concatenations as perfect squares V

Note that if (a1,a2) is a solution of (2), then
(a′1,a

′
2) = (A2 − a1,A1 − a2) is a solution of

A1a′1 − A2a′2 = −2,

which is the same equation as (2) with the pair (A1,A2)
replaced by the pair (A2,A1).
One can show that given A1,A2, not both a0 and a′0 can be
short.
For the example with m = 3, A1 = 11, A2 = 91, we have
(a′1,0,a

′
2,0) = (66,8), so a′0 = 66× 8 = 528 has three digits

and
528529 = 7272.



Concatenations as perfect squares VI

As a byproduct, one finds that if one denotes by
N+(n) := #{a : a||(a + 1) = �,a has n digits}, then
N+(n) 6= 0 if and only if 10n + 1 has at least two distinct
prime factors.
Let ω(n) be the number of distinct prime factors of 10n + 1;
one can show that

2ω(n)−1 − 1 ≤ N+(n) ≤ 2(2ω(n)−1 − 1).

We notice that

66× 8, 6666× 68, 666666× 668, . . .

all work as integers a, with a||(a + 1) = �.



Concatenations as perfect squares VII

We conjecture and then show that for all m, the number

a = 66 . . . 6︸ ︷︷ ︸
2m times

× 66 . . . 6︸ ︷︷ ︸
m−1 times

8 (3)

is a valid example with 3m digits: for such values of a, then
a||(a + 1) is a polynomial of deg 6 in 10m, the square of a
polynomial of degree 3 in 10m.



Concatenations as perfect squares VIII

I. Shparlinski noticed that the above problem was easy
because x2 − 1 factors as (x − 1)(x + 1), so he asked,
what about if we concatenate a with a + 1 in the reverse
order and ask for that to be a square.

The analog equation is then

10na + (a− 1) = x2 ⇐⇒ a(10n + 1) = x2 + 1. (4)

Then, n is even, since if odd, then 11|x2 + 1, so x2 ≡ −1
(mod 11), and this is impossible. This argument also
shows that all prime factors of both a and 10n + 1 are
congruent to 1 modulo 4.



Concatenations as perfect squares IX

Factor x2 + 1 = (x + i)(x − i), so x + i |a(10n + 1) in Z[i].
Then ∃ a1,a2,A1,A2 ∈ Z such that

x + i = (a2 + a1i)(A1 − A2i), (5)

with a2 + a1i = gcd(a, x + i) and
A1 − A2i = gcd(x + i ,10n + 1) in Z[i].
We may assume that A1 and A2 are positive, so

x2+1 = (a2
1+a2

2)(A
2
1+A2

2) with a2
1+a2

2 = a,A2
1+A2

2 = 10n+1.

In (5) we identify the imaginary part from the two sides of
the equation getting

a1A1 − a2A2 = 1. (6)



Concatenations as perfect squares X

Let (a1,0,a2,0) be its minimal solution. Then

(a1,a2) = (a1,0 + A2m,a2,0 + A1m), for some m ≥ 0.

Then, if m ≥ 1,

a = a2
1 + a2

2 > (A2
1 + A2

2)m
2 ≥ A2

1 + A2
2 > 10n

is “too long". Hence, the only chance is that
(a1,a2) = (a1,0,a2,0).
One can take a0 = a2

1,0 + a2
2,0. If a0 is “too short", that is,

a0 < 10n−1. But then, the pair (a′1,a
′
2) = (A2 − a1,A2 − a2)

satisfies
a′1A1 − a′2A2 = −1,

and we showed one of these situations will give the right
number of digits.



Concatenations as perfect squares XI

Recall that the number of representations as a sum of two
squares of 10n + 1 equals 2ω(n), and letting N−(n) be the
number of positive integers a with n digits satisfying
Shparlinski’s requirement, we can show:

Theorem (Luca-S. 2017)

Let n ≥ 1 be a positive integer. Then N−(n) = 0 unless n is
even. Furthermore, the inequality

2ω(n)−1 ≤ N−(n) ≤ 2(2ω(n)−1 − 1) + 1

holds for all even n.



Concatenations as perfect squares XII

How about finding parametric families of solutions?

Taking n = 6k and giving k values 1,2,3, one gets the
examples 1462 + 7192, 134662 + 6731992, 13346662 +
6673319992, · · · inferring that perhaps (a1,a2), where

a1 = 133 . . . 3︸ ︷︷ ︸
k−1 times

466 . . . 6︸ ︷︷ ︸
k times

a2 = 66 . . . 6︸ ︷︷ ︸
k−1 times

733 . . . 3︸ ︷︷ ︸
k−1 times

199 . . . 9︸ ︷︷ ︸
k times

has the property that a = a2
1 + a2

2 is a valid solution (with n
digits) to Shparlinski’s question.



Concatenations as perfect squares XIII

One checks easily that

a1 =
4 · 102k + 4 · 10k − 2

3

a2 =
2 · 103k + 2 · 102k − 4 · 10k − 3

3

and indeed

a = a2
1 + a2

2 =

(
2 · 106k + 2 · 105k + 103k + 2 · 10k + 2

3

)2

is a perfect square.



Concatenations as perfect squares XIV

We also found a parametric family for n = 10k , and even a
“short parametric family" for such n, where by short we
mean that a has 8k digits, instead of 10k , so it has to be
“beefed up” by 2k zeros to the left in order to create an
example. The “short parametric family” is given by

a1 = 7 99 . . . 9︸ ︷︷ ︸
2(k−1) times

84 00 . . . 0︸ ︷︷ ︸
k−1 times

=
4 · 103k − 8 · 10k

5

a2 = 3 99 . . . 9︸ ︷︷ ︸
2(k−1) times

88 00 . . . 0︸ ︷︷ ︸
k−1 times

1 =
2 · 104k − 6 · 102k + 5

5
,

which, of course, can be changed into the “right” one by
the previously mentioned trick. We leave the details to the
interested audience.



Concatenations as perfect squares XV

We conclude this discussion with the following open
problem for the audience.

Problem (Luca-S. 2017)

For what integer values d, are there infinitely many positive
integers a such that a and a + d have the same number of
digits and concatenating a with a + d (from left to right) one
gets a perfect square?

In this paper, we treated the cases d = ±1. The case
d = 0 is related to 10n + 1 not being square-free.



Concatenations as perfect squares XVI

In this case, the analog equation (1) is

a(10n + 1) = x2,

and if 10n + 1 is squarefree, then 10n + 1 | x , which implies
a(10n + 1) ≥ (10n + 1)2, so a > 10n, a contradiction.

For example, for n = 11, 1011 + 1 is a multiple of 112, and
taking

a =

(
1011 + 1

112

)
y2



Concatenations as perfect squares XVII

for some integer y such that a has exactly 11 digits, one
gets the examples

13223140496 13223140496 = 363636363642, y = 4;
20661157025 20661157025 = 454545454552, y = 5;
29752066116 29752066116 = 545454545462, y = 6;
40495867769 40495867769 = 636363636372, y = 7;
52892561984 52892561984 = 727272727282, y = 8;
66942148761 66942148761 = 818181818192, y = 9;
82644628100 82644628100 = 909090909102, y = 10.



Concatenations as perfect squares XVIII

More generally, if m2 > 1 is any square factor of 10n + 1,
then taking

a =

(
10n + 1

m2

)
y2

with an integer y in the interval [m/
√

10,m − 1], gives a
valid answer to our problem for d = 0.

How about for other values of d? One can quickly check
that for all d with |d | ≤ 10, one can find examples of
perfect squares by concatenating a with a + d from left to
right, except for d = −3,7 (with a little modular arithmetic
work, one can give an argument why those values of d will
never generate perfect squares).



Concatenations as perfect squares XIX

Certainly, one can ask similar questions of concatenating a
sequence of consecutive integers (all with the same
number of digits) in some order, giving rise to a perfect
square, which questions we invite the audience to
investigate.



Theorem (Pante Stanica)

Thank you for your attention!

Proof.

None required!


