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Motivation

Our goal is to make computation of divisor arithmetic in the divisor

class group over genus 2 hyperelliptic curves fast as possible.



Divisor Class Group

# Let C over Fq, described by

y2 + yh(x) = f (x),

be an imaginary hyperelliptic curve of genus 2 where h(x) has

degree at most 2 and f (x) is monic with degree 5.

# A divisor D is a formal sum of points on C .

# We use Pic0(C ) the divisor class group, which is isomorphic

to the Jacobian, as our setting.

# Each divisor class over Fq can be represented uniquely in

Mumford representation by two polynomials, and group law

arithmetic in Pic0(C ) is reduced to polynomial arithmetic.



Why do we care?

The most computationally intensive operation in Hyperelliptic

Curve Cryptography (HECC) is scalar multiplication of a divisor D,

[n]D = D + D + D + · · ·+ D, (n times.)

Efficient implementation of HECC relies on the ability to efficiently

compute [n]D.

Multibase representations of numbers can be paired with fast

divisor arithmetic to speed up scalar multiplication. For example

using base 2 and 3 representations, we can take advantage fo fast

divisor doubling and tripling:

57 = 25 + 24 + 23 + 20 vs 57 = 2133 + 2031



Current Work

We have overall improved on group law computations in previously

submitted work, but our attempts at creating fast divisor triplings

paired with multibase scalar multiplication algorithms were still

lacking compared to doubling-add based scalar multiplication.

(Un)fortunately, after beating the group law to death, we have to

turn to more sophisticated approaches in order to come by further

improvements.

We focus on computations of compound operations called

multiplication-by-l maps, with scalar multiplication in mind.



State of the Art

In their seminal paper, Doche, Icart and Kohel were able to

computationally improve on doubling or tripling points through

constructing elliptic curves that admit fast multiplication-by-2 and

3 maps, called DIK curves.

Moody expanded the same techniques to include fast

multiplication-by-5 maps.



Goals

Our goal is to generalize DIK curves to the genus two setting.



DIK Curve Background

# Multiplication-by-l maps exist for all l and all elliptic curves

via division polynomials, which require the evaluation of

degree l2 rational maps.

# For some select numbers l , it is possible for well chosen

families of curves to “split” the multiplication-by-l map [l ] as

the product of a degree l isogeny and its dual.

# Two applications of an l-isogeny (degree l rational map)

computationally outperforms the application of a degree l2

rational map in some cases, even for very small values for l .



Constructing DIK Curves

In order to amplify the impact of creating elliptic curves that have

split multiplication-by-l maps, we wish to keep the construction of

the curves as general as possible and make the maps as efficient as

possible. The two main obstacles are:

1. Parametrize families of curves that admit l-isogenies with a

curve equation dependent on some variable.

2. Describe efficient formulas to compute the l-isogenies and

isogenous curve that makes up the split multiplication-by-l

maps.



DIK Constructions

Given an elliptic curve E and the kernel of an l-isogeny Gl , it is

easy to compute the rational maps defining φl · φ̂lP = [l ]P along

with the isogenous curve El using Velu’s formulas.

The hard part is parametrizing the family of elliptic curves that

admit an l-isogeny and therefor a split multiplication-by-l map.

This brings us to modular curves.



Examples of parametrized curves

(l = 2) (l = 3)

y2 = x3 + ux2 + 16ux y2 = x3 + 3u(x + 1)2

(u = 1) (u = 1)



Modular Curves

There exist modular curves X which have the following informal

connection with elliptic curves:

{
Information

on X

}
←→


Information about the family

of elliptic curves that admit an

l-isogeny


There is one for every value l and they are denoted by X0(l). We

use information about the X0(l) to create parametrized curve

equations that encapsulate all elliptic curves admitting l-isogenies.



Modular Curves

A modular curve is defined as a quotient space of the complex

upper half plane H = {δ ∈ C | Im(δ) > 0}, under a subgroup of

SL2(Z) denoted Γ :

X (Γ) = H/Γ = {Γδ | δ ∈ H}.

The congruence subgroup of SL2(Z) for X0(l) is:

Γ0(l) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣∣ c ≡ 0 mod l

}
.

And the modular curves are defined as:

X0(l) = H/Γ0(l) = {Γ0(l)δ | δ ∈ H}



Connection between Modular and Elliptic Curves

# The modular curves X0(l) can be described algebraically.

# Points on the X0(l) correspond to pairs of j-invariants of

l-isogenous elliptic curves.

# The modular curve theory presented is tied to complex

numbers, but works over finite fields.



Modular Curves - Examples

Example

The curve equation for X0(2) is described by

F2(X ,Y ) = −(XY )2 + 1485(X +Y + 27675)XY + (X +Y −54000)3 = 0.

Every point (A,B) corresponds to two j-invariants of elliptic curves that

are 2-isogenous to each other. Spanning over all X and Y parametrizes

all elliptic curves the admit 2-isogenies.

What is X0(1)?



Parametrizing families of elliptic curves

We can find curve equations for families of elliptic curves that have

l-isogenies by looking at the relationship between rational functions

that generate the function fields of X0(l), and the j-invariant

which generates the j-line X0(1).



Genus Two Setting

All of the machinery surrounding constructing DIK curves

generalizes to the genus two setting. We point out some important

parts:

1. The Picard group of divisor classes in genus two is isomorphic

to a dimension two principally polarized abelian variety.

2. All statements about isogenies for elliptic curves work in

general for dimension two principally polarized abelian

varieties.

3. The upper half plane generalizes to the two dimensional Siegel

upper half plane

H2 = {τ ∈ Mat2(C) | τT = τ, Im(τ) positive definite}.



Genus two Setting

4. Igusa invariants are the generalization of the j-invariant to the

genus two setting. They play the same role as the j-invariant

in finding explicit parametrizations of genus two curves with

l-isogeny structure.

The invariants are three algebraically independent rational

functions defined on the two dimensional Siegel upper half

plane, denoted by j1, j2, j3.



Genus Two Setting

5. The modular group SL2(Z) generalizes to the symplectic

group:

Sp4(Z) = {M ∈ SL4(Z) | MJMT = J},

a subgroup of SL4(Z) where

J =

(
0 12

−12 0

)
,

and 12 denotes the 2× 2 identity matrix.



Genus Two Setting

6. The definition of the modular curve for the genus two setting

is described as the quotient space

X (2) = H2/Γ(2),

where Γ(2) is a congruence subgroup of Sp4(Z). When

Γ(2) = Sp4(Z), we get the generalization of the j-line from the

genus one setting.



Looking forward - Genus 2

We anticipate taking the following steps in the genus 2 setting:

1. There are now three rational equations that need to be used

in order to parametrize a family of genus two curves with

l-isogeny structure. We must find the simplest way to

parametrize a family of curves using three rational functions.

2. We then reduce the complexity of computing the

multiplication-by-l maps by taking the general isogeny

algorithms by D. Robert and others and specialize to our

cases for l making the maps as simple as possible.



Thank you

Thank you


