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Our goal is to make computation of divisor arithmetic in the divisor
class group over genus 2 hyperelliptic curves fast as possible.



Divisor Class Group

O Let C over Fg, described by

y? + yh(x) = f(x),

be an imaginary hyperelliptic curve of genus 2 where h(x) has
degree at most 2 and f(x) is monic with degree 5.

O A divisor D is a formal sum of points on C.

O We use Pic®(C) the divisor class group, which is isomorphic
to the Jacobian, as our setting.

O Each divisor class over I can be represented uniquely in
Mumford representation by two polynomials, and group law
arithmetic in Pic®(C) is reduced to polynomial arithmetic.



Why do we care?

The most computationally intensive operation in Hyperelliptic
Curve Cryptography (HECC) is scalar multiplication of a divisor D,

[ND=D+D+D+---+ D, (n times.)
Efficient implementation of HECC relies on the ability to efficiently
compute [n]D.

Multibase representations of numbers can be paired with fast
divisor arithmetic to speed up scalar multiplication. For example
using base 2 and 3 representations, we can take advantage fo fast
divisor doubling and tripling:

57 =254+ 24423420 s 57 =12133 42031



We have overall improved on group law computations in previously
submitted work, but our attempts at creating fast divisor triplings
paired with multibase scalar multiplication algorithms were still
lacking compared to doubling-add based scalar multiplication.

(Un)fortunately, after beating the group law to death, we have to
turn to more sophisticated approaches in order to come by further
improvements.

We focus on computations of compound operations called
multiplication-by-/ maps, with scalar multiplication in mind.



State of the Art

In their seminal paper, Doche, lcart and Kohel were able to
computationally improve on doubling or tripling points through
constructing elliptic curves that admit fast multiplication-by-2 and

3 maps, called DIK curves.

Moody expanded the same techniques to include fast

multiplication-by-5 maps.



Our goal is to generalize DIK curves to the genus two setting.



DIK Curve Background

O Multiplication-by-/ maps exist for all / and all elliptic curves
via division polynomials, which require the evaluation of
degree /2 rational maps.

O For some select numbers /, it is possible for well chosen
families of curves to “split” the multiplication-by-/ map [/] as
the product of a degree / isogeny and its dual.

O Two applications of an /-isogeny (degree / rational map)

computationally outperforms the application of a degree /2

rational map in some cases, even for very small values for /.



Constructing DIK Curves

In order to amplify the impact of creating elliptic curves that have
split multiplication-by-/ maps, we wish to keep the construction of
the curves as general as possible and make the maps as efficient as
possible. The two main obstacles are:

1. Parametrize families of curves that admit /-isogenies with a
curve equation dependent on some variable.

2. Describe efficient formulas to compute the /-isogenies and
isogenous curve that makes up the split multiplication-by-/

maps.



DIK Constructions

Given an elliptic curve E and the kernel of an /-isogeny G, it is
easy to compute the rational maps defining ¢; - qglP = [/]P along
with the isogenous curve E; using Velu's formulas.

The hard part is parametrizing the family of elliptic curves that
admit an /-isogeny and therefor a split multiplication-by-/ map.

This brings us to modular curves.



Examples of parametrized curves
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y? = x3 + ux® + 16ux y? = x3+3u(x + 1)?

(u=1) (u=1)



Modular Curves

There exist modular curves X which have the following informal
connection with elliptic curves:

. Information about the family
Information o )
X «+— < of elliptic curves that admit an
on
[-isogeny

There is one for every value / and they are denoted by Xp(/). We
use information about the Xp(/) to create parametrized curve
equations that encapsulate all elliptic curves admitting /-isogenies.



Modular Curves

A modular curve is defined as a quotient space of the complex
upper half plane H={§ € C | Im(6) > 0}, under a subgroup of
SLy(Z) denoted T :

X(F)=H/T ={I§ | § € H}.

The congruence subgroup of SLy(Z) for Xo(/) is:

Fo(/):{<j Z)ESLz(Z) c=0 mod/}.

And the modular curves are defined as:
Xo(l) = H/To(/) = {To(/)d | 6 € H}




Connection between Modular and Elliptic Curves

O The modular curves Xp(/) can be described algebraically.

O Points on the Xy(/) correspond to pairs of j-invariants of
I-isogenous elliptic curves.

O The modular curve theory presented is tied to complex
numbers, but works over finite fields.



Modular Curves - Examples

EXAMPLE

The curve equation for Xp(2) is described by
Fa(X,Y) = —(XY)?+1485(X + Y +27675)XY + (X + Y — 54000)* = 0.

Every point (A, B) corresponds to two j-invariants of elliptic curves that
are 2-isogenous to each other. Spanning over all X and Y parametrizes
all elliptic curves the admit 2-isogenies.

What is Xo(1)?




Parametrizing families of elliptic curves

We can find curve equations for families of elliptic curves that have
I-isogenies by looking at the relationship between rational functions
that generate the function fields of Xp(/), and the j-invariant
which generates the j-line Xp(1).



Genus Two Setting

All of the machinery surrounding constructing DIK curves

generalizes to the genus two setting. We point out some important

parts:

1.

The Picard group of divisor classes in genus two is isomorphic
to a dimension two principally polarized abelian variety.

All statements about isogenies for elliptic curves work in
general for dimension two principally polarized abelian
varieties.

The upper half plane generalizes to the two dimensional Siegel
upper half plane

Hy = {7 € Maty(C) | 77 =7, Im(7) positive definite}.



Genus two Setting

4. lgusa invariants are the generalization of the j-invariant to the
genus two setting. They play the same role as the j-invariant
in finding explicit parametrizations of genus two curves with

I-isogeny structure.

The invariants are three algebraically independent rational
functions defined on the two dimensional Siegel upper half

plane, denoted by ji, j2, j3.



Genus Two Setting

5. The modular group SL»(7Z) generalizes to the symplectic

group:
Spa(Z) = {M € SL4(Z) | MIMT = J},

a subgroup of SL4(Z) where

g 0 I 7
-1, 0

and 1, denotes the 2 x 2 identity matrix.



Genus Two Setting

6. The definition of the modular curve for the genus two setting

is described as the quotient space
x(2) — Hz/r@)7

where T2 is a congruence subgroup of Sps(Z). When
(@ = Spy(Z), we get the generalization of the j-line from the

genus one setting.



Looking forward - Genus 2

We anticipate taking the following steps in the genus 2 setting:

1. There are now three rational equations that need to be used
in order to parametrize a family of genus two curves with
l-isogeny structure. We must find the simplest way to
parametrize a family of curves using three rational functions.

2. We then reduce the complexity of computing the
multiplication-by-/ maps by taking the general isogeny
algorithms by D. Robert and others and specialize to our

cases for / making the maps as simple as possible.
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