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Rules of the Game

α-take away game, or α-tag

One pile of stones, initially n stones

α ≥ 1

Two players alternate moves

First turn: take at least one stone, but not all of them

Subsequent turns: take up to α times as many stones as last player
took

Goal: Take the last stone. (More precisely, if it’s your turn and you
can’t move, you lose.)
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N and P positions

N positions: next player to move wins
P positions: previous player wins

Most positions are N positions, so we focus on P positions.

α = 1: P positions are powers of 2, together with 0

α = 2: P positions are Fibonacci numbers
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P positions for α-tag

Theorem (Schwenk)

The P positions satisfy the following recurrence:

Pn+1 = Pn + Pm,

where m is the unique integer such that αPm−1 < Pn ≤ αPm.

Proof relies on a generalization of Zeckendorf’s theorem.
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Zeckendorf’s Theorem

Theorem (Zeckendorf, Lekkerkerker)

Every nonnegative integer can be expressed uniquely as a sum of
nonconsecutive Fibonacci numbers.

Zeckendorf representation is constructed greedily, by choosing the largest
Fibonacci number possible from the remainder.

Example

40 = 34 + 5 + 1.
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Generalization of Zeckendorf’s Theorem

Theorem (Generalized Zeckendorf’s Theorem)

Let α ≥ 1, and let Pn be a sequence defined by the recurrence
Pn+1 = Pn + Pm, where m is the unique integer such that
αPm−1 < Pn ≤ αPm, with initial conditions P0 = 0 and P1 = 1. Then
every positive integer n can be expressed uniquely in the form
n = Pi1 + Pi2 + · · ·+ Pik , where αPij < Pij+1

.

Construction here is also greedy: take the largest Pn you can.
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Winning strategy for α-tag

Suppose there are n stones. Write n = Pi1 + Pi2 + · · ·+ Pik as in the
generalized Zeckendorf theorem. Then, on every move, remove the
smallest generalized Zeckendorf part Pi1 . The next player will not be able
to do so.

Example

α = 3, n = 35. P-positions are 0, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 37, . . .
Generalized Zeckendorf representation: 35 = 29 + 6.
Sample game play with good play by first player:
35→ 29→ 28→ 27→ 25→ 21→ 13→ 11→ 7→ 6→ 4→ 0.
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Stability Theorem

Theorem

For every α > 1, there exists a half-open interval Iα = [aα, bα) containing
α such that for all β ∈ Iα, the P positions of α-tag are the same as those
of β-tag.
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Eventual recurrence

Theorem

For any α ≥ 1, there exist integers k ,N ≥ 0 such that for all n ≥ N,
Pn+1 = Pn + Pn−k .

However, first few terms might not satisfy this recurrence.
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Stable intervals

Range Eventual recurrence Initial conditions

1 ≤ α < 2 Pn+1 = Pn + Pn 0,1

2 ≤ α < 5
2 Pn+1 = Pn + Pn−1 0,1,2

5
2 ≤ α < 3 Pn+1 = Pn + Pn−2 0,1,2,3,5

3 ≤ α < 7
2 Pn+1 = Pn + Pn−3 0,1,2,3,4,6

7
2 ≤ α <

11
3 Pn+1 = Pn + Pn−4 0,1,2,3,4,6,8,11,15,21

11
3 ≤ α <

43
11 Pn+1 = Pn + Pn−4 0,1,2,3,4,6,8,11

43
11 ≤ α < 4 Pn+1 = Pn + Pn−5 0,1,2,3,4,6,8,11,14,18,24,32,43
4 ≤ α < 13

3 Pn+1 = Pn + Pn−5 0,1,2,3,4,5,7,9,12
13
3 ≤ α <

31
7 Pn+1 = Pn + Pn−6 0,1,2,3,4,5,7,9,12,15,19,24,31,40,52

31
7 ≤ α <

9
2 Pn+1 = Pn + Pn−6 0,1,2,3,4,5,7,9,12,15,19,24,31

9
2 ≤ α <

14
3 Pn+1 = Pn + Pn−6 0,1,2,3,4,5,7,9,11,14,18
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Cutoffs

Definition

A cutoff is some α > 1 such that for every β < α, the sequence of
P-positions for β-tag differs from the sequence of P-positions for α-tag.

The first few cutoffs are 2, 52 , 3,
7
2 ,

11
3 ,

43
11 , 4,

13
3 ,

31
7 ,

9
2 ,

14
3 .
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Computing cutoffs

Suppose α = 3.

P positions are 0,1,2,3,4,6, then satisfy recurrence Pn+1 = Pn + Pn−3.
How do we find the next cutoff?

First P positions are 0, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 40, 55, . . .

For example, we form 21 as 15 + 6, because α · 4 < 15 ≤ α · 6 with α = 3.

If we increase α to 15
4 , then the left inequality fails. Thus there is a

potential cutoff at 15
4 , and definitely some cutoff in

(
3, 154

]
.

Similarly, we compare other terms, to find that the next cutoff is

min

{
4

1
,

6

1
,

8

2
,

11

3
,

15

4
,

21

6
,

29

8
,

40

11
, . . .

}
=

21

6
=

7

2
.
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Theorems and questions about cutoffs

Theorem

All cutoffs are rational.

Theorem

Every integer n ≥ 2 is a cutoff. More generally, if x ≥ 1 and x ≡ 0
(mod n!), then x + 1

n is a cutoff.

Conjecture

For every positive integer d, there exists an integer N such that for all
k > N, k

d is a cutoff.
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Theorems and questions about cutoffs

Theorem

The set of cutoffs is a discrete subset of Q>1.

What is its density?

C (x): number of cutoffs ≤ x . Appears that C (x) = ρx2 + o(x2) for some
ρ. Probably ρ ≈ 2.
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Thank you

Thank you for your attention!
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