

Stability for Take-Away Games

Simon Rubinstein-Salzedo
simon@eulercircle.com
Euler Circle

Joint work with Sherry Sarkar

December 18, 2017

Rules of the Game

α -take away game, or α -TAG

Rules of the Game

α -take away game, or α -TAG

- One pile of stones, initially n stones

Rules of the Game

α -take away game, or α -TAG

- One pile of stones, initially n stones
- $\alpha \geq 1$

Rules of the Game

α -take away game, or α -TAG

- One pile of stones, initially n stones
- $\alpha \geq 1$
- Two players alternate moves

Rules of the Game

α -take away game, or α -TAG

- One pile of stones, initially n stones
- $\alpha \geq 1$
- Two players alternate moves
- First turn: take at least one stone, but not all of them

Rules of the Game

α -take away game, or α -TAG

- One pile of stones, initially n stones
- $\alpha \geq 1$
- Two players alternate moves
- First turn: take at least one stone, but not all of them
- Subsequent turns: take up to α times as many stones as last player took

Rules of the Game

α -take away game, or α -TAG

- One pile of stones, initially n stones
- $\alpha \geq 1$
- Two players alternate moves
- First turn: take at least one stone, but not all of them
- Subsequent turns: take up to α times as many stones as last player took
- Goal: Take the last stone. (More precisely, if it's your turn and you can't move, you lose.)

\mathcal{N} and \mathcal{P} positions

\mathcal{N} positions: next player to move wins

\mathcal{P} positions: previous player wins

\mathcal{N} and \mathcal{P} positions

\mathcal{N} positions: next player to move wins

\mathcal{P} positions: previous player wins

Most positions are \mathcal{N} positions, so we focus on \mathcal{P} positions.

\mathcal{N} and \mathcal{P} positions

\mathcal{N} positions: next player to move wins

\mathcal{P} positions: previous player wins

Most positions are \mathcal{N} positions, so we focus on \mathcal{P} positions.

- $\alpha = 1$: \mathcal{P} positions are powers of 2, together with 0
- $\alpha = 2$: \mathcal{P} positions are Fibonacci numbers

\mathcal{P} positions for α -TAG

Theorem (Schwenk)

The \mathcal{P} positions satisfy the following recurrence:

$$P_{n+1} = P_n + P_m,$$

where m is the unique integer such that $\alpha P_{m-1} < P_n \leq \alpha P_m$.

Proof relies on a generalization of Zeckendorf's theorem.

Zeckendorf's Theorem

Theorem (Zeckendorf, Lekkerkerker)

Every nonnegative integer can be expressed uniquely as a sum of nonconsecutive Fibonacci numbers.

Zeckendorf's Theorem

Theorem (Zeckendorf, Lekkerkerker)

Every nonnegative integer can be expressed uniquely as a sum of nonconsecutive Fibonacci numbers.

Zeckendorf representation is constructed greedily, by choosing the largest Fibonacci number possible from the remainder.

Example

$$40 = 34 + 5 + 1.$$

Generalization of Zeckendorf's Theorem

Theorem (Generalized Zeckendorf's Theorem)

Let $\alpha \geq 1$, and let P_n be a sequence defined by the recurrence $P_{n+1} = P_n + P_m$, where m is the unique integer such that $\alpha P_{m-1} < P_n \leq \alpha P_m$, with initial conditions $P_0 = 0$ and $P_1 = 1$. Then every positive integer n can be expressed uniquely in the form $n = P_{i_1} + P_{i_2} + \cdots + P_{i_k}$, where $\alpha P_{i_j} < P_{i_{j+1}}$.

Construction here is also greedy: take the largest P_n you can.

Winning strategy for α -TAG

Suppose there are n stones. Write $n = P_{i_1} + P_{i_2} + \cdots + P_{i_k}$ as in the generalized Zeckendorf theorem. Then, on every move, remove the smallest generalized Zeckendorf part P_{i_1} . The next player will not be able to do so.

Winning strategy for α -TAG

Suppose there are n stones. Write $n = P_{i_1} + P_{i_2} + \cdots + P_{i_k}$ as in the generalized Zeckendorf theorem. Then, on every move, remove the smallest generalized Zeckendorf part P_{i_1} . The next player will not be able to do so.

Example

$\alpha = 3, n = 35$.

Winning strategy for α -TAG

Suppose there are n stones. Write $n = P_{i_1} + P_{i_2} + \cdots + P_{i_k}$ as in the generalized Zeckendorf theorem. Then, on every move, remove the smallest generalized Zeckendorf part P_{i_1} . The next player will not be able to do so.

Example

$\alpha = 3$, $n = 35$. \mathcal{P} -positions are 0, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 37, ...

Winning strategy for α -TAG

Suppose there are n stones. Write $n = P_{i_1} + P_{i_2} + \cdots + P_{i_k}$ as in the generalized Zeckendorf theorem. Then, on every move, remove the smallest generalized Zeckendorf part P_{i_1} . The next player will not be able to do so.

Example

$\alpha = 3$, $n = 35$. \mathcal{P} -positions are 0, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 37, ...

Generalized Zeckendorf representation: $35 = 29 + 6$.

Winning strategy for α -TAG

Suppose there are n stones. Write $n = P_{i_1} + P_{i_2} + \cdots + P_{i_k}$ as in the generalized Zeckendorf theorem. Then, on every move, remove the smallest generalized Zeckendorf part P_{i_1} . The next player will not be able to do so.

Example

$\alpha = 3$, $n = 35$. \mathcal{P} -positions are 0, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 37, ...

Generalized Zeckendorf representation: $35 = 29 + 6$.

Sample game play with good play by first player:

35

Winning strategy for α -TAG

Suppose there are n stones. Write $n = P_{i_1} + P_{i_2} + \cdots + P_{i_k}$ as in the generalized Zeckendorf theorem. Then, on every move, remove the smallest generalized Zeckendorf part P_{i_1} . The next player will not be able to do so.

Example

$\alpha = 3$, $n = 35$. \mathcal{P} -positions are 0, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 37, ...

Generalized Zeckendorf representation: $35 = 29 + 6$.

Sample game play with good play by first player:

$35 \rightarrow 29$

Winning strategy for α -TAG

Suppose there are n stones. Write $n = P_{i_1} + P_{i_2} + \cdots + P_{i_k}$ as in the generalized Zeckendorf theorem. Then, on every move, remove the smallest generalized Zeckendorf part P_{i_1} . The next player will not be able to do so.

Example

$\alpha = 3$, $n = 35$. \mathcal{P} -positions are 0, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 37, ...

Generalized Zeckendorf representation: $35 = 29 + 6$.

Sample game play with good play by first player:

$35 \rightarrow 29 \rightarrow 28$

Winning strategy for α -TAG

Suppose there are n stones. Write $n = P_{i_1} + P_{i_2} + \cdots + P_{i_k}$ as in the generalized Zeckendorf theorem. Then, on every move, remove the smallest generalized Zeckendorf part P_{i_1} . The next player will not be able to do so.

Example

$\alpha = 3$, $n = 35$. \mathcal{P} -positions are 0, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 37, ...

Generalized Zeckendorf representation: $35 = 29 + 6$.

Sample game play with good play by first player:

$35 \rightarrow 29 \rightarrow 28 \rightarrow 27$

Winning strategy for α -TAG

Suppose there are n stones. Write $n = P_{i_1} + P_{i_2} + \cdots + P_{i_k}$ as in the generalized Zeckendorf theorem. Then, on every move, remove the smallest generalized Zeckendorf part P_{i_1} . The next player will not be able to do so.

Example

$\alpha = 3$, $n = 35$. \mathcal{P} -positions are 0, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 37, ...

Generalized Zeckendorf representation: $35 = 29 + 6$.

Sample game play with good play by first player:

$35 \rightarrow 29 \rightarrow 28 \rightarrow 27 \rightarrow 25$

Winning strategy for α -TAG

Suppose there are n stones. Write $n = P_{i_1} + P_{i_2} + \cdots + P_{i_k}$ as in the generalized Zeckendorf theorem. Then, on every move, remove the smallest generalized Zeckendorf part P_{i_1} . The next player will not be able to do so.

Example

$\alpha = 3$, $n = 35$. \mathcal{P} -positions are 0, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 37, ...

Generalized Zeckendorf representation: $35 = 29 + 6$.

Sample game play with good play by first player:

$35 \rightarrow 29 \rightarrow 28 \rightarrow 27 \rightarrow 25 \rightarrow 21$

Winning strategy for α -TAG

Suppose there are n stones. Write $n = P_{i_1} + P_{i_2} + \cdots + P_{i_k}$ as in the generalized Zeckendorf theorem. Then, on every move, remove the smallest generalized Zeckendorf part P_{i_1} . The next player will not be able to do so.

Example

$\alpha = 3$, $n = 35$. \mathcal{P} -positions are 0, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 37, ...

Generalized Zeckendorf representation: $35 = 29 + 6$.

Sample game play with good play by first player:

$35 \rightarrow 29 \rightarrow 28 \rightarrow 27 \rightarrow 25 \rightarrow 21 \rightarrow 13$

Winning strategy for α -TAG

Suppose there are n stones. Write $n = P_{i_1} + P_{i_2} + \cdots + P_{i_k}$ as in the generalized Zeckendorf theorem. Then, on every move, remove the smallest generalized Zeckendorf part P_{i_1} . The next player will not be able to do so.

Example

$\alpha = 3$, $n = 35$. \mathcal{P} -positions are 0, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 37, ...

Generalized Zeckendorf representation: $35 = 29 + 6$.

Sample game play with good play by first player:

$35 \rightarrow 29 \rightarrow 28 \rightarrow 27 \rightarrow 25 \rightarrow 21 \rightarrow 13 \rightarrow 11$

Winning strategy for α -TAG

Suppose there are n stones. Write $n = P_{i_1} + P_{i_2} + \cdots + P_{i_k}$ as in the generalized Zeckendorf theorem. Then, on every move, remove the smallest generalized Zeckendorf part P_{i_1} . The next player will not be able to do so.

Example

$\alpha = 3$, $n = 35$. \mathcal{P} -positions are 0, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 37, ...

Generalized Zeckendorf representation: $35 = 29 + 6$.

Sample game play with good play by first player:

$35 \rightarrow 29 \rightarrow 28 \rightarrow 27 \rightarrow 25 \rightarrow 21 \rightarrow 13 \rightarrow 11 \rightarrow 7$

Winning strategy for α -TAG

Suppose there are n stones. Write $n = P_{i_1} + P_{i_2} + \cdots + P_{i_k}$ as in the generalized Zeckendorf theorem. Then, on every move, remove the smallest generalized Zeckendorf part P_{i_1} . The next player will not be able to do so.

Example

$\alpha = 3$, $n = 35$. \mathcal{P} -positions are 0, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 37, ...

Generalized Zeckendorf representation: $35 = 29 + 6$.

Sample game play with good play by first player:

$35 \rightarrow 29 \rightarrow 28 \rightarrow 27 \rightarrow 25 \rightarrow 21 \rightarrow 13 \rightarrow 11 \rightarrow 7 \rightarrow 6$

Winning strategy for α -TAG

Suppose there are n stones. Write $n = P_{i_1} + P_{i_2} + \cdots + P_{i_k}$ as in the generalized Zeckendorf theorem. Then, on every move, remove the smallest generalized Zeckendorf part P_{i_1} . The next player will not be able to do so.

Example

$\alpha = 3$, $n = 35$. \mathcal{P} -positions are 0, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 37, ...

Generalized Zeckendorf representation: $35 = 29 + 6$.

Sample game play with good play by first player:

$35 \rightarrow 29 \rightarrow 28 \rightarrow 27 \rightarrow 25 \rightarrow 21 \rightarrow 13 \rightarrow 11 \rightarrow 7 \rightarrow 6 \rightarrow 4$

Winning strategy for α -TAG

Suppose there are n stones. Write $n = P_{i_1} + P_{i_2} + \cdots + P_{i_k}$ as in the generalized Zeckendorf theorem. Then, on every move, remove the smallest generalized Zeckendorf part P_{i_1} . The next player will not be able to do so.

Example

$\alpha = 3$, $n = 35$. \mathcal{P} -positions are 0, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 37, ...

Generalized Zeckendorf representation: $35 = 29 + 6$.

Sample game play with good play by first player:

$35 \rightarrow 29 \rightarrow 28 \rightarrow 27 \rightarrow 25 \rightarrow 21 \rightarrow 13 \rightarrow 11 \rightarrow 7 \rightarrow 6 \rightarrow 4 \rightarrow 0$.

Stability Theorem

Theorem

For every $\alpha > 1$, there exists a half-open interval $I_\alpha = [a_\alpha, b_\alpha)$ containing α such that for all $\beta \in I_\alpha$, the \mathcal{P} positions of α -TAG are the same as those of β -TAG.

Eventual recurrence

Theorem

For any $\alpha \geq 1$, there exist integers $k, N \geq 0$ such that for all $n \geq N$, $P_{n+1} = P_n + P_{n-k}$.

However, first few terms might not satisfy this recurrence.

Stable intervals

Range	Eventual recurrence	Initial conditions
$1 \leq \alpha < 2$	$P_{n+1} = P_n + P_n$	0,1
$2 \leq \alpha < \frac{5}{2}$	$P_{n+1} = P_n + P_{n-1}$	0,1,2
$\frac{5}{2} \leq \alpha < 3$	$P_{n+1} = P_n + P_{n-2}$	0,1,2,3,5
$3 \leq \alpha < \frac{7}{2}$	$P_{n+1} = P_n + P_{n-3}$	0,1,2,3,4,6
$\frac{7}{2} \leq \alpha < \frac{11}{3}$	$P_{n+1} = P_n + P_{n-4}$	0,1,2,3,4,6,8,11,15,21
$\frac{11}{3} \leq \alpha < \frac{43}{11}$	$P_{n+1} = P_n + P_{n-4}$	0,1,2,3,4,6,8,11
$\frac{43}{11} \leq \alpha < 4$	$P_{n+1} = P_n + P_{n-5}$	0,1,2,3,4,6,8,11,14,18,24,32,43
$4 \leq \alpha < \frac{13}{3}$	$P_{n+1} = P_n + P_{n-5}$	0,1,2,3,4,5,7,9,12
$\frac{13}{3} \leq \alpha < \frac{31}{7}$	$P_{n+1} = P_n + P_{n-6}$	0,1,2,3,4,5,7,9,12,15,19,24,31,40,52
$\frac{31}{7} \leq \alpha < \frac{9}{2}$	$P_{n+1} = P_n + P_{n-6}$	0,1,2,3,4,5,7,9,12,15,19,24,31
$\frac{9}{2} \leq \alpha < \frac{14}{3}$	$P_{n+1} = P_n + P_{n-6}$	0,1,2,3,4,5,7,9,11,14,18

Cutoffs

Definition

A *cutoff* is some $\alpha > 1$ such that for every $\beta < \alpha$, the sequence of \mathcal{P} -positions for β -TAG differs from the sequence of \mathcal{P} -positions for α -TAG.

Cutoffs

Definition

A *cutoff* is some $\alpha > 1$ such that for every $\beta < \alpha$, the sequence of \mathcal{P} -positions for β -TAG differs from the sequence of \mathcal{P} -positions for α -TAG.

The first few cutoffs are $2, \frac{5}{2}, 3, \frac{7}{2}, \frac{11}{3}, \frac{43}{11}, 4, \frac{13}{3}, \frac{31}{7}, \frac{9}{2}, \frac{14}{3}$.

Computing cutoffs

Suppose $\alpha = 3$.

Computing cutoffs

Suppose $\alpha = 3$.

\mathcal{P} positions are $0, 1, 2, 3, 4, 6$, then satisfy recurrence $P_{n+1} = P_n + P_{n-3}$.
How do we find the next cutoff?

Computing cutoffs

Suppose $\alpha = 3$.

\mathcal{P} positions are 0,1,2,3,4,6, then satisfy recurrence $P_{n+1} = P_n + P_{n-3}$.
How do we find the next cutoff?

First \mathcal{P} positions are 0, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 40, 55, ...

Computing cutoffs

Suppose $\alpha = 3$.

\mathcal{P} positions are 0,1,2,3,4,6, then satisfy recurrence $P_{n+1} = P_n + P_{n-3}$.
How do we find the next cutoff?

First \mathcal{P} positions are 0, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 40, 55, ...

For example, we form 21 as $15 + 6$, because $\alpha \cdot 4 < 15 \leq \alpha \cdot 6$ with $\alpha = 3$.

Computing cutoffs

Suppose $\alpha = 3$.

\mathcal{P} positions are 0,1,2,3,4,6, then satisfy recurrence $P_{n+1} = P_n + P_{n-3}$.
How do we find the next cutoff?

First \mathcal{P} positions are 0, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 40, 55, ...

For example, we form 21 as $15 + 6$, because $\alpha \cdot 4 < 15 \leq \alpha \cdot 6$ with $\alpha = 3$.

If we increase α to $\frac{15}{4}$, then the left inequality fails. Thus there is a *potential* cutoff at $\frac{15}{4}$, and *definitely* some cutoff in $(3, \frac{15}{4}]$.

Computing cutoffs

Suppose $\alpha = 3$.

\mathcal{P} positions are 0,1,2,3,4,6, then satisfy recurrence $P_{n+1} = P_n + P_{n-3}$.
How do we find the next cutoff?

First \mathcal{P} positions are 0, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 40, 55, ...

For example, we form 21 as $15 + 6$, because $\alpha \cdot 4 < 15 \leq \alpha \cdot 6$ with $\alpha = 3$.

If we increase α to $\frac{15}{4}$, then the left inequality fails. Thus there is a *potential* cutoff at $\frac{15}{4}$, and *definitely* some cutoff in $(3, \frac{15}{4}]$.

Similarly, we compare other terms, to find that the next cutoff is

$$\min \left\{ \frac{4}{1}, \frac{6}{1}, \frac{8}{2}, \frac{11}{3}, \frac{15}{4}, \frac{21}{6}, \frac{29}{8}, \frac{40}{11}, \dots \right\} = \frac{21}{6} = \frac{7}{2}.$$

Theorems and questions about cutoffs

Theorem

All cutoffs are rational.

Theorems and questions about cutoffs

Theorem

All cutoffs are rational.

Theorem

Every integer $n \geq 2$ is a cutoff. More generally, if $x \geq 1$ and $x \equiv 0 \pmod{n!}$, then $x + \frac{1}{n}$ is a cutoff.

Theorems and questions about cutoffs

Theorem

All cutoffs are rational.

Theorem

Every integer $n \geq 2$ is a cutoff. More generally, if $x \geq 1$ and $x \equiv 0 \pmod{n!}$, then $x + \frac{1}{n}$ is a cutoff.

Conjecture

For every positive integer d , there exists an integer N such that for all $k > N$, $\frac{k}{d}$ is a cutoff.

Theorems and questions about cutoffs

Theorem

The set of cutoffs is a discrete subset of $\mathbb{Q}_{>1}$.

Theorems and questions about cutoffs

Theorem

The set of cutoffs is a discrete subset of $\mathbb{Q}_{>1}$.

What is its density?

Theorems and questions about cutoffs

Theorem

The set of cutoffs is a discrete subset of $\mathbb{Q}_{>1}$.

What is its density?

$C(x)$: number of cutoffs $\leq x$. Appears that $C(x) = \rho x^2 + o(x^2)$ for some ρ . Probably $\rho \approx 2$.

Thank you

Thank you for your attention!