

# Some Theorems on Multiplicative Orders Modulo $p$ on Average

Sungjin Kim

Santa Monica College/California State University Northridge  
Department of Mathematics  
`i707107@math.ucla.edu`

Dec 17, 2017

## Extended Definition of Multiplicative Order

- Let  $a, n \geq 1$  be integers. The **ordinary definition** of  $\ell_a(n)$  takes  $\ell_a(n) = 0$  if  $(a, n) \neq 1$ .

## Extended Definition of Multiplicative Order

- Let  $a, n \geq 1$  be integers. The **ordinary definition** of  $\ell_a(n)$  takes  $\ell_a(n) = 0$  if  $(a, n) \neq 1$ .
- If  $(a, n) = 1$  then denote by  $\ell_a(n)$  the multiplicative order of  $a$  modulo  $n$ . If  $(a, n) \neq 1$ , we write  $n = n_1 n_2$  where any prime divisors of  $n_1$  divide  $a$  and  $(a, n_2) = 1$ . Define  $\ell_a(n) = \ell_a(n_2)$ . This **extended definition** of  $\ell_a(n)$  is used by Murty, Saidak [MS, Section 8].

## Extended Definition of Multiplicative Order

- Let  $a, n \geq 1$  be integers. The **ordinary definition** of  $\ell_a(n)$  takes  $\ell_a(n) = 0$  if  $(a, n) \neq 1$ .
- If  $(a, n) = 1$  then denote by  $\ell_a(n)$  the multiplicative order of  $a$  modulo  $n$ . If  $(a, n) \neq 1$ , we write  $n = n_1 n_2$  where any prime divisors of  $n_1$  divide  $a$  and  $(a, n_2) = 1$ . Define  $\ell_a(n) = \ell_a(n_2)$ . This **extended definition** of  $\ell_a(n)$  is used by Murty, Saidak [MS, Section 8].

**Example)** We compute  $\ell_4(6)$ . The ordinary definition gives  $\ell_4(6) = 0$ , but the extended definition gives  $\ell_4(6) = \ell_4(3) = 2$ .

## Extended Definition of Multiplicative Order

- Let  $a, n \geq 1$  be integers. The **ordinary definition** of  $\ell_a(n)$  takes  $\ell_a(n) = 0$  if  $(a, n) \neq 1$ .
- If  $(a, n) = 1$  then denote by  $\ell_a(n)$  the multiplicative order of  $a$  modulo  $n$ . If  $(a, n) \neq 1$ , we write  $n = n_1 n_2$  where any prime divisors of  $n_1$  divide  $a$  and  $(a, n_2) = 1$ . Define  $\ell_a(n) = \ell_a(n_2)$ . This **extended definition** of  $\ell_a(n)$  is used by Murty, Saidak [MS, Section 8].

**Example)** We compute  $\ell_4(6)$ . The ordinary definition gives  $\ell_4(6) = 0$ , but the extended definition gives  $\ell_4(6) = \ell_4(3) = 2$ .

- $\omega(n) := \sum_{p|n} 1$  be the number of distinct prime divisors of  $n$  and  $\Omega(n) := \sum_{p^k|n} 1$  be the number of prime power divisors of  $n$ , and set  $\omega(1) = \Omega(1) = 0$ .

## Definitions and Notations-continued

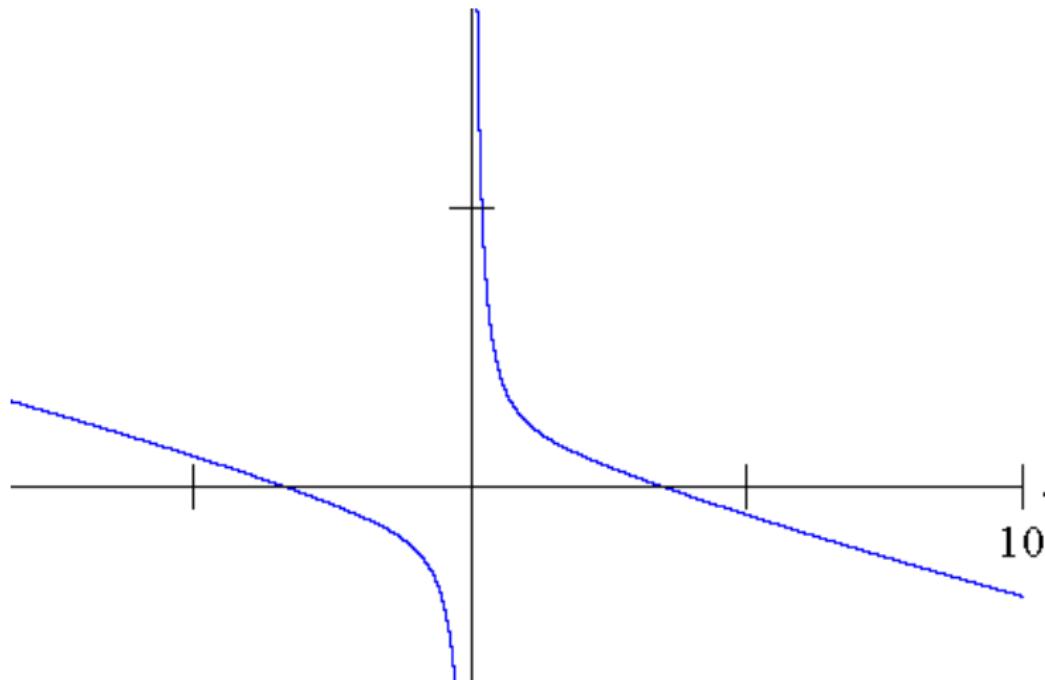
- The number  $\alpha \approx 3.42$  is the unique positive root of an equation:

$$f_1(K) := -\frac{K}{4} + \frac{1}{K} \left( \log \left( \frac{K^2}{2} + 1 \right) + 1 \right) = 0.$$

## Definitions and Notations-continued

- The number  $\alpha \approx 3.42$  is the unique positive root of an equation:

$$f_1(K) := -\frac{K}{4} + \frac{1}{K} \left( \log \left( \frac{K^2}{2} + 1 \right) + 1 \right) = 0.$$



# Previous Results

## Theorem

If  $y > \exp((\alpha + \epsilon)\sqrt{\log x})$ , then for any positive constant  $B > 1$ ,

$$y^{-1} \sum_{a \leq y} \sum_{p \leq x} \frac{\ell_a(p)}{p-1} = C \text{Li}(x) + O\left(\frac{x}{\log^B x}\right). \quad (1)$$

Moreover, for any positive constant  $B > 2$ ,

$$y^{-1} \sum_{a \leq y} \left( \sum_{p \leq x} \frac{\ell_a(p)}{p-1} - C \text{Li}(x) \right)^2 \ll \frac{x^2}{\log^B x}. \quad (2)$$

Here,  $C$  is the Stephens' constant:

$$C = \prod_p \left( 1 - \frac{p}{p^3 - 1} \right)$$

## Theorem

Let  $y > \exp((\alpha + \epsilon)\sqrt{\log x})$  and  $P_a(x) := \{p \leq x | \ell_a(p) = p - 1\}$ . Then the following estimates also hold for any  $B > 1$ :

$$y^{-1} \sum_{a \leq y} P_a(x) = A \text{Li}(x) + O\left(\frac{x}{\log^B x}\right), \quad (3)$$

where  $A = \prod_p \left(1 - \frac{1}{p(p-1)}\right)$  is the Artin's constant.

Moreover, for any positive constant  $B > 2$ ,

$$y^{-1} \sum_{a \leq y} (P_a(x) - A \text{Li}(x))^2 \ll \frac{x^2}{\log^B x}. \quad (4)$$

## Theorem

If  $y > \exp((\alpha + \epsilon)\sqrt{\log x})$ , then for any positive constant  $B > 1$ ,

$$y^{-2} \sum_{a \leq y} \sum_{b \leq y} \sum_{\substack{p \leq x \\ \exists n, p \mid a^n - b}} 1 = C \text{Li}(x) + O\left(\frac{x}{\log^B x}\right). \quad (5)$$

Moreover, for any positive constant  $B > 2$ ,

$$y^{-2} \sum_{a \leq y} \sum_{b \leq y} \left( \sum_{\substack{p \leq x \\ \exists n, p \mid a^n - b}} 1 - C \text{Li}(x) \right)^2 \ll \frac{x^2}{\log^B x}. \quad (6)$$

## Erdos-Kac Theorem [EK]

For any real number  $u$ ,

$$\lim_{x \rightarrow \infty} \frac{1}{x} \# \left\{ n \leq x : \frac{g(n) - \log \log x}{\sqrt{\log \log x}} \leq u \right\} = G(u)$$

where  $g(n) = \omega(n)$  or  $\Omega(n)$  and  $G(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^u \exp\left(-\frac{t^2}{2}\right) dt$ .

## Results of Erdos-Pomerance [EP]

Let  $\phi(n)$  be the Euler Phi function. Then  $\omega(\phi(n))$  and  $\Omega(\phi(n))$  also follow a normal distribution after a suitable normalization: For any real number  $u$ ,

$$\lim_{x \rightarrow \infty} \frac{1}{x} \# \left\{ n \leq x : \frac{g(\phi(n)) - \frac{1}{2}(\log \log x)^2}{\frac{1}{\sqrt{3}}(\log \log x)^{\frac{3}{2}}} \leq u \right\} = G(u).$$

This holds with  $\phi(n)$  replaced by the Carmichael Lambda function  $\lambda(n)$ . Furthermore, they conjectured that: For any real number  $u$ ,

$$\lim_{x \rightarrow \infty} \frac{1}{x} \# \left\{ n \leq x : (n, a) = 1, \frac{g(\ell_a(n)) - \frac{1}{2}(\log \log x)^2}{\frac{1}{\sqrt{3}}(\log \log x)^{\frac{3}{2}}} \leq u \right\} = \frac{\phi(a)}{a} G(u).$$

## Results of Murty-Saidak [MS]

Assuming the quasi-Generalized Riemann Hypothesis (GRH) and  $\ell_a(n)$  is in the extended definition: For any real number  $u$ ,

$$\lim_{x \rightarrow \infty} \frac{1}{x} \# \left\{ n \leq x : \frac{g(\ell_a(n)) - \frac{1}{2}(\log \log x)^2}{\frac{1}{\sqrt{3}}(\log \log x)^{\frac{3}{2}}} \leq u \right\} = G(u).$$

# Main Results

## Theorem

If  $y > \exp((\alpha + \epsilon)\sqrt{\log x})$ , then for any fixed real number  $u$ ,

$$\lim_{x \rightarrow \infty} \frac{1}{x} \# \left\{ n \leq x : \frac{\frac{1}{y} \sum_{a \leq y} g(\ell_a(n)) - \frac{1}{2}(\log \log x)^2}{\frac{1}{\sqrt{3}}(\log \log x)^{\frac{3}{2}}} \leq u \right\} = G(u). \quad (7)$$

## Theorem

If  $y > \exp((\alpha + \epsilon)\sqrt{\log x})$ , then for any  $B > 1$ ,

$$\frac{1}{y} \sum_{a \leq y} \sum_{p \leq x} \tau(\ell_a(p)) = K_1 x + (K_1 + K_2) \text{Li}(x) + O\left(\frac{x}{\log^B x}\right) \quad (8)$$

where

$$K_1 = \prod_p \left(1 + \frac{1}{p^3 - p}\right) \approx 1.231291.$$

## The Method of Stephens [S]

The use of character sums: Stephens defined a character sum  $c_r(\chi)$  where  $\chi$  is a Dirichlet character modulo  $p$  for  $r|p-1$ :

$$c_r(\chi) = \frac{1}{p-1} \sum_{\substack{a < p \\ \ell_a(p) = \frac{p-1}{r}}} \chi(a). \quad (9)$$

From [S, Lemma 1], we have for any Dirichlet character  $\chi$  modulo  $p$ ,

$$|c_r(\chi)| \leq \frac{1}{\text{ord}(\chi)}.$$

For the principal character  $\chi_0$  modulo  $p$ , we have

$$c_r(\chi_0) = \frac{\phi\left(\frac{p-1}{r}\right)}{p-1}.$$

# The Method of Murty-Saidak

The use of Kubilius-Shapiro Theorem [E, Chapter 12]:

## Lemma (Kubilius-Shapiro)

Let  $f(n)$  be a strongly additive function. Let

$$A(x) := \sum_{p \leq x} \frac{f(p)}{p}, \quad B(x)^2 := \sum_{p \leq x} \frac{f(p)^2}{p}.$$

Suppose that for any  $\epsilon > 0$ ,

$$\lim_{x \rightarrow \infty} \frac{1}{B(x)^2} \sum_{\substack{p \leq x \\ |f(p)| > \epsilon B(x)}} \frac{f(p)^2}{p} = 0.$$

Then for any fixed real number  $u$ ,

$$\lim_{x \rightarrow \infty} \frac{1}{x} \# \left\{ n \leq x : \frac{f(n) - A(x)}{B(x)} \leq u \right\} = G(u).$$

## Method - For the First Theorem

- The main point is to reduce the problems to estimating  $A(x)$  and  $B(x)$  with suitable strongly additive function  $f(n)$ .

## Method - For the First Theorem

- The main point is to reduce the problems to estimating  $A(x)$  and  $B(x)$  with suitable strongly additive function  $f(n)$ .
- Then use a simplified version of Stephens' method in estimating  $A(x)$  and  $B(x)$ .

## Method - For the Second Theorem

- Proving the Mean Value Theorem

### Theorem

Let  $K_1, K_2$  be the constants in Theorem 1. Then we have for any  $A > 0$ ,

$$\sum_{p \leq x} \frac{1}{p-1} \sum_{d|p-1} \tau(d) \phi(d) = K_1 x + (K_1 + K_2) \text{Li}(x) + O\left(\frac{x}{\log^A x}\right). \quad (10)$$

As a byproduct, we obtain a curious identity

$$\sum_{p \leq x} \frac{\tau(p-1) \phi(p-1)}{p-1} = \frac{6}{\pi^2} x + \left(\frac{6}{\pi^2} + K_4\right) \text{Li}(x) + O\left(\frac{x}{\log^A x}\right).$$

- Then use a simplified version of Stephens' method.

## References

-  M. R. Murty, F. Saidak, *Non-Abelian Generalizations of the Erdős-Kac Theorem*, Canad. J. Math. Vol. 56(2), 2004, pp. 356–372.
-  P. D. T. A. Elliott, *Probabilistic Number Theory II: Central Limit Theorems*, Springer 1980.
-  P. Erdős, M. Kac, *The Gaussian law of errors in the theory of additive number theoretic functions*, Amer. J. Math. 62(1940), pp. 738–742.
-  P. Erdős, C. Pomerance, *On the Normal Order of Prime Factors of  $\phi(n)$* , Rocky Mountain Journal of Mathematics, Volume 15, Number 2, Spring 1985.
-  P. J. Stephens, *Prime Divisors of Second Order Linear Recurrences II*, Journal of Number Theory, Volume 8, Issue 3, August 1976.