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Extended Definition of Multiplicative Order

• Let a, n ≥ 1 be integers. The ordinary definition of `a(n) takes
`a(n) = 0 if (a, n) 6= 1.

• If (a, n) = 1 then denote by `a(n) the multiplicative order of a modulo n.
If (a, n) 6= 1, we write n = n1n2 where any prime divisors of n1 divide a
and (a, n2) = 1. Define `a(n) = `a(n2). This extended definition of
`a(n) is used by Murty, Saidak [MS, Section 8].
Example) We compute `4(6). The ordinary definition gives `4(6) = 0, but
the extended definition gives `4(6) = `4(3) = 2.
• ω(n) :=

∑
p|n 1 be the number of distinct prime divisors of n and

Ω(n) :=
∑

pk |n 1 be the number of prime power divisors of n, and set
ω(1) = Ω(1) = 0.
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Definitions and Notations-continued
• The number α ≈ 3.42 is the unique positive root of an equation:

f1(K ) := −K

4
+

1

K

(
log

(
K 2

2
+ 1

)
+ 1

)
= 0.
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Previous Results

Theorem

If y > exp((α + ε)
√

log x), then for any positive constant B > 1,

y−1
∑
a≤y

∑
p≤x

`a(p)

p − 1
= CLi(x) + O

(
x

logB x

)
. (1)

Moreover, for any positive constant B > 2,

y−1
∑
a≤y

(∑
p<x

`a(p)

p − 1
− CLi(x)

)2

� x2

logB x
. (2)

Here, C is the Stephens’ constant:

C =
∏
p

(
1− p

p3 − 1

)
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Theorem

Let y > exp((α + ε)
√

log x) and Pa(x) := {p ≤ x |`a(p) = p − 1}. Then
the following estimates also hold for any B > 1:

y−1
∑
a≤y

Pa(x) = ALi(x) + O

(
x

logB x

)
, (3)

where A =
∏

p

(
1− 1

p(p−1)

)
is the Artin’s constant.

Moreover, for any positive constant B > 2,

y−1
∑
a≤y

(Pa(x)− ALi(x))2 � x2

logB x
. (4)
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Theorem

If y > exp((α + ε)
√

log x), then for any positive constant B > 1,

y−2
∑
a≤y

∑
b≤y

∑
p≤x

∃n,p|an−b

1 = CLi(x) + O

(
x

logB x

)
. (5)

Moreover, for any positive constant B > 2,

y−2
∑
a≤y

∑
b≤y

 ∑
p≤x

∃n,p|an−b

1− CLi(x)


2

� x2

logB x
. (6)
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Erdos-Kac Theorem [EK]

For any real number u,

lim
x→∞

1

x
#

{
n ≤ x :

g(n)− log log x√
log log x

≤ u

}
= G (u)

where g(n) = ω(n) or Ω(n) and G (u) = 1√
2π

∫ u
−∞ exp

(
− t2

2

)
dt.
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Results of Erdos-Pomerance [EP]

Let φ(n) be the Euler Phi function. Then ω(φ(n)) and Ω(φ(n)) also follow
a normal distribution after a suitable normalization: For any real number u,

lim
x→∞

1

x
#

n ≤ x :
g(φ(n))− 1

2(log log x)2

1√
3

(log log x)
3
2

≤ u

 = G (u).

This holds with φ(n) replaced by the Carmichael Lambda function λ(n).
Furthermore, they conjectured that: For any real number u,

lim
x→∞

1

x
#

n ≤ x : (n, a) = 1,
g(`a(n))− 1

2(log log x)2

1√
3

(log log x)
3
2

≤ u

 =
φ(a)

a
G (u).
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Results of Murty-Saidak [MS]

Assuming the quasi-Generalized Riemann Hypothesis (GRH) and `a(n) is
in the extended definition: For any real number u,

lim
x→∞

1

x
#

n ≤ x :
g(`a(n))− 1

2(log log x)2

1√
3

(log log x)
3
2

≤ u

 = G (u).
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Main Results

Theorem

If y > exp((α + ε)
√

log x), then for any fixed real number u,

lim
x→∞

1

x
#

n ≤ x :

1
y

∑
a≤y g(`a(n))− 1

2(log log x)2

1√
3

(log log x)
3
2

≤ u

 = G (u). (7)

Theorem

If y > exp((α + ε)
√

log x), then for any B > 1,

1

y

∑
a≤y

∑
p≤x

τ(`a(p)) = K1x + (K1 + K2)Li(x) + O

(
x

logB x

)
(8)

where

K1 =
∏
p

(
1 +

1

p3 − p

)
≈ 1.231291.
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The Method of Stephens [S]

The use of character sums: Stephens defined a character sum cr (χ) where
χ is a Dirichlet character modulo p for r |p − 1:

cr (χ) =
1

p − 1

∑
a<p

`a(p)=
p−1
r

χ(a). (9)

From [S, Lemma 1], we have for any Dirichlet character χ modulo p,

|cr (χ)| ≤ 1

ord(χ)
.

For the principal character χ0 modulo p, we have

cr (χ0) =
φ
(
p−1
r

)
p − 1

.
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The Method of Murty-Saidak
The use of Kubilius-Shapiro Theorem [E, Chapter 12]:

Lemma (Kubilius-Shapiro)

Let f (n) be a strongly additive function. Let

A(x) :=
∑
p≤x

f (p)

p
, B(x)2 :=

∑
p≤x

f (p)2

p
.

Suppose that for any ε > 0,

lim
x→∞

1

B(x)2

∑
p≤x

|f (p)|>εB(x)

f (p)2

p
= 0.

Then for any fixed real number u,

lim
x→∞

1

x
#

{
n ≤ x :

f (n)− A(x)

B(x)
≤ u

}
= G (u).
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Method - For the First Theorem

• The main point is to reduce the problems to estimating A(x) and B(x)
with suitable strongly additive function f (n).

• Then use a simplified version of Stephens’ method in estimating A(x)
and B(x).
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Method - For the Second Theorem

• Proving the Mean Value Theorem

Theorem

Let K1, K2 be the constants in Theorem 1. Then we have for any A > 0,∑
p≤x

1

p − 1

∑
d |p−1

τ(d)φ(d) = K1x + (K1 + K2)Li(x) + O

(
x

logA x

)
. (10)

As a byproduct, we obtain a curious identity∑
p≤x

τ(p − 1)φ(p − 1)

p − 1
=

6

π2
x +

(
6

π2
+ K4

)
Li(x) + O

(
x

logA x

)
.

• Then use a simplified version of Stephens’ method.
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