Counting subgroups of the multiplicative group

Lee Troupe joint w/ Greg Martin

University of British Columbia

West Coast Number Theory 2017

Question from I. Shparlinski to G. Martin, circa 2009:

How many subgroups does $\mathbb{Z}_n^{\times} := (\mathbb{Z}/n\mathbb{Z})^{\times}$ usually have?

Question from I. Shparlinski to G. Martin, circa 2009:

How many subgroups does $\mathbb{Z}_n^{\times} := (\mathbb{Z}/n\mathbb{Z})^{\times}$ usually have?

Let I(n) denote the number of isomorphism classes of subgroups of \mathbb{Z}_n^{\times} . Let G(n) denote the number of subsets of \mathbb{Z}_n^{\times} which are subgroups.

Shparlinski's question concerns the distribution of values of I(n) and/or G(n).

To set the stage: What do we talk about when we talk about distributions of arithmetic functions?

Average order

Let f(n) be an arithmetic function.

We can ask for the average order of f(n), i.e. a function g(n) so that

$$\frac{1}{x}\sum_{n\leq x}f(n)\sim g(n).$$

Average order

Let f(n) be an arithmetic function.

We can ask for the average order of f(n), i.e. a function g(n) so that

$$\frac{1}{x}\sum_{n\leq x}f(n)\sim g(n).$$

Example: The average order of the number-of-prime-factors function $\omega(n)$ is $\log \log n$ (proof: insert the definition of $\omega(n)$, swap the order of summation, use Mertens's theorem).

This could be a starting point for studying I(n) and G(n), but it doesn't really answer the question.

Normal order

We can ask for the *normal order* of f(n), i.e. a function g(n) so that, for any $\epsilon > 0$,

$$\lim_{x\to\infty}\frac{1}{x}\#\left\{n\leq x:\left|\frac{f(n)}{g(n)}-1\right|<\epsilon\right\}=1.$$

Normal order

We can ask for the *normal order* of f(n), i.e. a function g(n) so that, for any $\epsilon > 0$,

$$\lim_{x\to\infty}\frac{1}{x}\#\left\{n\leq x:\left|\frac{f(n)}{g(n)}-1\right|<\epsilon\right\}=1.$$

Theorem (Hardy, Ramanujan 1917)

The normal order of $\omega(n)$ is $\log \log n$.

Turán (1934): Proof via an upper bound for the variance (second moment) of the form

$$\frac{1}{x} \sum_{n \le x} (\omega(n) - \log \log n)^2 \ll \log \log x.$$

We can ask for more.

Theorem (Erdős, Kac 1940)

Let $\omega(n)$ denote the number of distinct prime factors of a number n. Then

$$\lim_{x\to\infty}\frac{1}{x}\#\bigg\{n\leq x:\frac{\omega(n)-\log\log n}{\sqrt{\log\log n}}< u\bigg\}=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^u e^{-t^2/2}\,dt.$$

In other words, the values of the function $\omega(n)$ are normally distributed, with mean and variance both equal to $\log \log n$.

Theorem (Erdős, Kac 1940)

Let $\omega(n)$ denote the number of distinct prime factors of a number n. Then

$$\lim_{x\to\infty}\frac{1}{x}\#\bigg\{n\leq x:\frac{\omega(n)-\log\log n}{\sqrt{\log\log n}}< u\bigg\}=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^u e^{-t^2/2}\,dt.$$

In other words, the values of the function $\omega(n)$ are normally distributed, with mean and variance both equal to $\log \log n$.

Halberstam (1954): Proof by the method of moments, i.e. finding asymptotic formulas for each of the central moments

$$\sum_{n\leq x}(\omega(n)-\log\log n)^k.$$

Erdős and Kac's paper establishes a normal-distribution result for a wide class of additive functions f(n): $f(p_1^{e_1} \cdots p_k^{e_k}) = f(p_1^{e_1}) + \cdots + f(p_k^{e_k})$.

Erdős and Kac's paper establishes a normal-distribution result for a wide class of additive functions f(n): $f(p_1^{e_1} \cdots p_k^{e_k}) = f(p_1^{e_1}) + \cdots + f(p_k^{e_k})$.

Definition

We say a function f(n) satisfies an Erdős–Kac law with mean $\mu(n)$ and variance $\sigma^2(n)$ if

$$\lim_{x\to\infty}\frac{1}{x}\#\left\{n\leq x:\frac{f(n)-\mu(n)}{\sigma(n)}< u\right\}=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^u e^{-t^2/2}\,dt.$$

Theorem (Liu 2006)

For any elliptic curve E/\mathbb{Q} with CM, $\omega(\#E(\mathbb{F}_p))$ satisfies an Erdős–Kac law with mean and variance $\log \log p$.

Theorem (Liu 2006)

For any elliptic curve E/\mathbb{Q} with CM, $\omega(\#E(\mathbb{F}_p))$ satisfies an Erdős–Kac law with mean and variance $\log \log p$.

Theorem (Erdős, Pomerance 1985)

The functions $\omega(\varphi(n))$ and $\Omega(\varphi(n))$ both satisfy an Erdős–Kac law, with mean $\frac{1}{2}(\log\log n)^2$ and variance $\frac{1}{3}(\log\log n)^3$.

Theorem (Liu 2006)

For any elliptic curve E/\mathbb{Q} with CM, $\omega(\#E(\mathbb{F}_p))$ satisfies an Erdős–Kac law with mean and variance $\log \log p$.

Theorem (Erdős, Pomerance 1985)

The functions $\omega(\varphi(n))$ and $\Omega(\varphi(n))$ both satisfy an Erdős–Kac law, with mean $\frac{1}{2}(\log\log n)^2$ and variance $\frac{1}{3}(\log\log n)^3$.

 $\Omega(\varphi(n))$ is additive;

Theorem (Liu 2006)

For any elliptic curve E/\mathbb{Q} with CM, $\omega(\#E(\mathbb{F}_p))$ satisfies an Erdős–Kac law with mean and variance $\log \log p$.

Theorem (Erdős, Pomerance 1985)

The functions $\omega(\varphi(n))$ and $\Omega(\varphi(n))$ both satisfy an Erdős–Kac law, with mean $\frac{1}{2}(\log\log n)^2$ and variance $\frac{1}{3}(\log\log n)^3$.

$$\Omega(\varphi(n))$$
 is additive; $\omega(\varphi(n))$ isn't!

Both are
$$\varphi$$
-additive: If $\varphi(n) = p_1^{e_1} \cdots p_k^{e_k}$, then

$$f(\varphi(n)) = f(p_1^{e_1}) + \cdots + f(p_k^{e_k}).$$

φ -additivity

Recall: I(n) is the number of ismorphism classes of subgroups of \mathbb{Z}_n^{\times} .

G(n) is the number of subsets of \mathbb{Z}_n^{\times} which are subgroups.

Fact: Every finite abelian group is the direct product of its Sylow *p*-subgroups.

φ -additivity

Recall: I(n) is the number of ismorphism classes of subgroups of \mathbb{Z}_n^{\times} . G(n) is the number of subsets of \mathbb{Z}_n^{\times} which are subgroups.

Fact: Every finite abelian group is the direct product of its Sylow *p*-subgroups.

So if $G_p(n)$ denotes the number of subgroups of the Sylow p-subgroup of \mathbb{Z}_p^{\times} , then

$$G(n) = \prod_{p \mid \varphi(n)} G_p(n) \implies \log G(n) = \sum_{p \mid \varphi(n)} \log G_p(n)$$

and similarly for $\log I(n)$.

Thus, $\log G(n)$ and $\log I(n)$ are φ -additive functions, as well.

Theorem (Martin-T., submitted)

The function $\log I(n)$ satisfies an Erdős–Kac law with mean $\frac{\log 2}{2}(\log \log n)^2$ and variance $\frac{\log 2}{3}(\log \log n)^3$.

Theorem (Martin-T., submitted)

The function $\log I(n)$ satisfies an Erdős–Kac law with mean $\frac{\log 2}{2}(\log \log n)^2$ and variance $\frac{\log 2}{3}(\log \log n)^3$.

Theorem (Martin-T., submitted)

The function $\log G(n)$ satisfies an Erdős–Kac law with mean $A(\log \log n)^2$ and variance $C(\log \log n)^3$.

Theorem (Martin-T., submitted)

The function $\log I(n)$ satisfies an Erdős–Kac law with mean $\frac{\log 2}{2}(\log \log n)^2$ and variance $\frac{\log 2}{3}(\log \log n)^3$.

Theorem (Martin-T., submitted)

The function $\log G(n)$ satisfies an Erdős–Kac law with mean $A(\log \log n)^2$ and variance $C(\log \log n)^3$.

It turns out that $A \approx 0.72109$, while $\frac{\log 2}{2} \approx 0.34657$. So, typically, $G(n) \approx I(n)^{2.08}$.

Theorem (Martin-T., submitted)

The function $\log G(n)$ satisfies an Erdős–Kac law with mean $A(\log \log n)^2$ and variance $C(\log \log n)^3$.

•
$$A_0 = \frac{1}{4} \sum_{p} \frac{p^2 \log p}{(p-1)^3 (p+1)}$$

•
$$A = A_0 + \frac{\log 2}{2} \approx 0.72109$$

•
$$B = \frac{1}{4} \sum_{p} \frac{p^3(p^4 - p^3 - p^2 - p - 1)(\log p)^2}{(p - 1)^6(p + 1)^2(p^2 + p + 1)}$$

•
$$C = \frac{(\log 2)^2}{3} + 2A_0 \log 2 + 4A_0^2 + B \approx 3.924$$

\mathbb{Z}_n^{\times} with many subgroups

Theorem (Martin-T., submitted)

• The order of magnitude of the maximal order of $\log I(n)$ is $\log x/\log \log x$. More precisely,

$$\frac{\log 2}{5} \frac{\log x}{\log \log x} \lesssim \max_{n \leq x} \log I(n) \lesssim \pi \sqrt{\frac{2}{3}} \frac{\log x}{\log \log x}.$$

\mathbb{Z}_n^{\times} with many subgroups

Theorem (Martin-T., submitted)

• The order of magnitude of the maximal order of $\log I(n)$ is $\log x/\log\log x$. More precisely,

$$\frac{\log 2}{5} \frac{\log x}{\log \log x} \lesssim \max_{n \leq x} \log I(n) \lesssim \pi \sqrt{\frac{2}{3}} \frac{\log x}{\log \log x}.$$

• The order of magnitude of the maximal order of $\log G(n)$ is $(\log x)^2/\log\log x$. More precisely,

$$\frac{1}{16} \frac{(\log x)^2}{\log \log x} \lesssim \max_{n \le x} \log G(n) \lesssim \frac{1}{4} \frac{(\log x)^2}{\log \log x}.$$

\mathbb{Z}_n^{\times} with many subgroups

Theorem (Martin-T., submitted)

• The order of magnitude of the maximal order of $\log I(n)$ is $\log x/\log\log x$. More precisely,

$$\frac{\log 2}{5} \frac{\log x}{\log \log x} \lesssim \max_{n \leq x} \log I(n) \lesssim \pi \sqrt{\frac{2}{3}} \frac{\log x}{\log \log x}.$$

• The order of magnitude of the maximal order of $\log G(n)$ is $(\log x)^2/\log\log x$. More precisely,

$$\frac{1}{16} \frac{(\log x)^2}{\log \log x} \lesssim \max_{n \leq x} \log G(n) \lesssim \frac{1}{4} \frac{(\log x)^2}{\log \log x}.$$

Corollary

For any A > 0, there are infinitely many n such that $G(n) > n^A$.

Recall: Since every subgroup of \mathbb{Z}_n^{\times} is a direct product of subgroups of the Sylow *p*-subgroups of \mathbb{Z}_n^{\times} ,

$$\log I(n) = \sum_{p \mid \varphi(n)} \log I_p(n).$$

Recall: Since every subgroup of \mathbb{Z}_n^{\times} is a direct product of subgroups of the Sylow *p*-subgroups of \mathbb{Z}_n^{\times} ,

$$\log I(n) = \sum_{p|\varphi(n)} \log I_p(n).$$

For all $p \mid \varphi(n)$, each $I_p(n)$ counts the trivial subgroup and the entire Sylow p-subgroup of \mathbb{Z}_n^{\times} , and so each $I_p(n) \geq 2$. So

$$\omega(\varphi(n)) \log 2 \leq \log I(n)$$
.

For an upper bound: Write the Sylow p-subgroup of \mathbb{Z}_n^{\times} as

$$\mathbb{Z}_{p^{\alpha}} := \mathbb{Z}_{p^{\alpha_1}} \times \cdots \times \mathbb{Z}_{p^{\alpha_m}}$$

for some partition $\alpha = (\alpha_1, \dots, \alpha_m)$ of $\operatorname{ord}_p(\varphi(n))$.

For an upper bound: Write the Sylow p-subgroup of \mathbb{Z}_n^{\times} as

$$\mathbb{Z}_{p^{\alpha}} := \mathbb{Z}_{p^{\alpha_1}} \times \cdots \times \mathbb{Z}_{p^{\alpha_m}}$$

for some partition $\alpha = (\alpha_1, \dots, \alpha_m)$ of $\operatorname{ord}_p(\varphi(n))$.

There is a one-to-one correspondence between subgroups of $\mathbb{Z}_{p^{\alpha}}$ and subpartitions of α .

For an upper bound: Write the Sylow p-subgroup of \mathbb{Z}_n^{\times} as

$$\mathbb{Z}_{p^{\alpha}} := \mathbb{Z}_{p^{\alpha_1}} \times \cdots \times \mathbb{Z}_{p^{\alpha_m}}$$

for some partition $\alpha = (\alpha_1, \dots, \alpha_m)$ of $\operatorname{ord}_p(\varphi(n))$.

There is a one-to-one correspondence between subgroups of $\mathbb{Z}_{p^{\alpha}}$ and subpartitions of α . Now,

$$\#\{\text{subpartitions of }\alpha\} \leq 2^{\operatorname{ord}_p(\varphi(n))}.$$

For an upper bound: Write the Sylow p-subgroup of \mathbb{Z}_n^{\times} as

$$\mathbb{Z}_{p^{\alpha}} := \mathbb{Z}_{p^{\alpha_1}} \times \cdots \times \mathbb{Z}_{p^{\alpha_m}}$$

for some partition $\alpha = (\alpha_1, \dots, \alpha_m)$ of $\operatorname{ord}_p(\varphi(n))$.

There is a one-to-one correspondence between subgroups of $\mathbb{Z}_{p^{\alpha}}$ and subpartitions of α . Now,

$$\#\{\text{subpartitions of }\alpha\} \leq 2^{\operatorname{ord}_p(\varphi(n))}.$$

Therefore

$$\log I(n) \le \sum_{p \mid \varphi(n)} \operatorname{ord}_p(\varphi(n)) \log 2 = \Omega(\varphi(n)) \log 2$$

For an upper bound: Write the Sylow p-subgroup of \mathbb{Z}_n^{\times} as

$$\mathbb{Z}_{p^{\alpha}} := \mathbb{Z}_{p^{\alpha_1}} \times \cdots \times \mathbb{Z}_{p^{\alpha_m}}$$

for some partition $\alpha = (\alpha_1, \dots, \alpha_m)$ of $\operatorname{ord}_p(\varphi(n))$.

There is a one-to-one correspondence between subgroups of $\mathbb{Z}_{p^{\alpha}}$ and subpartitions of α . Now,

$$\#\{\text{subpartitions of }\alpha\} \leq 2^{\operatorname{ord}_p(\varphi(n))}.$$

Therefore

$$\log I(n) \le \sum_{p \mid \varphi(n)} \operatorname{ord}_p(\varphi(n)) \log 2 = \Omega(\varphi(n)) \log 2$$

$$\implies \omega(\varphi(n)) \log 2 \leq \log I(n) \leq \Omega(\varphi(n)) \log 2.$$

What about $\log G(n)$?

Given a subpartition $\beta \prec \alpha$, let $N_p(\alpha, \beta)$ be the number of subgroups of $\mathbb{Z}_{p^{\alpha}}$ isomorphic to $\mathbb{Z}_{p^{\beta}}$.

Lemma (immediate)

$$\log G_p(n) = \sum_{\beta \neq \alpha} \log N_p(\alpha, \beta).$$

What about $\log G(n)$?

Given a subpartition $\beta \prec \alpha$, let $N_p(\alpha, \beta)$ be the number of subgroups of $\mathbb{Z}_{p^{\alpha}}$ isomorphic to $\mathbb{Z}_{p^{\beta}}$.

Lemma (immediate)

$$\log G_p(n) = \sum_{\beta \prec \alpha} \log N_p(\alpha, \beta).$$

Let $\mathbf{b} = (b_1, \dots, b_{\beta_1})$ and $\mathbf{a} = (a_1, \dots, a_{\alpha_1})$ be the partitions conjugate to β and α respectively.

What about $\log G(n)$?

Given a subpartition $\beta \prec \alpha$, let $N_p(\alpha, \beta)$ be the number of subgroups of $\mathbb{Z}_{p^{\alpha}}$ isomorphic to $\mathbb{Z}_{p^{\beta}}$.

Lemma (immediate)

$$\log G_p(n) = \sum_{\beta \prec \alpha} \log N_p(\alpha, \beta).$$

Let $\mathbf{b}=(b_1,\ldots,b_{\beta_1})$ and $\mathbf{a}=(a_1,\ldots,a_{\alpha_1})$ be the partitions conjugate to β and α respectively. One definition of "conjugate partition": a_j is the number of parts of α of size at least j.

It turns out that

$$N_p(\alpha,\beta) \approx \prod_{j=1}^{\alpha_1} p^{(a_j-b_j)b_j}.$$

It turns out that

$$N_p(\alpha,\beta) \approx \prod_{j=1}^{\alpha_1} p^{(a_j-b_j)b_j}.$$

As a function of b_j , the maximum of $(a_j - b_j)b_j$ occurs at $b_j = a_j/2$. With this choice, $p^{(a_j - b_j)b_j} = p^{a_j^2/4}$. These values, corresponding to the choice " $\beta = \frac{1}{2}\alpha$,", provide the largest value of $N_p(\alpha, \beta)$.

Lemma

For any prime $p \mid \varphi(n)$,

$$\log G_p(n) = \frac{\log p}{4} \sum_{j=0}^{\alpha_1} a_j^2 + O(\alpha_1 \log p).$$

New task: If $\mathbb{Z}_{p^{\alpha}}$ is the Sylow p-subgroup of \mathbb{Z}_{n}^{\times} , determine the partition α (or its conjugate partition \mathbf{a}).

Lemma

For any prime $p \mid \varphi(n)$,

$$\log G_p(n) = \frac{\log p}{4} \sum_{j=0}^{\alpha_1} a_j^2 + O(\alpha_1 \log p).$$

New task: If $\mathbb{Z}_{p^{\alpha}}$ is the Sylow *p*-subgroup of \mathbb{Z}_{n}^{\times} , determine the partition α (or its conjugate partition **a**).

How many of the factors in $\mathbb{Z}_{p^{\alpha}} = \mathbb{Z}_{p^{\alpha_1}} \times \cdots$ are of order at least p^j ?

Lemma

For any prime $p \mid \varphi(n)$,

$$\log G_p(n) = \frac{\log p}{4} \sum_{j=0}^{\alpha_1} a_j^2 + O(\alpha_1 \log p).$$

New task: If $\mathbb{Z}_{p^{\alpha}}$ is the Sylow p-subgroup of \mathbb{Z}_{n}^{\times} , determine the partition α (or its conjugate partition \mathbf{a}).

How many of the factors in $\mathbb{Z}_{p^{\alpha}}=\mathbb{Z}_{p^{\alpha_1}}\times\cdots$ are of order at least p^j ? We get one such factor for every prime $q\mid n$ such that $q\equiv 1\pmod{p^j}$; this is the primary source of such factors.

Lemma

For any prime $p \mid \varphi(n)$,

$$\log G_p(n) = \frac{\log p}{4} \sum_{j=0}^{\alpha_1} a_j^2 + O(\alpha_1 \log p).$$

New task: If $\mathbb{Z}_{p^{\alpha}}$ is the Sylow *p*-subgroup of \mathbb{Z}_{n}^{\times} , determine the partition α (or its conjugate partition **a**).

How many of the factors in $\mathbb{Z}_{p^{\alpha}}=\mathbb{Z}_{p^{\alpha_1}}\times\cdots$ are of order at least p^j ? We get one such factor for every prime $q\mid n$ such that $q\equiv 1\pmod{p^j}$; this is the primary source of such factors.

So if $\omega_{p^j}(n)$ denotes the number of primes $q \mid n, q \equiv 1 \pmod{p^j}$, then: $\mathbf{a}_j = \omega_{p^j}(n)$. (This is exactly true if n is odd and squarefree, and is true up to O(1) if not.) Inserting this into the above lemma...

Sketchy in the extreme

Lemma

For any prime $p \mid \varphi(n)$,

$$\log G_p(n) = \frac{\log p}{4} \sum_{j=0}^{\alpha_1} \omega_{p^j}(n)^2 + O(\alpha_1 \log p).$$

Moreover: If $p \mid \varphi(n)$ but $p^2 \nmid \varphi(n)$, then $\log G_p(n) = \log 2$.

Sketchy in the extreme

Lemma

For any prime $p \mid \varphi(n)$,

$$\log G_p(n) = \frac{\log p}{4} \sum_{j=0}^{\alpha_1} \omega_{p^j}(n)^2 + O(\alpha_1 \log p).$$

Moreover: If $p \mid \varphi(n)$ but $p^2 \nmid \varphi(n)$, then $\log G_p(n) = \log 2$.

Upon summing over all primes $p \mid \varphi(n)$:

$$\log G(n) = \sum_{p \mid \varphi(n)} \log G_p(n) \approx \log 2 \cdot \omega(\varphi(n)) + \frac{1}{4} \sum_{p^r} \omega_{p^r}(n)^2 \log p.$$

Sketchy in the extreme

Lemma

For any prime $p \mid \varphi(n)$,

$$\log G_p(n) = \frac{\log p}{4} \sum_{j=0}^{\alpha_1} \omega_{p^j}(n)^2 + O(\alpha_1 \log p).$$

Moreover: If $p \mid \varphi(n)$ but $p^2 \nmid \varphi(n)$, then $\log G_p(n) = \log 2$.

Upon summing over all primes $p \mid \varphi(n)$:

$$\log G(n) = \sum_{p \mid \varphi(n)} \log G_p(n) \approx \log 2 \cdot \omega(\varphi(n)) + \frac{1}{4} \sum_{p^r} \omega_{p^r}(n)^2 \log p.$$

Replace each of the arithmetic functions above by their known normal orders to get, for almost all n,

$$\log G(n) \approx \frac{\log 2}{2} (\log \log n)^2 + \frac{1}{4} \sum_{p'} \left(\frac{\log \log n}{\varphi(p')} \right)^2 \log p = A(\log \log n)^2.$$

Future work

To handle $\log G(n)$, we approximated it by a sum of squares of additive functions.

In forthcoming work, we prove an Erdős–Kac law for arbitrary finite sums and products of additive functions satisfying standard conditions.

In other words, if $Q(x_1,\ldots,x_\ell)\in\mathbb{R}[x_1,\ldots,x_\ell]$ and g_1,\ldots,g_ℓ are "nice" additive functions, then $Q(g_1,\ldots,g_\ell)$ satisfies an Erdős–Kac law with a certain mean and variance.

Thanks!

Preprint available at https://arxiv.org/abs/1710.00124.