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Joint work with Kevin McGown and Jonathan Sands. To appear in
Mathematics of Computation.
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A common theme in the field of special values of L-functions is as
follows:
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Start with an arithmetic object such as a motive,
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Start with an arithmetic object such as a motive, an elliptic curve,
a number field, etc
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Associate to this arithmetic object an analytic object usually called
a zeta or an L-function.
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Understand the value of these analytic objects at particular
integers.
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Understand the value of these analytic objects at particular
integers. The first non-vanishing Taylor coefficient should contain
some important information related to the arithmetic object one

started with.
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The study of these special values is usually done in two steps:
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Numerical evidence for higher order Stark-type conjectures

The study of these special values is usually done in two steps:
Q At first up to a rational number. (“Over Q")
@ Then understand this rational number. (“Over Z")
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The classical example is the class number formula for a number
field K:
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The classical example is the class number formula for a number
field K:

@ Over Q:
¢k (0)

Re ©F
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The classical example is the class number formula for a number

field K:
@ Over Q:
¢k (0)
Ric € Q.
@ Over Z:
G(0) e
RK WK
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Another famous example of such a conjecture “over Z" is the
Birch and Swinnerton-Dyer conjecture.
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Numerical evidence for higher order Stark-type conjectures

Another famous example of such a conjecture “over Z" is the
Birch and Swinnerton-Dyer conjecture. There is also the very
general Beilinson conjecture (“over Q") starting with any motive
which has been refined “over Z" by Bloch and Kato: the
Tamagawa Number Conjecture.
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All these conjectures can be studied in an equivariant way, that is
incorporating the action of a Galois group as well.
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If K/k is a finite abelian extension of number fields with Galois
group G and x € G, Stark formulated a conjecture for the first
non-vanishing Taylor coefficient

L*(0,x),

which is sometimes called Stark’s conjecture over Q.
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Stark also formulated a refinement of his conjecture for imprimitive
L-functions having precisely order of vanishing one at s = 0 (which
is a conjecture “over Z") under certain hypotheses.
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Stark also formulated a refinement of his conjecture for imprimitive
L-functions having precisely order of vanishing one at s = 0 (which
is a conjecture “over Z") under certain hypotheses. He proved his
conjecture when the base field is Q and when the base field is
quadratic imaginary.
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Numerical evidence for higher order Stark-type conjectures

Stark also formulated a refinement of his conjecture for imprimitive
L-functions having precisely order of vanishing one at s = 0 (which
is a conjecture “over Z") under certain hypotheses. He proved his
conjecture when the base field is Q and when the base field is
quadratic imaginary. He provided numerical examples for the next
natural case, namely for abelian extensions of real quadratic fields.
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Rubin and Popescu extended his conjecture “over Z" to higher
order of vanishing.
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Rubin and Popescu extended his conjecture “over Z" to higher
order of vanishing. They are known when the base field is Q only
by works of Burns, Greither and Flach.
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The rank one abelian Stark conjecture has been numerically
studied extensively by several authors, but very little numerical
evidence has been provided for Rubin or Popescu’s conjecture.
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We came up with a way of systematically providing numerical
evidence for Rubin or Popescu's conjecture (that is the higher rank
Stark conjecture “over Z").
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We did so for 19197 examples consisting of extensions K /k, where
K is a totally real abelian field that is an abelian ramified cubic
extension of a real quadratic number field and whose absolute
discriminant satisfies Ax < 1012,
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Numerical evidence for higher order Stark-type conjectures

We did so for 19197 examples consisting of extensions K /k, where
K is a totally real abelian field that is an abelian ramified cubic
extension of a real quadratic number field and whose absolute
discriminant satisfies Ax < 1012,

The corresponding L-functions have order of vanishing two in this
situation due to the two archimedean places of the bottom field k.
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The key tool is the notion of an Artin system of units.
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The key tool is the notion of an Artin system of units. Roughly
speaking they are units that generate a group of finite index on
which we know how the Galois group acts.
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Numerical evidence for higher order Stark-type conjectures

The key tool is the notion of an Artin system of units. Roughly
speaking they are units that generate a group of finite index on
which we know how the Galois group acts. Artin gave a very
concrete proof of the existence of such systems of units in a paper
of his: Uber Einheiten relative galoisscher Zahlkorper.
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Numerical evidence for higher order Stark-type conjectures

The key tool is the notion of an Artin system of units. Roughly
speaking they are units that generate a group of finite index on
which we know how the Galois group acts. Artin gave a very
concrete proof of the existence of such systems of units in a paper
of his: Uber Einheiten relative galoisscher Zahlkorper. These
systems of units can be found algorithmically even though there is
no canonical choice for such a system.

Daniel Vallieres Higher order Stark-type conjectures 17 /23



Numerical evidence for higher order Stark-type conjectures

We label the set of infinite places and ramified places in k:
S={vi,va,...,vp},

so that |S| = n.
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We label the set of infinite places and ramified places in k:
S={vi,va,...,vp},

so that |S| = n. Following Tate, we let Ys(K) be the free abelian
group on the places in Sx. We have a short exact sequence of

Z[G]-modules
0 — Xs(K) — Ys(K) 257 — 0, (1)

where the map sk is the augmentation map and Xs(K) its kernel.
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We label the set of infinite places and ramified places in k:

S={vi,va,...,vp},

so that |S| = n. Following Tate, we let Ys(K) be the free abelian

group on the places in Sx. We have a short exact sequence of
Z[G]-modules

0 — Xs(K) — Ys(K) 257 — 0, (1)
where the map sk is the augmentation map and Xs(K) its kernel.

Recall that sk is defined by setting sx(w) = 1 for all w € Sk and
extending by linearity.

Daniel Vallieres Higher order Stark-type conjectures



Numerical evidence for higher order Stark-type conjectures

Definition
An Artin system of Sk-units A is a collection of Sk-units

A= {EW | w e SK} - Es(K),
such that the group morphism
f:Ys(K)— Es(K)

defined by w +— ¢, satisfies the following properties:
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Definition
An Artin system of Sk-units A is a collection of Sk-units

A= {EW | w e SK} - Es(K),
such that the group morphism
f:Ys(K)— Es(K)

defined by w +— ¢, satisfies the following properties:
© f is G-equivariant,
Q ker(f) =Z -« for some a € Ys(K)C that satisfies syc(a) # 0.
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Define
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Define

Stark’s conjecture over QQ for all x € G can be phrased as follows:
Bs(A) € Q[G].

(Analogous to (/(0)/Rk € Q.)
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Define

Stark’s conjecture over QQ for all x € G can be phrased as follows:

Bs(A) € Q[G].

(Analogous to (j(0)/Rk € Q.) What about those rational
numbers?
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This is not yet understood, but Burns gave a conjectural bound for
the denominators of

e fBs(A),

which has something to do with the index of the group of Artin
units inside the full group Es(K).
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Popescu’s and Rubin's conjectures can be rephrased in terms of a
property of the element

Bs(A)-e-e1N...Ne, €Q /\ Es(K),
Z[G]

that can be checked numerically.
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Thank you
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Thank you

Questions??
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