

Numerical evidence for higher order Stark-type conjectures.

Daniel Vallières

California State University, Chico

West Coast Number Theory
December 16 - 20, 2017

Numerical evidence for higher order Stark-type conjectures

Joint work with Kevin McGown and Jonathan Sands. To appear in *Mathematics of Computation*.

Numerical evidence for higher order Stark-type conjectures

A common theme in the field of special values of L -functions is as follows:

Numerical evidence for higher order Stark-type conjectures

Start with an arithmetic object such as a motive, an elliptic curve, a number field, etc

Numerical evidence for higher order Stark-type conjectures

Start with an arithmetic object such as a motive, an elliptic curve, a number field, etc

Numerical evidence for higher order Stark-type conjectures

Start with an arithmetic object such as a motive, an elliptic curve, a number field, etc

Associate to this arithmetic object an analytic object usually called a zeta or an L -function.

Understand the value of these analytic objects at particular integers. The first non-vanishing Taylor coefficient should contain some important information related to the arithmetic object one started with.

Understand the value of these analytic objects at particular integers. The first non-vanishing Taylor coefficient should contain some important information related to the arithmetic object one started with.

The study of these special values is usually done in two steps:

- ① At first up to a rational number. ("Over \mathbb{Q} ")
- ② Then understand this rational number. ("Over \mathbb{Z} ")

The study of these special values is usually done in two steps:

- ➊ At first up to a rational number. ("Over \mathbb{Q} ")
- ➋ Then understand this rational number. ("Over \mathbb{Z} ")

The study of these special values is usually done in two steps:

- ① At first up to a rational number. ("Over \mathbb{Q} ")
- ② Then understand this rational number. ("Over \mathbb{Z} ")

Numerical evidence for higher order Stark-type conjectures

The classical example is the class number formula for a number field K :

1 Over \mathbb{Q} :

$$\frac{\zeta_K^*(0)}{R_K} \in \mathbb{Q}.$$

2 Over \mathbb{Z} :

$$\frac{\zeta_K^*(0)}{R_K} = -\frac{h_K}{w_K}.$$

Numerical evidence for higher order Stark-type conjectures

The classical example is the class number formula for a number field K :

① Over \mathbb{Q} :

$$\frac{\zeta_K^*(0)}{R_K} \in \mathbb{Q}.$$

② Over \mathbb{Z} :

$$\frac{\zeta_K^*(0)}{R_K} = -\frac{h_K}{w_K}.$$

Numerical evidence for higher order Stark-type conjectures

The classical example is the class number formula for a number field K :

① Over \mathbb{Q} :

$$\frac{\zeta_K^*(0)}{R_K} \in \mathbb{Q}.$$

② Over \mathbb{Z} :

$$\frac{\zeta_K^*(0)}{R_K} = -\frac{h_K}{w_K}.$$

Another famous example of such a conjecture “over \mathbb{Z} ” is the Birch and Swinnerton-Dyer conjecture. There is also the very general Beilinson conjecture (“over \mathbb{Q} ”) starting with any motive which has been refined “over \mathbb{Z} ” by Bloch and Kato: the Tamagawa Number Conjecture.

Another famous example of such a conjecture “over \mathbb{Z} ” is the Birch and Swinnerton-Dyer conjecture. There is also the very general Beilinson conjecture (“over \mathbb{Q} ”) starting with any motive which has been refined “over \mathbb{Z} ” by Bloch and Kato: the Tamagawa Number Conjecture.

Numerical evidence for higher order Stark-type conjectures

All these conjectures can be studied in an equivariant way, that is incorporating the action of a Galois group as well.

If K/k is a finite abelian extension of number fields with Galois group G and $\chi \in \widehat{G}$, Stark formulated a conjecture for the first non-vanishing Taylor coefficient

$$L^*(0, \chi),$$

which is sometimes called Stark's conjecture over \mathbb{Q} .

Numerical evidence for higher order Stark-type conjectures

Stark also formulated a refinement of his conjecture for imprimitive L -functions having precisely order of vanishing one at $s = 0$ (which is a conjecture “over \mathbb{Z} ”) under certain hypotheses. He proved his conjecture when the base field is \mathbb{Q} and when the base field is quadratic imaginary. He provided numerical examples for the next natural case, namely for abelian extensions of real quadratic fields.

Stark also formulated a refinement of his conjecture for imprimitive L -functions having precisely order of vanishing one at $s = 0$ (which is a conjecture “over \mathbb{Z} ”) under certain hypotheses. He proved his conjecture when the base field is \mathbb{Q} and when the base field is quadratic imaginary. He provided numerical examples for the next natural case, namely for abelian extensions of real quadratic fields.

Stark also formulated a refinement of his conjecture for imprimitive L -functions having precisely order of vanishing one at $s = 0$ (which is a conjecture “over \mathbb{Z} ”) under certain hypotheses. He proved his conjecture when the base field is \mathbb{Q} and when the base field is quadratic imaginary. He provided numerical examples for the next natural case, namely for abelian extensions of real quadratic fields.

Numerical evidence for higher order Stark-type conjectures

Rubin and Popescu extended his conjecture “over \mathbb{Z} ” to higher order of vanishing. They are known when the base field is \mathbb{Q} only by works of Burns, Greither and Flach.

Numerical evidence for higher order Stark-type conjectures

Rubin and Popescu extended his conjecture “over \mathbb{Z} ” to higher order of vanishing. They are known when the base field is \mathbb{Q} only by works of Burns, Greither and Flach.

Numerical evidence for higher order Stark-type conjectures

The rank one abelian Stark conjecture has been numerically studied extensively by several authors, but very little numerical evidence has been provided for Rubin or Popescu's conjecture.

Numerical evidence for higher order Stark-type conjectures

We came up with a way of systematically providing numerical evidence for Rubin or Popescu's conjecture (that is the higher rank Stark conjecture "over \mathbb{Z} ").

We did so for 19197 examples consisting of extensions K/k , where K is a totally real abelian field that is an abelian ramified cubic extension of a real quadratic number field and whose absolute discriminant satisfies $\Delta_K \leq 10^{12}$.

The corresponding L -functions have order of vanishing two in this situation due to the two archimedean places of the bottom field k .

We did so for 19197 examples consisting of extensions K/k , where K is a totally real abelian field that is an abelian ramified cubic extension of a real quadratic number field and whose absolute discriminant satisfies $\Delta_K \leq 10^{12}$.

The corresponding L -functions have order of vanishing two in this situation due to the two archimedean places of the bottom field k .

The key tool is the notion of an Artin system of units. Roughly speaking they are units that generate a group of finite index on which we know how the Galois group acts. Artin gave a very concrete proof of the existence of such systems of units in a paper of his: *Über Einheiten relative galoisscher Zahlkörper*. These systems of units can be found algorithmically even though there is no canonical choice for such a system.

The key tool is the notion of an Artin system of units. Roughly speaking they are units that generate a group of finite index on which we know how the Galois group acts. Artin gave a very concrete proof of the existence of such systems of units in a paper of his: *Über Einheiten relative galoisscher Zahlkörper*. These systems of units can be found algorithmically even though there is no canonical choice for such a system.

The key tool is the notion of an Artin system of units. Roughly speaking they are units that generate a group of finite index on which we know how the Galois group acts. Artin gave a very concrete proof of the existence of such systems of units in a paper of his: *Über Einheiten relative galoisscher Zahlkörper*. These systems of units can be found algorithmically even though there is no canonical choice for such a system.

The key tool is the notion of an Artin system of units. Roughly speaking they are units that generate a group of finite index on which we know how the Galois group acts. Artin gave a very concrete proof of the existence of such systems of units in a paper of his: *Über Einheiten relative galoisscher Zahlkörper*. These systems of units can be found algorithmically even though there is no canonical choice for such a system.

Numerical evidence for higher order Stark-type conjectures

We label the set of infinite places and ramified places in k :

$$S = \{v_1, v_2, \dots, v_n\},$$

so that $|S| = n$. Following Tate, we let $Y_S(K)$ be the free abelian group on the places in S_K . We have a short exact sequence of $\mathbb{Z}[G]$ -modules

$$0 \longrightarrow X_S(K) \longrightarrow Y_S(K) \xrightarrow{s_K} \mathbb{Z} \longrightarrow 0, \quad (1)$$

where the map s_K is the augmentation map and $X_S(K)$ its kernel. Recall that s_K is defined by setting $s_K(w) = 1$ for all $w \in S_K$ and extending by linearity.

We label the set of infinite places and ramified places in k :

$$S = \{v_1, v_2, \dots, v_n\},$$

so that $|S| = n$. Following Tate, we let $Y_S(K)$ be the free abelian group on the places in S_K . We have a short exact sequence of $\mathbb{Z}[G]$ -modules

$$0 \longrightarrow X_S(K) \longrightarrow Y_S(K) \xrightarrow{s_K} \mathbb{Z} \longrightarrow 0, \quad (1)$$

where the map s_K is the augmentation map and $X_S(K)$ its kernel. Recall that s_K is defined by setting $s_K(w) = 1$ for all $w \in S_K$ and extending by linearity.

Numerical evidence for higher order Stark-type conjectures

We label the set of infinite places and ramified places in k :

$$S = \{v_1, v_2, \dots, v_n\},$$

so that $|S| = n$. Following Tate, we let $Y_S(K)$ be the free abelian group on the places in S_K . We have a short exact sequence of $\mathbb{Z}[G]$ -modules

$$0 \longrightarrow X_S(K) \longrightarrow Y_S(K) \xrightarrow{s_K} \mathbb{Z} \longrightarrow 0, \quad (1)$$

where the map s_K is the augmentation map and $X_S(K)$ its kernel. Recall that s_K is defined by setting $s_K(w) = 1$ for all $w \in S_K$ and extending by linearity.

Definition

An Artin system of S_K -units \mathcal{A} is a collection of S_K -units

$$\mathcal{A} = \{\varepsilon_w \mid w \in S_K\} \subseteq E_S(K),$$

such that the group morphism

$$f : Y_S(K) \longrightarrow E_S(K)$$

defined by $w \mapsto \varepsilon_w$ satisfies the following properties:

- 1 f is G -equivariant,
- 2 $\ker(f) = \mathbb{Z} \cdot \alpha$ for some $\alpha \in Y_S(K)^G$ that satisfies $s_K(\alpha) \neq 0$.

Definition

An Artin system of S_K -units \mathcal{A} is a collection of S_K -units

$$\mathcal{A} = \{\varepsilon_w \mid w \in S_K\} \subseteq E_S(K),$$

such that the group morphism

$$f : Y_S(K) \longrightarrow E_S(K)$$

defined by $w \mapsto \varepsilon_w$ satisfies the following properties:

- ① f is G -equivariant,
- ② $\ker(f) = \mathbb{Z} \cdot \alpha$ for some $\alpha \in Y_S(K)^G$ that satisfies $s_K(\alpha) \neq 0$.

Definition

An Artin system of S_K -units \mathcal{A} is a collection of S_K -units

$$\mathcal{A} = \{\varepsilon_w \mid w \in S_K\} \subseteq E_S(K),$$

such that the group morphism

$$f : Y_S(K) \longrightarrow E_S(K)$$

defined by $w \mapsto \varepsilon_w$ satisfies the following properties:

- ① f is G -equivariant,
- ② $\ker(f) = \mathbb{Z} \cdot \alpha$ for some $\alpha \in Y_S(K)^G$ that satisfies $s_K(\alpha) \neq 0$.

Numerical evidence for higher order Stark-type conjectures

Define

$$\beta_S(\mathcal{A}) = \sum_{\chi \in \widehat{G}} \frac{L_{K,S}^*(0, \chi)}{R(\chi, \mathcal{A})} e_{\overline{\chi}}.$$

Stark's conjecture over \mathbb{Q} for all $\chi \in \widehat{G}$ can be phrased as follows:

$$\beta_S(\mathcal{A}) \in \mathbb{Q}[G].$$

(Analogous to $\zeta_K^*(0)/R_K \in \mathbb{Q}$.) What about those rational numbers?

Numerical evidence for higher order Stark-type conjectures

Define

$$\beta_S(\mathcal{A}) = \sum_{\chi \in \widehat{G}} \frac{L_{K,S}^*(0, \chi)}{R(\chi, \mathcal{A})} e_{\overline{\chi}}.$$

Stark's conjecture over \mathbb{Q} for all $\chi \in \widehat{G}$ can be phrased as follows:

$$\beta_S(\mathcal{A}) \in \mathbb{Q}[G].$$

(Analogous to $\zeta_K^*(0)/R_K \in \mathbb{Q}$.) What about those rational numbers?

Numerical evidence for higher order Stark-type conjectures

Define

$$\beta_S(\mathcal{A}) = \sum_{\chi \in \widehat{G}} \frac{L_{K,S}^*(0, \chi)}{R(\chi, \mathcal{A})} e_{\overline{\chi}}.$$

Stark's conjecture over \mathbb{Q} for all $\chi \in \widehat{G}$ can be phrased as follows:

$$\beta_S(\mathcal{A}) \in \mathbb{Q}[G].$$

(Analogous to $\zeta_K^*(0)/R_K \in \mathbb{Q}$.) What about those rational numbers?

This is not yet understood, but Burns gave a conjectural bound for the denominators of

$$e \cdot \beta_S(\mathcal{A}),$$

which has something to do with the index of the group of Artin units inside the full group $E_S(K)$.

Numerical evidence for higher order Stark-type conjectures

Popescu's and Rubin's conjectures can be rephrased in terms of a property of the element

$$\beta_S(\mathcal{A}) \cdot e \cdot \varepsilon_1 \wedge \dots \wedge \varepsilon_r \in \mathbb{Q} \bigwedge_{\mathbb{Z}[G]}^r E_S(K),$$

that can be checked numerically.

The end

Thank you

Questions??

The end

Thank you

Questions??