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Numerical evidence for higher order Stark-type conjectures

Joint work with Kevin McGown and Jonathan Sands. To appear in
Mathematics of Computation.
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Numerical evidence for higher order Stark-type conjectures

A common theme in the field of special values of L-functions is as
follows:
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Numerical evidence for higher order Stark-type conjectures

Start with an arithmetic object such as a motive, an elliptic curve,
a number field, etc

Daniel Vallières Higher order Stark-type conjectures 4 / 23



Numerical evidence for higher order Stark-type conjectures

Start with an arithmetic object such as a motive, an elliptic curve,
a number field, etc

Daniel Vallières Higher order Stark-type conjectures 4 / 23



Numerical evidence for higher order Stark-type conjectures

Start with an arithmetic object such as a motive, an elliptic curve,
a number field, etc

Daniel Vallières Higher order Stark-type conjectures 4 / 23



Numerical evidence for higher order Stark-type conjectures

Associate to this arithmetic object an analytic object usually called
a zeta or an L-function.
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Numerical evidence for higher order Stark-type conjectures

Understand the value of these analytic objects at particular
integers. The first non-vanishing Taylor coefficient should contain
some important information related to the arithmetic object one
started with.
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Numerical evidence for higher order Stark-type conjectures

The study of these special values is usually done in two steps:

1 At first up to a rational number. (“Over Q”)

2 Then understand this rational number. (“Over Z”)
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Numerical evidence for higher order Stark-type conjectures

The classical example is the class number formula for a number
field K :

1 Over Q:
ζ∗K (0)

RK
∈ Q.

2 Over Z:
ζ∗K (0)

RK
= − hK

wK
.

Daniel Vallières Higher order Stark-type conjectures 8 / 23



Numerical evidence for higher order Stark-type conjectures

The classical example is the class number formula for a number
field K :

1 Over Q:
ζ∗K (0)

RK
∈ Q.

2 Over Z:
ζ∗K (0)

RK
= − hK

wK
.

Daniel Vallières Higher order Stark-type conjectures 8 / 23



Numerical evidence for higher order Stark-type conjectures

The classical example is the class number formula for a number
field K :

1 Over Q:
ζ∗K (0)

RK
∈ Q.

2 Over Z:
ζ∗K (0)

RK
= − hK

wK
.

Daniel Vallières Higher order Stark-type conjectures 8 / 23



Numerical evidence for higher order Stark-type conjectures

Another famous example of such a conjecture “over Z” is the
Birch and Swinnerton-Dyer conjecture. There is also the very
general Beilinson conjecture (“over Q”) starting with any motive
which has been refined “over Z” by Bloch and Kato: the
Tamagawa Number Conjecture.
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Numerical evidence for higher order Stark-type conjectures

All these conjectures can be studied in an equivariant way, that is
incorporating the action of a Galois group as well.
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Numerical evidence for higher order Stark-type conjectures

If K/k is a finite abelian extension of number fields with Galois
group G and χ ∈ Ĝ , Stark formulated a conjecture for the first
non-vanishing Taylor coefficient

L∗(0, χ),

which is sometimes called Stark’s conjecture over Q.

Daniel Vallières Higher order Stark-type conjectures 11 / 23



Numerical evidence for higher order Stark-type conjectures

Stark also formulated a refinement of his conjecture for imprimitive
L-functions having precisely order of vanishing one at s = 0 (which
is a conjecture “over Z”) under certain hypotheses. He proved his
conjecture when the base field is Q and when the base field is
quadratic imaginary. He provided numerical examples for the next
natural case, namely for abelian extensions of real quadratic fields.
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Numerical evidence for higher order Stark-type conjectures

Rubin and Popescu extended his conjecture “over Z” to higher
order of vanishing. They are known when the base field is Q only
by works of Burns, Greither and Flach.
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Numerical evidence for higher order Stark-type conjectures

The rank one abelian Stark conjecture has been numerically
studied extensively by several authors, but very little numerical
evidence has been provided for Rubin or Popescu’s conjecture.
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Numerical evidence for higher order Stark-type conjectures

We came up with a way of systematically providing numerical
evidence for Rubin or Popescu’s conjecture (that is the higher rank
Stark conjecture “over Z”).
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Numerical evidence for higher order Stark-type conjectures

We did so for 19197 examples consisting of extensions K/k, where
K is a totally real abelian field that is an abelian ramified cubic
extension of a real quadratic number field and whose absolute
discriminant satisfies ∆K ≤ 1012.

The corresponding L-functions have order of vanishing two in this
situation due to the two archimedean places of the bottom field k .
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Numerical evidence for higher order Stark-type conjectures

The key tool is the notion of an Artin system of units. Roughly
speaking they are units that generate a group of finite index on
which we know how the Galois group acts. Artin gave a very
concrete proof of the existence of such systems of units in a paper
of his: Über Einheiten relative galoisscher Zahlkörper. These
systems of units can be found algorithmically even though there is
no canonical choice for such a system.
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Numerical evidence for higher order Stark-type conjectures

We label the set of infinite places and ramified places in k :

S = {v1, v2, . . . , vn},

so that |S | = n. Following Tate, we let YS(K ) be the free abelian
group on the places in SK . We have a short exact sequence of
Z[G ]-modules

0 −→ XS(K ) −→ YS(K )
sK−→ Z −→ 0, (1)

where the map sK is the augmentation map and XS(K ) its kernel.
Recall that sK is defined by setting sK (w) = 1 for all w ∈ SK and
extending by linearity.
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Numerical evidence for higher order Stark-type conjectures

Definition

An Artin system of SK -units A is a collection of SK -units

A = {εw |w ∈ SK} ⊆ ES(K ),

such that the group morphism

f : YS(K ) −→ ES(K )

defined by w 7→ εw satisfies the following properties:

1 f is G-equivariant,

2 ker(f ) = Z · α for some α ∈ YS(K )G that satisfies sK (α) 6= 0.
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Numerical evidence for higher order Stark-type conjectures

Define

βS(A) =
∑
χ∈Ĝ

L∗K ,S(0, χ)

R(χ,A)
eχ.

Stark’s conjecture over Q for all χ ∈ Ĝ can be phrased as follows:

βS(A) ∈ Q[G ].

(Analogous to ζ∗K (0)/RK ∈ Q.) What about those rational
numbers?
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Numerical evidence for higher order Stark-type conjectures

This is not yet understood, but Burns gave a conjectural bound for
the denominators of

e · βS(A),

which has something to do with the index of the group of Artin
units inside the full group ES(K ).
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Popescu’s and Rubin’s conjectures can be rephrased in terms of a
property of the element

βS(A) · e · ε1 ∧ . . . ∧ εr ∈ Q
r∧

Z[G ]

ES(K ),

that can be checked numerically.
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The end

Thank you

Questions??
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