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The sequence of practical numbers:

1,2, 4, 6,8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, ...



Characterization of practical numbers

Stewart (1954) and Sierpinski (1955) showed that an integer n > 2
with prime factorization n = p{" - - pt*, p1 < pr < ... < pg, is
practical if and only if

p o (piep)  a<i<n,

where o(n) denotes the sum of the divisors of n.



Characterization of practical numbers

Stewart (1954) and Sierpinski (1955) showed that an integer n > 2
with prime factorization n = p{" - - pt*, p1 < pr < ... < pg, is
practical if and only if

p o (piep)  a<i<n,
where o(n) denotes the sum of the divisors of n.

For example, 1148 = 22 - 7 - 41 is practical because

2<1+0(1)=2, 7<1+0(2*)=8, 41<14+0(2%-7)=5T7.
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Counting practical numbers up to x

Srinivasan (1948): lim P(x) = oo.
X—00
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Erd6s (1950): lim ﬁ =0.
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P(x)
x/logx

W. (2015):  lim P
x—o0 x/ logx

Saias (1997): 0 < ¢; <

<

= ¢ for some constant ¢ > 0.
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What is the value of ¢?

W, 2015): P(x) = < (140 (18187} ) g1 some ¢ > 0.
log x

log x
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W. (2017):
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P P is the set of practical numbers
» o(n) is the sum of the positive divisors of n
> p runs over primes

» ~is Euler’s constant

Corollary (2017): The constant ¢ satisfies 1.311 < ¢ < 1.697.
The practical numbers are between 31% and 70% more numerous
than the prime numbers.
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What is the value of ¢?

W. (2019):
c = 1.33607...

» The practical numbers are about 33.6% more numerous than the
prime numbers

P There are about four practical number for every three prime
numbers

» Most likely, ¢ = 1.336075, rounded to six decimal places



The series for ¢

We need to evaluate the infinite series

gl 5 b
P

neP <o(n)+1




The series for ¢

We need to evaluate the infinite series

_ 1 lo 1
c(l—e V):Zﬂ( Z p%ﬁ—logn) H <1—p>.
P

neP <o(n)+1 p<o(n)+1

For practical n, we have 37, ;11 g’g” logn>> 1.



The series for ¢

We need to evaluate the infinite series

c(l—e“’)zZi( Z ;Ofli—logn> H <1—
P P

nepP <o(n)+1

For practical n, we have 37, ;11 g’g” logn>> 1.
So the tail of the series is

1 1
>>Z H <1_p> >>z:nlogn logN"

neP I7<0' neP
n>N n>N




The series for ¢

We need to evaluate the infinite series

_ 1 lo 1
c(l—e ﬂq:Zn( Z p%ﬁ—logn) H (1—p>.
P P

neP <o(n)+1

For practical n, we have 37, ;11 g’g” logn>> 1.
So the tail of the series is

1 1
>>Z H <1_p> >>z:nlogn logN’

nepP I7<0' neP
n>N n>N

Just adding the first N terms of the series will not give a very accurate
estimate.



The series for ¢
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c(l—e ﬂq:Zn( Z p%ﬁ—logn) H (1—p>.
P P

neP <o(n)+1

For practical n, we have 37, ;11 g’g” logn>> 1.
So the tail of the series is

1 1
>>Z H <1_p> >>z:nlogn logN’

nepP I7<0' neP
n>N n>N

Just adding the first N terms of the series will not give a very accurate

estimate.
When N = 23!, we have 1/log N ~ 0.05.
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The series for ¢

We need to evaluate the infinite series

1 logp 1
Z p Z —1 - logn 1——-,
neP D p p<o(n)+1 p

<o(n)+1

knowing that
1 1
oI (-5)-
nepP " p<o(n)+1 p

and

1
Z Ofli =log(o(n) + 1) — v+ o(1)
p<o(n)+1
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Estimating the sum over primes

We need a good explicit estimate for

1
Z o8P _ logx — v + E(x).
p—1

p<x

» PNT implies E(x) < exp(—+/logx)

» RH implies |E(x)| < log®x/(7/x) (x> 25)

> Axler (2018): |[E(x)| < 0.084/log?x (x > 2%)

> Biithe (2018): —2/x < ¥(x) —x <0 (1423 < x < 10")
» Partial summation: |E(x)| < 0.00002174 (x > 232)
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The tail of the series

We need a good estimate for

> (%)

neP

n>N pSO’(Vl)-i-

1
(1-5)
: p
Idea (2017): Use

» worst case estimate o(n)/n < (1 + o(1))e” loglogn
» a very rough upper bound for P(x)
» this leads to 1.311 < ¢ < 1.693

Better idea (2019): Use the fact that o (n) is multiplicative!
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Using the multiplicativity of o(n)

Let x(n) = 1if n is practical, x(n) = 0 if n is not practical.
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o(n)+1
1 1
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Replacing a difficult sum by an easy one
We get

where p and ¢ run over primes and

1-1/q 1—1/g"! 1
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Replacing a difficult sum by an easy one

We get

n
g p<o(n)+1
1
_y X A <1 —-,
n p
n>1 g<o(n)+1 p<o(n)+1
where p and ¢ run over primes and
1-1/q (1—1/qh+1> 1
0< W, = log < — .
=2 q" 1-1/q (g —1)

n>1

The series ) W, converges rapidly, so the tail of the last series is

in")(w+o(1)) I1 (1—}1)

p<o(n)+1

n>N
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Computational aspects
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Without precomputing the products and sums over primes, the
algorithm would take N2T°(1) steps.

Make a table for practical n < N with rows

n, om+1, ] (1—1>, 3y ;Ofﬁ, > oW,

p<o(n)+1 p<o(n)+1 g<o(n)+1

Sort by o(n) + 1 before finding sums and products, then sort by
n after computing these.

Creating this table takes N'T°(1) steps and N'+°(1) bytes of
memory. Calculating ¢ with the use of this table, requires
N'*o(1) steps.

With N = 23! and thirteen hours of computation, we get
1.33607322 < ¢ < 1.33607654.
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Open problem: explicit bounds for P(x)

We know

P
() 133607, (x— o).
x/ log x

It seems likely that for all n > 20,

1. = FP@D Pl PA2)

= =142...
27/1og27 ~ n/logn — 42/log42

But we don’t even know if

0.001 < P(x)
x/ logx

< 1000

for all x > 20.



Thank You!



