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Practical numbers
A positive integer n is called practical if all smaller positive integers
can be represented as sums of distinct divisors of n.

12 is practical:

The sequence of practical numbers:

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, ...
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Characterization of practical numbers

Stewart (1954) and Sierpinski (1955) showed that an integer n ≥ 2
with prime factorization n = pα1

1 · · · p
αk
k , p1 < p2 < . . . < pk, is

practical if and only if

pj ≤ 1 + σ
(

pα1
1 · · · p

αj−1
j−1

)
(1 ≤ j ≤ k),

where σ(n) denotes the sum of the divisors of n.

For example, 1148 = 22 · 7 · 41 is practical because

2 ≤ 1 + σ(1) = 2, 7 ≤ 1 + σ(22) = 8, 41 ≤ 1 + σ(22 · 7) = 57.
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Counting practical numbers up to x

Let P(x) be the number of practical numbers in the interval [1, x].
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x

log x
.
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x/ log x
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Counting practical numbers up to x

Srinivasan (1948): lim
x→∞

P(x) =∞.

Erdős (1950): lim
x→∞

P(x)
x

= 0.

Saias (1997): 0 < c1 <
P(x)

x/ log x
< c2

W. (2015): lim
x→∞

P(x)
x/ log x

= c for some constant c > 0.
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What is the value of c?

W. (2015): P(x) =
c x
log x

(
1 + O

(
log log x
log x

))
for some c > 0.

W. (2017):

c =
1

1− e−γ
∑
n∈P

1
n

( ∑
p≤σ(n)+1

log p
p− 1

− log n

) ∏
p≤σ(n)+1

(
1− 1

p

)

I P is the set of practical numbers
I σ(n) is the sum of the positive divisors of n
I p runs over primes
I γ is Euler’s constant

Corollary (2017): The constant c satisfies 1.311 < c < 1.697.
The practical numbers are between 31% and 70% more numerous
than the prime numbers.



What is the value of c?

W. (2015): P(x) =
c x
log x

(
1 + O

(
log log x
log x

))
for some c > 0.

W. (2017):

c =
1

1− e−γ
∑
n∈P

1
n

( ∑
p≤σ(n)+1

log p
p− 1

− log n

) ∏
p≤σ(n)+1

(
1− 1

p

)

I P is the set of practical numbers
I σ(n) is the sum of the positive divisors of n
I p runs over primes
I γ is Euler’s constant

Corollary (2017): The constant c satisfies 1.311 < c < 1.697.
The practical numbers are between 31% and 70% more numerous
than the prime numbers.



What is the value of c?

W. (2015): P(x) =
c x
log x

(
1 + O

(
log log x
log x

))
for some c > 0.

W. (2017):

c =
1

1− e−γ
∑
n∈P

1
n

( ∑
p≤σ(n)+1

log p
p− 1

− log n

) ∏
p≤σ(n)+1

(
1− 1

p

)

I P is the set of practical numbers

I σ(n) is the sum of the positive divisors of n
I p runs over primes
I γ is Euler’s constant

Corollary (2017): The constant c satisfies 1.311 < c < 1.697.
The practical numbers are between 31% and 70% more numerous
than the prime numbers.



What is the value of c?

W. (2015): P(x) =
c x
log x

(
1 + O

(
log log x
log x

))
for some c > 0.

W. (2017):

c =
1

1− e−γ
∑
n∈P

1
n

( ∑
p≤σ(n)+1

log p
p− 1

− log n

) ∏
p≤σ(n)+1

(
1− 1

p

)

I P is the set of practical numbers
I σ(n) is the sum of the positive divisors of n

I p runs over primes
I γ is Euler’s constant

Corollary (2017): The constant c satisfies 1.311 < c < 1.697.
The practical numbers are between 31% and 70% more numerous
than the prime numbers.



What is the value of c?

W. (2015): P(x) =
c x
log x

(
1 + O

(
log log x
log x

))
for some c > 0.

W. (2017):

c =
1

1− e−γ
∑
n∈P

1
n

( ∑
p≤σ(n)+1

log p
p− 1

− log n

) ∏
p≤σ(n)+1

(
1− 1

p

)

I P is the set of practical numbers
I σ(n) is the sum of the positive divisors of n
I p runs over primes

I γ is Euler’s constant

Corollary (2017): The constant c satisfies 1.311 < c < 1.697.
The practical numbers are between 31% and 70% more numerous
than the prime numbers.



What is the value of c?

W. (2015): P(x) =
c x
log x

(
1 + O

(
log log x
log x

))
for some c > 0.

W. (2017):

c =
1

1− e−γ
∑
n∈P

1
n

( ∑
p≤σ(n)+1

log p
p− 1

− log n

) ∏
p≤σ(n)+1

(
1− 1

p

)

I P is the set of practical numbers
I σ(n) is the sum of the positive divisors of n
I p runs over primes
I γ is Euler’s constant

Corollary (2017): The constant c satisfies 1.311 < c < 1.697.
The practical numbers are between 31% and 70% more numerous
than the prime numbers.



What is the value of c?

W. (2015): P(x) =
c x
log x

(
1 + O

(
log log x
log x

))
for some c > 0.

W. (2017):

c =
1

1− e−γ
∑
n∈P

1
n

( ∑
p≤σ(n)+1

log p
p− 1

− log n

) ∏
p≤σ(n)+1

(
1− 1

p

)

I P is the set of practical numbers
I σ(n) is the sum of the positive divisors of n
I p runs over primes
I γ is Euler’s constant

Corollary (2017): The constant c satisfies 1.311 < c < 1.697.

The practical numbers are between 31% and 70% more numerous
than the prime numbers.



What is the value of c?

W. (2015): P(x) =
c x
log x

(
1 + O

(
log log x
log x

))
for some c > 0.

W. (2017):

c =
1

1− e−γ
∑
n∈P

1
n

( ∑
p≤σ(n)+1

log p
p− 1

− log n

) ∏
p≤σ(n)+1

(
1− 1

p

)

I P is the set of practical numbers
I σ(n) is the sum of the positive divisors of n
I p runs over primes
I γ is Euler’s constant

Corollary (2017): The constant c satisfies 1.311 < c < 1.697.
The practical numbers are between 31% and 70% more numerous
than the prime numbers.



What is the value of c?

W. (2019):
c = 1.33607...

I The practical numbers are about 33.6% more numerous than the
prime numbers

I There are about four practical number for every three prime
numbers

I Most likely, c = 1.336075, rounded to six decimal places
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The series for c

We need to evaluate the infinite series

c(1− e−γ) =
∑
n∈P

1
n

( ∑
p≤σ(n)+1

log p
p− 1

− log n

) ∏
p≤σ(n)+1

(
1− 1

p

)
.

For practical n, we have
∑

p≤σ(n)+1
log p
p−1 − log n� 1.

So the tail of the series is

�
∑
n∈P
n>N

1
n

∏
p≤σ(n)+1

(
1− 1

p

)
�
∑
n∈P
n>N

1
n log n

� 1
logN

.

Just adding the first N terms of the series will not give a very accurate
estimate.
When N = 231, we have 1/ logN ≈ 0.05.
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Estimating the sum over primes

We need a good explicit estimate for∑
p≤x

log p
p− 1

= log x− γ + E(x).

I PNT implies E(x)� exp(−
√
log x)

I RH implies |E(x)| ≤ log2 x/(7
√

x) (x ≥ 25)
I Axler (2018): |E(x)| ≤ 0.084/ log2 x (x ≥ 225)

I Büthe (2018): −2
√

x < ϑ(x)− x < 0 (1423 ≤ x ≤ 1019)

I Partial summation: |E(x)| < 0.00002174 (x ≥ 232)
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I Büthe (2018): −2
√

x < ϑ(x)− x < 0 (1423 ≤ x ≤ 1019)

I Partial summation: |E(x)| < 0.00002174 (x ≥ 232)



Estimating the sum over primes

We need a good explicit estimate for∑
p≤x

log p
p− 1

= log x− γ + E(x).

I PNT implies E(x)� exp(−
√
log x)

I RH implies |E(x)| ≤ log2 x/(7
√

x) (x ≥ 25)

I Axler (2018): |E(x)| ≤ 0.084/ log2 x (x ≥ 225)
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The tail of the series

We need a good estimate for∑
n∈P
n>N

1
n
log

(
σ(n)

n

) ∏
p≤σ(n)+1

(
1− 1

p

)
.

Idea (2017): Use
I worst case estimate σ(n)/n < (1 + o(1))eγ log log n
I a very rough upper bound for P(x)
I this leads to 1.311 < c < 1.693

Better idea (2019): Use the fact that σ(n) is multiplicative!
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Using the multiplicativity of σ(n)

Let χ(n) = 1 if n is practical, χ(n) = 0 if n is not practical.

∑
n≥1

χ(n)
n

log

(
σ(n)

n

) ∏
p≤σ(n)+1

(
1− 1

p

)

=
∑
n≥1

χ(n)
n

∑
qh||n

log

(
1 +

1
q
+ · · ·+ 1

qh

) ∏
p≤σ(n)+1

(
1− 1

p

)

=
∑
q≥2
h≥1

log

(
1− 1/qh+1

1− 1/q

)∑
n≥1
qh||n

χ(n)
n

∏
p≤σ(n)+1

(
1− 1

p

)

The last sum equals

1− 1/q
qh

∑
n≥1

σ(n)+1≥q

χ(n)
n

∏
p≤σ(n)+1

(
1− 1

p

)
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Computational aspects

I Without precomputing the products and sums over primes, the
algorithm would take N2+o(1) steps.

I Make a table for practical n ≤ N with rows

n, σ(n)+1,
∏

p≤σ(n)+1

(
1− 1

p

)
,

∑
p≤σ(n)+1

log p
p− 1

,
∑

q≤σ(n)+1

Wq.

I Sort by σ(n) + 1 before finding sums and products, then sort by
n after computing these.

I Creating this table takes N1+o(1) steps and N1+o(1) bytes of
memory. Calculating c with the use of this table, requires
N1+o(1) steps.

I With N = 231 and thirteen hours of computation, we get
1.33607322 < c < 1.33607654.
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Open problem: explicit bounds for P(x)

We know
P(x)

x/ log x
→ 1.33607... (x→∞).

It seems likely that for all n ≥ 20,

1.22... =
P(27)

27/ log 27
≤ P(n)

n/ log n
≤ P(42)

42/ log 42
= 1.42...

But we don’t even know if

0.001 ≤ P(x)
x/ log x

≤ 1000

for all x ≥ 20.
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Thank You!


