

The constant factor in the asymptotic for practical numbers

Andreas Weingartner

Southern Utah University

West Coast Number Theory, December 16-20, 2019

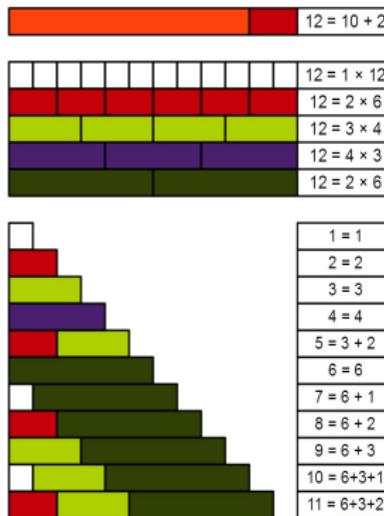
Practical numbers

A positive integer n is called **practical** if all smaller positive integers can be represented as sums of distinct divisors of n .

Practical numbers

A positive integer n is called **practical** if all smaller positive integers can be represented as sums of distinct divisors of n .

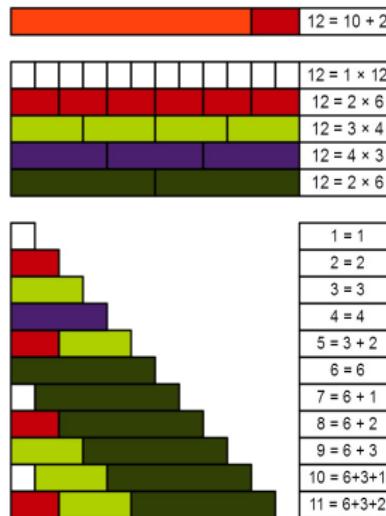
12 is practical:



Practical numbers

A positive integer n is called **practical** if all smaller positive integers can be represented as sums of distinct divisors of n .

12 is practical:



The sequence of practical numbers:

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, ...

Characterization of practical numbers

Stewart (1954) and Sierpinski (1955) showed that an integer $n \geq 2$ with prime factorization $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, $p_1 < p_2 < \dots < p_k$, is practical if and only if

$$p_j \leq 1 + \sigma \left(p_1^{\alpha_1} \cdots p_{j-1}^{\alpha_{j-1}} \right) \quad (1 \leq j \leq k),$$

where $\sigma(n)$ denotes the sum of the divisors of n .

Characterization of practical numbers

Stewart (1954) and Sierpinski (1955) showed that an integer $n \geq 2$ with prime factorization $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, $p_1 < p_2 < \dots < p_k$, is practical if and only if

$$p_j \leq 1 + \sigma(p_1^{\alpha_1} \cdots p_{j-1}^{\alpha_{j-1}}) \quad (1 \leq j \leq k),$$

where $\sigma(n)$ denotes the sum of the divisors of n .

For example, $1148 = 2^2 \cdot 7 \cdot 41$ is practical because

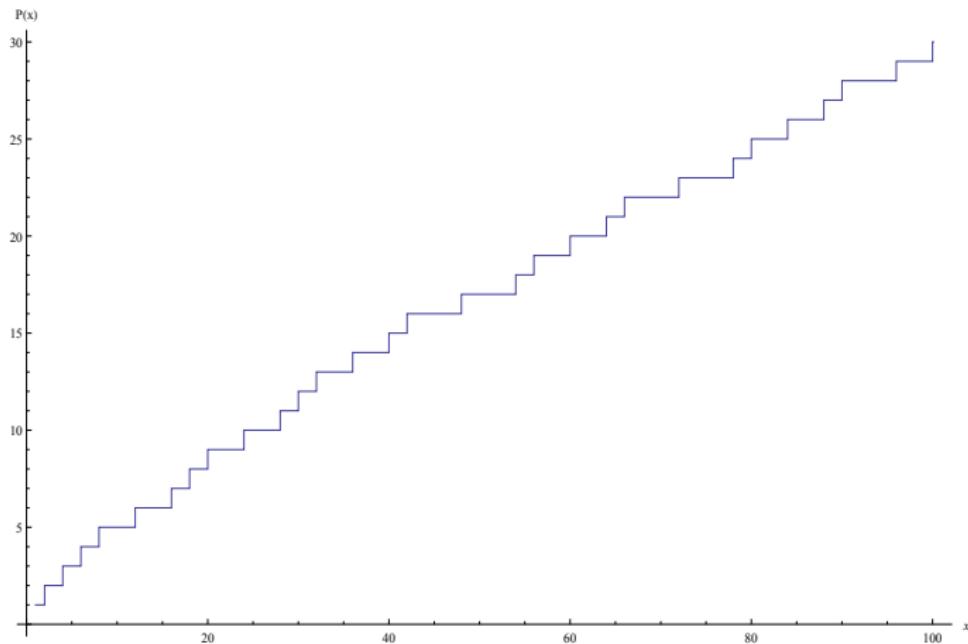
$$2 \leq 1 + \sigma(1) = 2, \quad 7 \leq 1 + \sigma(2^2) = 8, \quad 41 \leq 1 + \sigma(2^2 \cdot 7) = 57.$$

Counting practical numbers up to x

Let $P(x)$ be the number of practical numbers in the interval $[1, x]$.

Counting practical numbers up to x

Let $P(x)$ be the number of practical numbers in the interval $[1, x]$.

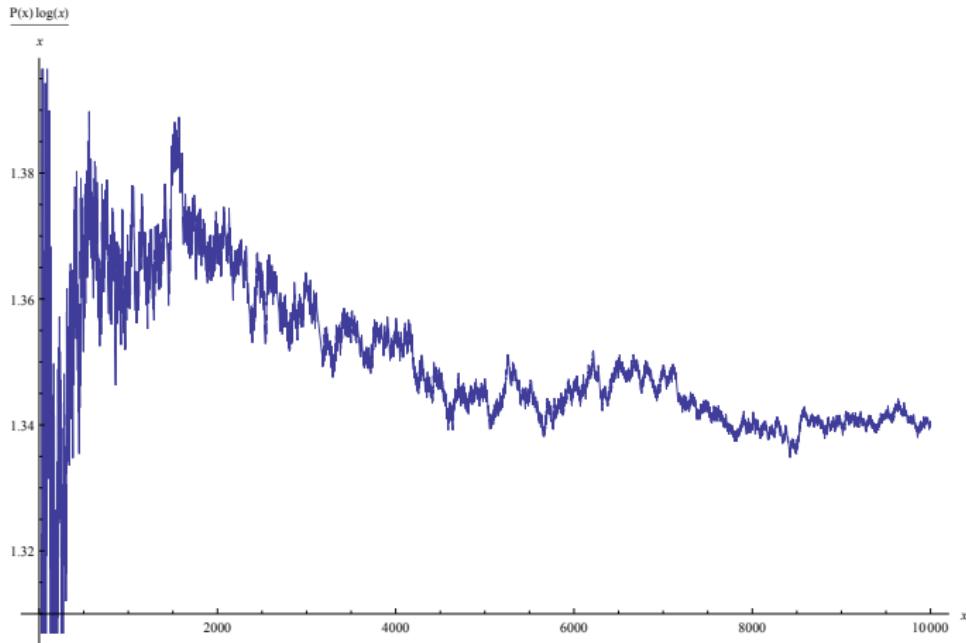


Counting practical numbers up to x

$P(x)$ seems to be about as big as $\frac{x}{\log x}$.

Counting practical numbers up to x

$P(x)$ seems to be about as big as $\frac{x}{\log x}$. Consider $\frac{P(x)}{x/\log x}$:



Counting practical numbers up to x

Srinivasan (1948): $\lim_{x \rightarrow \infty} P(x) = \infty$.

Counting practical numbers up to x

Srinivasan (1948): $\lim_{x \rightarrow \infty} P(x) = \infty.$

Erdős (1950): $\lim_{x \rightarrow \infty} \frac{P(x)}{x} = 0.$

Counting practical numbers up to x

Srinivasan (1948): $\lim_{x \rightarrow \infty} P(x) = \infty$.

Erdős (1950): $\lim_{x \rightarrow \infty} \frac{P(x)}{x} = 0$.

Saias (1997): $0 < c_1 < \frac{P(x)}{x/\log x} < c_2$

Counting practical numbers up to x

Srinivasan (1948): $\lim_{x \rightarrow \infty} P(x) = \infty$.

Erdős (1950): $\lim_{x \rightarrow \infty} \frac{P(x)}{x} = 0$.

Saias (1997): $0 < c_1 < \frac{P(x)}{x/\log x} < c_2$

W. (2015): $\lim_{x \rightarrow \infty} \frac{P(x)}{x/\log x} = c$ for some constant $c > 0$.

What is the value of c ?

W. (2015): $P(x) = \frac{cx}{\log x} \left(1 + O\left(\frac{\log \log x}{\log x}\right)\right)$ for some $c > 0$.

What is the value of c ?

W. (2015): $P(x) = \frac{cx}{\log x} \left(1 + O\left(\frac{\log \log x}{\log x}\right)\right)$ for some $c > 0$.

W. (2017):

$$c = \frac{1}{1 - e^{-\gamma}} \sum_{n \in \mathcal{P}} \frac{1}{n} \left(\sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1} - \log n \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right)$$

What is the value of c ?

W. (2015): $P(x) = \frac{cx}{\log x} \left(1 + O\left(\frac{\log \log x}{\log x}\right)\right)$ for some $c > 0$.

W. (2017):

$$c = \frac{1}{1 - e^{-\gamma}} \sum_{n \in \mathcal{P}} \frac{1}{n} \left(\sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1} - \log n \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right)$$

- ▶ \mathcal{P} is the set of practical numbers

What is the value of c ?

W. (2015): $P(x) = \frac{cx}{\log x} \left(1 + O\left(\frac{\log \log x}{\log x}\right)\right)$ for some $c > 0$.

W. (2017):

$$c = \frac{1}{1 - e^{-\gamma}} \sum_{n \in \mathcal{P}} \frac{1}{n} \left(\sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1} - \log n \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right)$$

- ▶ \mathcal{P} is the set of practical numbers
- ▶ $\sigma(n)$ is the sum of the positive divisors of n

What is the value of c ?

W. (2015): $P(x) = \frac{cx}{\log x} \left(1 + O\left(\frac{\log \log x}{\log x}\right)\right)$ for some $c > 0$.

W. (2017):

$$c = \frac{1}{1 - e^{-\gamma}} \sum_{n \in \mathcal{P}} \frac{1}{n} \left(\sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1} - \log n \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right)$$

- ▶ \mathcal{P} is the set of practical numbers
- ▶ $\sigma(n)$ is the sum of the positive divisors of n
- ▶ p runs over primes

What is the value of c ?

W. (2015): $P(x) = \frac{cx}{\log x} \left(1 + O\left(\frac{\log \log x}{\log x}\right)\right)$ for some $c > 0$.

W. (2017):

$$c = \frac{1}{1 - e^{-\gamma}} \sum_{n \in \mathcal{P}} \frac{1}{n} \left(\sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1} - \log n \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right)$$

- ▶ \mathcal{P} is the set of practical numbers
- ▶ $\sigma(n)$ is the sum of the positive divisors of n
- ▶ p runs over primes
- ▶ γ is Euler's constant

What is the value of c ?

W. (2015): $P(x) = \frac{cx}{\log x} \left(1 + O\left(\frac{\log \log x}{\log x}\right)\right)$ for some $c > 0$.

W. (2017):

$$c = \frac{1}{1 - e^{-\gamma}} \sum_{n \in \mathcal{P}} \frac{1}{n} \left(\sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1} - \log n \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right)$$

- ▶ \mathcal{P} is the set of practical numbers
- ▶ $\sigma(n)$ is the sum of the positive divisors of n
- ▶ p runs over primes
- ▶ γ is Euler's constant

Corollary (2017): The constant c satisfies $1.311 < c < 1.697$.

What is the value of c ?

W. (2015): $P(x) = \frac{cx}{\log x} \left(1 + O\left(\frac{\log \log x}{\log x}\right)\right)$ for some $c > 0$.

W. (2017):

$$c = \frac{1}{1 - e^{-\gamma}} \sum_{n \in \mathcal{P}} \frac{1}{n} \left(\sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1} - \log n \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right)$$

- ▶ \mathcal{P} is the set of practical numbers
- ▶ $\sigma(n)$ is the sum of the positive divisors of n
- ▶ p runs over primes
- ▶ γ is Euler's constant

Corollary (2017): The constant c satisfies $1.311 < c < 1.697$.

The practical numbers are between 31% and 70% more numerous than the prime numbers.

What is the value of c ?

W. (2019):

$$c = 1.33607\dots$$

What is the value of c ?

W. (2019):

$$c = 1.33607\dots$$

- ▶ The practical numbers are about 33.6% more numerous than the prime numbers

What is the value of c ?

W. (2019):

$$c = 1.33607\dots$$

- ▶ The practical numbers are about 33.6% more numerous than the prime numbers
- ▶ There are about four practical number for every three prime numbers

What is the value of c ?

W. (2019):

$$c = 1.33607\dots$$

- ▶ The practical numbers are about 33.6% more numerous than the prime numbers
- ▶ There are about four practical number for every three prime numbers
- ▶ Most likely, $c = 1.336075$, rounded to six decimal places

The series for c

We need to evaluate the infinite series

$$c(1 - e^{-\gamma}) = \sum_{n \in \mathcal{P}} \frac{1}{n} \left(\sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1} - \log n \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right).$$

The series for c

We need to evaluate the infinite series

$$c(1 - e^{-\gamma}) = \sum_{n \in \mathcal{P}} \frac{1}{n} \left(\sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1} - \log n \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right).$$

For practical n , we have $\sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1} - \log n \gg 1$.

The series for c

We need to evaluate the infinite series

$$c(1 - e^{-\gamma}) = \sum_{n \in \mathcal{P}} \frac{1}{n} \left(\sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1} - \log n \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right).$$

For practical n , we have $\sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1} - \log n \gg 1$.

So the tail of the series is

$$\gg \sum_{\substack{n \in \mathcal{P} \\ n > N}} \frac{1}{n} \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right) \gg \sum_{\substack{n \in \mathcal{P} \\ n > N}} \frac{1}{n \log n} \gg \frac{1}{\log N}.$$

The series for c

We need to evaluate the infinite series

$$c(1 - e^{-\gamma}) = \sum_{n \in \mathcal{P}} \frac{1}{n} \left(\sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1} - \log n \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right).$$

For practical n , we have $\sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1} - \log n \gg 1$.

So the tail of the series is

$$\gg \sum_{\substack{n \in \mathcal{P} \\ n > N}} \frac{1}{n} \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right) \gg \sum_{\substack{n \in \mathcal{P} \\ n > N}} \frac{1}{n \log n} \gg \frac{1}{\log N}.$$

Just adding the first N terms of the series will not give a very accurate estimate.

The series for c

We need to evaluate the infinite series

$$c(1 - e^{-\gamma}) = \sum_{n \in \mathcal{P}} \frac{1}{n} \left(\sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1} - \log n \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right).$$

For practical n , we have $\sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1} - \log n \gg 1$.

So the tail of the series is

$$\gg \sum_{\substack{n \in \mathcal{P} \\ n > N}} \frac{1}{n} \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right) \gg \sum_{\substack{n \in \mathcal{P} \\ n > N}} \frac{1}{n \log n} \gg \frac{1}{\log N}.$$

Just adding the first N terms of the series will not give a very accurate estimate.

When $N = 2^{31}$, we have $1/\log N \approx 0.05$.

The series for c

We need to evaluate the infinite series

$$\sum_{n \in \mathcal{P}} \frac{1}{n} \left(\sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1} - \log n \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right),$$

The series for c

We need to evaluate the infinite series

$$\sum_{n \in \mathcal{P}} \frac{1}{n} \left(\sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1} - \log n \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right),$$

knowing that

$$\sum_{n \in \mathcal{P}} \frac{1}{n} \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right) = 1$$

The series for c

We need to evaluate the infinite series

$$\sum_{n \in \mathcal{P}} \frac{1}{n} \left(\sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1} - \log n \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right),$$

knowing that

$$\sum_{n \in \mathcal{P}} \frac{1}{n} \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right) = 1$$

and

$$\sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1} = \log(\sigma(n)+1) - \gamma + o(1)$$

Estimating the sum over primes

We need a good explicit estimate for

$$\sum_{p \leq x} \frac{\log p}{p-1} = \log x - \gamma + E(x).$$

Estimating the sum over primes

We need a good explicit estimate for

$$\sum_{p \leq x} \frac{\log p}{p-1} = \log x - \gamma + E(x).$$

- ▶ PNT implies $E(x) \ll \exp(-\sqrt{\log x})$

Estimating the sum over primes

We need a good explicit estimate for

$$\sum_{p \leq x} \frac{\log p}{p-1} = \log x - \gamma + E(x).$$

- ▶ PNT implies $E(x) \ll \exp(-\sqrt{\log x})$
- ▶ RH implies $|E(x)| \leq \log^2 x / (7\sqrt{x}) \quad (x \geq 25)$

Estimating the sum over primes

We need a good explicit estimate for

$$\sum_{p \leq x} \frac{\log p}{p-1} = \log x - \gamma + E(x).$$

- ▶ PNT implies $E(x) \ll \exp(-\sqrt{\log x})$
- ▶ RH implies $|E(x)| \leq \log^2 x / (7\sqrt{x}) \quad (x \geq 25)$
- ▶ Axler (2018): $|E(x)| \leq 0.084 / \log^2 x \quad (x \geq 2^{25})$

Estimating the sum over primes

We need a good explicit estimate for

$$\sum_{p \leq x} \frac{\log p}{p-1} = \log x - \gamma + E(x).$$

- ▶ PNT implies $E(x) \ll \exp(-\sqrt{\log x})$
- ▶ RH implies $|E(x)| \leq \log^2 x / (7\sqrt{x}) \quad (x \geq 25)$
- ▶ Axler (2018): $|E(x)| \leq 0.084 / \log^2 x \quad (x \geq 2^{25})$
- ▶ Büthe (2018): $-2\sqrt{x} < \vartheta(x) - x < 0 \quad (1423 \leq x \leq 10^{19})$

Estimating the sum over primes

We need a good explicit estimate for

$$\sum_{p \leq x} \frac{\log p}{p-1} = \log x - \gamma + E(x).$$

- ▶ PNT implies $E(x) \ll \exp(-\sqrt{\log x})$
- ▶ RH implies $|E(x)| \leq \log^2 x / (7\sqrt{x}) \quad (x \geq 25)$
- ▶ Axler (2018): $|E(x)| \leq 0.084 / \log^2 x \quad (x \geq 2^{25})$
- ▶ Büthe (2018): $-2\sqrt{x} < \vartheta(x) - x < 0 \quad (1423 \leq x \leq 10^{19})$
- ▶ Partial summation: $|E(x)| < 0.00002174 \quad (x \geq 2^{32})$

The tail of the series

We need a good estimate for

$$\sum_{\substack{n \in \mathcal{P} \\ n > N}} \frac{1}{n} \log \left(\frac{\sigma(n)}{n} \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p} \right).$$

The tail of the series

We need a good estimate for

$$\sum_{\substack{n \in \mathcal{P} \\ n > N}} \frac{1}{n} \log \left(\frac{\sigma(n)}{n} \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p} \right).$$

Idea (2017):

The tail of the series

We need a good estimate for

$$\sum_{\substack{n \in \mathcal{P} \\ n > N}} \frac{1}{n} \log \left(\frac{\sigma(n)}{n} \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p} \right).$$

Idea (2017): Use

- ▶ worst case estimate $\sigma(n)/n < (1 + o(1))e^\gamma \log \log n$

The tail of the series

We need a good estimate for

$$\sum_{\substack{n \in \mathcal{P} \\ n > N}} \frac{1}{n} \log \left(\frac{\sigma(n)}{n} \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p} \right).$$

Idea (2017): Use

- ▶ worst case estimate $\sigma(n)/n < (1 + o(1))e^\gamma \log \log n$
- ▶ a very rough upper bound for $P(x)$

The tail of the series

We need a good estimate for

$$\sum_{\substack{n \in \mathcal{P} \\ n > N}} \frac{1}{n} \log \left(\frac{\sigma(n)}{n} \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p} \right).$$

Idea (2017): Use

- ▶ worst case estimate $\sigma(n)/n < (1 + o(1))e^\gamma \log \log n$
- ▶ a very rough upper bound for $P(x)$
- ▶ this leads to $1.311 < c < 1.693$

The tail of the series

We need a good estimate for

$$\sum_{\substack{n \in \mathcal{P} \\ n > N}} \frac{1}{n} \log \left(\frac{\sigma(n)}{n} \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p} \right).$$

Idea (2017): Use

- ▶ worst case estimate $\sigma(n)/n < (1 + o(1))e^\gamma \log \log n$
- ▶ a very rough upper bound for $P(x)$
- ▶ this leads to $1.311 < c < 1.693$

Better idea (2019):

The tail of the series

We need a good estimate for

$$\sum_{\substack{n \in \mathcal{P} \\ n > N}} \frac{1}{n} \log \left(\frac{\sigma(n)}{n} \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p} \right).$$

Idea (2017): Use

- ▶ worst case estimate $\sigma(n)/n < (1 + o(1))e^\gamma \log \log n$
- ▶ a very rough upper bound for $P(x)$
- ▶ this leads to $1.311 < c < 1.693$

Better idea (2019): Use the fact that $\sigma(n)$ is multiplicative!

Using the multiplicativity of $\sigma(n)$

Let $\chi(n) = 1$ if n is practical, $\chi(n) = 0$ if n is not practical.

Using the multiplicativity of $\sigma(n)$

Let $\chi(n) = 1$ if n is practical, $\chi(n) = 0$ if n is not practical.

$$\begin{aligned} & \sum_{n \geq 1} \frac{\chi(n)}{n} \log \left(\frac{\sigma(n)}{n} \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p} \right) \\ &= \sum_{n \geq 1} \frac{\chi(n)}{n} \sum_{q^h \mid \mid n} \log \left(1 + \frac{1}{q} + \cdots + \frac{1}{q^h} \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p} \right) \\ &= \sum_{\substack{q \geq 2 \\ h \geq 1}} \log \left(\frac{1 - 1/q^{h+1}}{1 - 1/q} \right) \sum_{\substack{n \geq 1 \\ q^h \mid \mid n}} \frac{\chi(n)}{n} \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p} \right) \end{aligned}$$

Using the multiplicativity of $\sigma(n)$

Let $\chi(n) = 1$ if n is practical, $\chi(n) = 0$ if n is not practical.

$$\begin{aligned} & \sum_{n \geq 1} \frac{\chi(n)}{n} \log \left(\frac{\sigma(n)}{n} \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p} \right) \\ &= \sum_{n \geq 1} \frac{\chi(n)}{n} \sum_{q^h \mid \mid n} \log \left(1 + \frac{1}{q} + \cdots + \frac{1}{q^h} \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p} \right) \\ &= \sum_{\substack{q \geq 2 \\ h \geq 1}} \log \left(\frac{1 - 1/q^{h+1}}{1 - 1/q} \right) \sum_{\substack{n \geq 1 \\ q^h \mid \mid n}} \frac{\chi(n)}{n} \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p} \right) \end{aligned}$$

The last sum equals

$$\frac{1 - 1/q}{q^h} \sum_{\substack{n \geq 1 \\ \sigma(n)+1 \geq q}} \frac{\chi(n)}{n} \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p} \right)$$

Replacing a difficult sum by an easy one

Replacing a difficult sum by an easy one

We get

$$\begin{aligned} & \sum_{n \geq 1} \frac{\chi(n)}{n} \log \left(\frac{\sigma(n)}{n} \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p} \right) \\ &= \sum_{n \geq 1} \frac{\chi(n)}{n} \sum_{q \leq \sigma(n)+1} W_q \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p} \right), \end{aligned}$$

Replacing a difficult sum by an easy one

We get

$$\begin{aligned} & \sum_{n \geq 1} \frac{\chi(n)}{n} \log \left(\frac{\sigma(n)}{n} \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p} \right) \\ &= \sum_{n \geq 1} \frac{\chi(n)}{n} \sum_{q \leq \sigma(n)+1} W_q \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p} \right), \end{aligned}$$

where p and q run over primes and

$$0 < W_q := \sum_{h \geq 1} \frac{1 - 1/q}{q^h} \log \left(\frac{1 - 1/q^{h+1}}{1 - 1/q} \right) < \frac{1}{q(q-1)}.$$

Replacing a difficult sum by an easy one

We get

$$\begin{aligned} & \sum_{n \geq 1} \frac{\chi(n)}{n} \log \left(\frac{\sigma(n)}{n} \right) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p} \right) \\ &= \sum_{n \geq 1} \frac{\chi(n)}{n} \sum_{q \leq \sigma(n)+1} W_q \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p} \right), \end{aligned}$$

where p and q run over primes and

$$0 < W_q := \sum_{h \geq 1} \frac{1 - 1/q}{q^h} \log \left(\frac{1 - 1/q^{h+1}}{1 - 1/q} \right) < \frac{1}{q(q-1)}.$$

The series $\sum W_q$ converges rapidly, so the tail of the last series is

$$\sum_{n > N} \frac{\chi(n)}{n} (W + o(1)) \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p} \right)$$

Computational aspects

Computational aspects

- ▶ Without precomputing the products and sums over primes, the algorithm would take $N^{2+o(1)}$ steps.

Computational aspects

- ▶ Without precomputing the products and sums over primes, the algorithm would take $N^{2+o(1)}$ steps.
- ▶ Make a table for practical $n \leq N$ with rows

$$n, \ \sigma(n)+1, \ \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right), \ \sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1}, \ \sum_{q \leq \sigma(n)+1} W_q.$$

Computational aspects

- ▶ Without precomputing the products and sums over primes, the algorithm would take $N^{2+o(1)}$ steps.
- ▶ Make a table for practical $n \leq N$ with rows

$$n, \ \sigma(n)+1, \ \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right), \ \sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1}, \ \sum_{q \leq \sigma(n)+1} W_q.$$

- ▶ Sort by $\sigma(n) + 1$ before finding sums and products, then sort by n after computing these.

Computational aspects

- ▶ Without precomputing the products and sums over primes, the algorithm would take $N^{2+o(1)}$ steps.
- ▶ Make a table for practical $n \leq N$ with rows

$$n, \sigma(n)+1, \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right), \sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1}, \sum_{q \leq \sigma(n)+1} W_q.$$

- ▶ Sort by $\sigma(n) + 1$ before finding sums and products, then sort by n after computing these.
- ▶ Creating this table takes $N^{1+o(1)}$ steps and $N^{1+o(1)}$ bytes of memory. Calculating c with the use of this table, requires $N^{1+o(1)}$ steps.

Computational aspects

- ▶ Without precomputing the products and sums over primes, the algorithm would take $N^{2+o(1)}$ steps.
- ▶ Make a table for practical $n \leq N$ with rows

$$n, \sigma(n)+1, \prod_{p \leq \sigma(n)+1} \left(1 - \frac{1}{p}\right), \sum_{p \leq \sigma(n)+1} \frac{\log p}{p-1}, \sum_{q \leq \sigma(n)+1} W_q.$$

- ▶ Sort by $\sigma(n) + 1$ before finding sums and products, then sort by n after computing these.
- ▶ Creating this table takes $N^{1+o(1)}$ steps and $N^{1+o(1)}$ bytes of memory. Calculating c with the use of this table, requires $N^{1+o(1)}$ steps.
- ▶ With $N = 2^{31}$ and thirteen hours of computation, we get $1.33607322 < c < 1.33607654$.

Open problem: explicit bounds for $P(x)$

Open problem: explicit bounds for $P(x)$

We know

$$\frac{P(x)}{x/\log x} \rightarrow 1.33607\dots \quad (x \rightarrow \infty).$$

Open problem: explicit bounds for $P(x)$

We know

$$\frac{P(x)}{x/\log x} \rightarrow 1.33607\dots \quad (x \rightarrow \infty).$$

It seems likely that for all $n \geq 20$,

$$1.22\dots = \frac{P(27)}{27/\log 27} \leq \frac{P(n)}{n/\log n} \leq \frac{P(42)}{42/\log 42} = 1.42\dots$$

Open problem: explicit bounds for $P(x)$

We know

$$\frac{P(x)}{x/\log x} \rightarrow 1.33607\dots \quad (x \rightarrow \infty).$$

It seems likely that for all $n \geq 20$,

$$1.22\dots = \frac{P(27)}{27/\log 27} \leq \frac{P(n)}{n/\log n} \leq \frac{P(42)}{42/\log 42} = 1.42\dots$$

But we don't even know if

$$0.001 \leq \frac{P(x)}{x/\log x} \leq 1000$$

for all $x \geq 20$.

Thank You!